Analisis.docx

  • Uploaded by: Sergiusz Sam
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Analisis.docx as PDF for free.

More details

  • Words: 692
  • Pages: 7
b. π’š = 𝒄𝒐𝒔(𝒙 + √𝟐) +

𝑿 𝒙( 𝟐

+ √𝟐 )

>> syms x; >> x= -10:0.0001:10; >> y = cos(x + sqrt(2)) + x.*(x/2 + sqrt(2)); >> plot(x,y,'r'), grid on, title 'y = cos(x + sqrt(2)) + x.*(x/2 + sqrt(2))'

>> syms x; >> x= -2:0.0001:2; >> y = cos(x + sqrt(2)) + x.*(x/2 + sqrt(2)); >> plot(x,y,'r'), grid on, title 'y = cos(x + sqrt(2)) + x.*(x/2 + sqrt(2))'

>> syms x; >> x= -1.6:0.0001:-1.2; >> y = cos(x + sqrt(2)) + x.*(x/2 + sqrt(2)); >> plot(x,y,'r'), grid on, title 'y = cos(x + sqrt(2)) + x.*(x/2 + sqrt(2))'

𝑿

la ecuacion π’š = 𝒄𝒐𝒔(𝒙 + √𝟐) + 𝒙( + √𝟐 ) 𝟐 posee una raiz en los intervalos [-1.6;-1,3]

C π’š = π’†πŸ”π’™ + πŸ‘π’π’(𝟐)π’†πŸπ’™ βˆ’ 𝒍𝒏(πŸ–)π’†πŸ’π’™ βˆ’ π’π’πŸπŸ‘ >> syms x ; >> x = -5:0.00001:5; >> y= exp(6.*x) + 3*log(2)*exp(2.*x) - log(8)*exp(4.*x) - (log(2)).^3; >> plot(x,y,'r'), grid on, title 'y= exp(6.*x) + 3*log(2)*exp(2.*x) - log(8)*exp(4.*x) - (log(2)).^3'

La ecuaciΓ³n π’š = π’†πŸ”π’™ + πŸ‘π’π’(𝟐)π’†πŸπ’™ βˆ’ 𝒍𝒏(πŸ–)π’†πŸ’π’™ βˆ’ π’π’πŸπŸ‘ posee una raΓ­z en los intervalos [-1;0]

>> syms x ; >> x = -1:0.00001:0; >> y= exp(6.*x) + 3*log(2)*exp(2.*x) - log(8)*exp(4.*x) - (log(2)).^2; >> plot(x,y,'r'), grid on, title 'y= exp(6.*x) + 3*log(2)*exp(2.*x) - log(8)*exp(4.*x) - (log(2)).^3'

1. Encuentre el o los intervalos donde existe al menos una raΓ­z en a cada una de las siguientes ecuaciones. (Describa muy bien el intervalo que se escoja para mostrar la raΓ­z) a. π’š = π’™πŸ βˆ’ πŸπ’™π’†βˆ’π’™ + π’†βˆ’πŸπ’™ + >> syms x; >> x= -10:0.0001:10; >> y= x.^2 - 2*x.*exp(-x) + exp(-2*x); >> plot(x,y,'r'), grid on, title ' y= x.^2 - 2*x.*exp(-x) + exp(-2*x)'

>> syms x; >> x= -2:0.0001:2; >> y= x.^2 - 2*x.*exp(-x) + exp(-2*x); >> plot(x,y,'r'), grid on, title ' y= x.^2 - 2*x.*exp(-x) + exp(-2*x)'

2. Aplique los mΓ©todos siguientes para obtener una soluciΓ³n con exactitud de πŸπŸŽβˆ’πŸ’ para los problemas: a. 𝑓(π‘₯) = 600π‘₯ 4 βˆ’ 550π‘₯ 3 + 200π‘₯ 2 βˆ’ 20π‘₯ βˆ’ 1 >> ezplot( 'y=600*x.^4 - 550*x.^3 + 200*x.^2 - 20*x 1',[-0.5,0.5,-3,3]) , grid on

