Analiza

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Analiza as PDF for free.

More details

  • Words: 984
  • Pages: 3
Derivate f ( x) − f ( x 0 ) ∃ lim = 0 şi este finită. x → x0 x − x0

f(x) are derivată în x0 dacă

1.

xn

2.

f ' ( x) 0 nx n −1 rx r −1 ex a x ln(a ) 1 1 ⋅ ⋅u' 2 u 1 x cos( x) − sin( x)

f (x) ctn (x ≥ 1∈ I )

No.

5.

xr ex ax

6.

u

3. 4.

7.

ln( x )

8. 9.

sin( x) cos( x )

10.

arcsin( x)

11.

arccos( x)

12.

arctg ( x )

13.

arcctg (x )

No.

Operands

Result

1.

( f + g ) ( x)

f ( x ) + g ' ( x)

2.

( fg ) ' ( x)

f ' ( x ) ⋅ g ( x ) + f ( x) ⋅ g ' ( x )

3.

(λ ⋅ f ( x)) '

4.

f ( ) ' ( x) g

λ ⋅ f ' ( x) f ' ( x) ⋅ g ( x ) − f ( x ) ⋅ g ' ( x ) g 2 ( x)

5.

(

f ( x)

f ' ( x)

'

λ ( g  f ) ' ( x)

6. Trick:

)'

a = e ln( a ) .

1 1− x2 −1

1− x2 1 1+ x2 −1 1+ x2

∀x ∈ (−1,1)

∀x ∈ (−1,1) ∀x ∈ R ∀x ∈ R

'

λ g ( f ( x)) ⋅ f ' ( x) '

Integrale Nedefinite No.

SpecificaŃii

Integrala nedefinită

f : R → R; 1.

2.

3.

f ( x) = x n ; n ∈ N f : J → R; J ⊂ (0, ∞) f ( x) = x a ; a ∈ R − {1} f :R→ R

n ∫ x dx =

x n +1 +c n +1

a ∫ x dx =

x a +1 +c a +1

ax ∫ a dx = ln(a) + c x

f ( x) = a x ; a ∈ R+* − {1} f : J → R; J ⊂ R *

4.

1 f ( x) = x f : J → R; J ⊂ R − {− a, a}

5.

1 f ( x) = 2 , (a ≠ 0) x − a2 f :R→R 1 f ( x) = 2 ;a ≠ 0 x + a2 f :R→ R f ( x ) = sin( x ) f :R→R f ( x) = cos( x)

6.

7.

8.

9.

1

∫ x dx = ln( x ) + c ∫x

2

∫x

2

1 1 x−a dx = ln +c 2 2a x + a −a

x 1 1 dx = arctg ( ) + c 2 a a +a

∫ sin( x)dx = − cos( x) + c ∫ cos( x)dx = sin( x) + c

π   f : J → R; J ⊂ R − (2k + 1) k ∈ Z  2   1 f ( x) = cos 2 ( x )

1

∫ cos

f : J → R; J ⊂ R − {kπ k ∈ Z } 10.

11.

12.

13.

f ( x) =

∫ sin

1 sin 2 ( x)

π   f : J → R; J ⊂ R − (2k + 1) k ∈ Z  2   f ( x) = tg ( x )

( x)

1 2

( x)

dx = tg ( x ) + c

dx = −ctg ( x) + c

∫ tg ( x)dx = − ln( cos( x) ) + c

f : J → R; J ⊂ R − {kπ k ∈ Z } f ( x) = ctg ( x) f : J → R; J ⊂ (−a, a), a > 0, 1 f ( x) = a2 − x2

2

∫ ctg ( x)dx = ln( sin( x) ) + c ∫

1

x dx = arcsin( ) + c a a2 − x2

f : R → R; a ≠ 0 1 f ( x) = x2 + a2 f : J → R, J ⊂ (−∞,−a ) sau J ⊂ (a, ∞ ), a > 0, 1 f ( x) = 2 x − a2

14.

15.





1 x +a 2

2

1 x −a 2

2

dx = ln( x + x 2 + a 2 ) + c

dx = ln x + x 2 − a 2 + c

Alte formule:

E x (x + 1) 2

2

2

=

A B Cx + D Fx + G + 2 + 2 + 2 x x x + 1 (x + 1) 2

Se notează:

ax 2 + bx + c = x a + t = xt + c

daca a > 0 daca c > 0

= (x - x 1 )t daca a < 0, c < 0, ∆ = b 2 − 4ac > 0 I.

x tg ( ) = t ⇔ x = 2arctg (t ) = ρ 2 2 ρ'= 1+ t 2 2t 1− t2 2t sin( x ) = , cos( x) = , tg ( x ) = 2 2 1+ t 1+ t 1− t2 II. R(-sin x,

cos x) = R(sin x, cos x) tg ( x) = t ⇒ x = arctg (t ) cos 2 ( x) =

1 t2 t 2 , sin ( ) = , sin( x ) cos( x ) = x 2 2 1+ t 1+ t 1+ t2

R(-sin x, cos x) = R(sin x, cos x) cos( x ) = t ⇒ x = arccos(t )

III.

∫ f ( x) g ' ( x)dx =

fg − ∫ f ' ( x) g ( x )dx

Related Documents

Analiza
May 2020 62
Analiza
May 2020 55
Analiza
May 2020 35
Analiza
May 2020 52
Analiza
November 2019 70
Analiza
December 2019 67