b. >> ezplot( 'y=exp(x) - x.^2 + 3*x -2') , grid on

c >> ezplot( 'y=(1-0.6*x)/x') , grid on

CODIGO BISECCION xai=input('Ingrese el intervalo inferior: '); xbi=input('Ingrese el intervalo superior: '); tol=input('Ingrese el porcentaje de error: '); syms x; f=input('Ingrese la funciΓ²n: '); i=1; f1=subs(f,x,xai); f2=subs(f,x,xbi); ea(i)=100; if f1*f2 < 0 xa(i)=xai; f1=subs(f,x,xa(i)); xb(i)=xbi; f2=subs(f,x,xb(i)); xr(i)=(xa(i)+xb(i))/2; f3=subs(f,x,xr(i)); fprintf('It. Xa Xr Xb Error aprox \n'); fprintf('%2d \t %11.7f \t %11.7f \t %11.7f \n',i,xa(i),xr(i),xb(i)); while abs(ea(i)) >= tol, if f1*f3<0 xa(i+1)=xa(i);f1=subs(f,x,xa(i+1)); xb(i+1)=xr(i);f2=subs(f,x,xb(i+1)); end if f1*f3> 0 xa(i+1)=xr(i);f1=subs(f,x,xa(i+1)); xb(i+1)=xb(i);f2=subs(f,x,xb(i+1)); end xr(i+1)=(xa(i+1)+xb(i+1))/2; f3=subs(f,x,xr(i+1)); ea(i+1)=abs((xr(i+1)xr(i))/(xr(i+1))*100); fprintf('%2d \t %11.7f \t %11.7f \t %11.7f \t %7.3f \n',... i+1,xa(i+1),xr(i+1),xb(i+1),ea(i+1)); i=i+1; end else fprintf('No existe una raΓ­z en ese intervalo'); end

x0=input('Ingrese el valor inicial: '); tol=input('Ingrese el porcentaje de error: '); f=input('Ingrese la funciΓ³n: '); i=1; fx(i)=x0; syms x; f1=subs(f,x,fx(i)); z=diff(f); d=subs(z,x,fx(i)); ea(1)=100; while abs(ea(i))>=tol; fx(i+1)=fx(i)-f1/d; f1=subs(f,x,fx(i+1)); d=subs(z,x,fx(i+1)); ea(i+1)=abs((fx(i+1)fx(i))/fx(i+1)*100); i=i+1; end fprintf('i fx(i) Error aprox (i) \n'); for j=1:i; fprintf('%2d \t %11.7f \t %7.3f \n',j-1,fx(j),ea(j)); end fx(1)=input('Ingrese el intervalo inferior: '); fx(2)=input('Ingrese el intervalo superior: '); tol=input('Ingrese el porcentaje de error: '); syms x; f=input('Ingrese la funciΓ²n: '); f1=subs(f,x,fx(1)); f2=subs(f,x,fx(2)); ea(1)=100; i=1; j=2; while abs(ea(i))>=tol xf(j+1)=(xf(j-1)*f2-xf(j)*f1)/(f2f1); f1=f2; f2=subs(f,x,xf(j+1)); ea(i+1)=(xf(j+1)-xf(j))/xf(j+1)*100; j=j+1; i=i+1; end

fprintf(' i xf(i) Error aprox (i) \n'); %fprintf('%2d\t%11.7f\t\n',0,x(1)); for k=2:j; fprintf('%2d\t%11.7f\t%7.3f\n',k1,xf(k),ea(k-1)); end xf(1)=input('Ingrese el valor inicial: '); tol=input('Ingrese el porcentaje de error: '); syms x; f=input('Ingrese la funciΓ³n f(x), despejada g(f(x)): '); i=1; ea(1)=100; while abs(ea(i))>=tol, xf(i+1) = subs(f,x,xf(i)); ea(i+1) = abs((xf(i+1)xf(i))/xf(i+1))*100; i=i+1; end fprintf('i xf(i) Error aprox (i) \n'); for j=1:i; fprintf('%2d \t %11.7f \t %7.3f \n',j-1,xf(j),ea(j)); end

CODIGO REGLA FALSA xai=input('Ingrese limite inferior: '); xbi=input('Ingrese limite superior: '); tol=input('Ingrese el porcentaje de Error: '); syms x; f=input('Ingrese la Funcion: '); f1=subs(f,x,xai); f2=subs(f,x,xbi); i=1; ea(1)=100; if f1*f2 < 0 xa(1)=xai;f1=subs(f,x,xa(1)); xb(1)=xbi;f2=subs(f,x,xb(1)); xr(1)=xa(1)-f1*(xb(1)-xa(1))/(f2f1); f3=subs(f,x,xr(1)); fprintf('It. Xa Xr Xb Error aprox \n'); fprintf('%2d \t %11.7f \t %11.7f \t %11.7f \n',i,xa(i),xr(i),xb(i)); while abs(ea(i))>=tol, if f1*f3 < 0 xa(i+1)=xa(i);f1=subs(f,x,xa(i+ 1));

xb(i+1)=xr(i);f2=subs(f,x,xb(i+ 1)); end if f1*f3> 0 xa(1)=xr(i); xb(1)=xb(i); end xr(i+1)=xa(i+1)-f1*(xb(i+1)xa(i+1))/(f2-f1); ea(i+1)=abs((xr(i+1)xr(i))/(xr(i+1)))*100; fprintf('%2d \t %11.7f \t %11.7f \t %11.7f \t %7.3f \n',... i+1,xa(i+1),xr(i+1),xb(i+1 ),ea(i+1)); i=i+1; end else fprintf('No existe una raΓ­z en ese intervalo'); end

More Documents from "Sergiusz Sam"