6.002
CIRCUITS AND
ELECTRONICS
Amplifiers -Small Signal Model
6.002 Fall 2000
Lecture 10
1
Review
MOSFET amp VS RL
vO vI
iDS
Saturation discipline — operate MOSFET only in saturation region
Large signal analysis 1. Find vO vs vI under saturation discipline.
2. Valid vI , vO ranges under saturation discipline.
Reading: Small signal model -- Chapter 8
6.002 Fall 2000
Lecture 10
2
Large Signal Review 1
vO vs vI K (vI −1)2 RL
2
valid for vI ≥ VT and vO ≥ vI – VT K 2 (same as iDS ≤ vO ) 2
vO = VS −
6.002 Fall 2000
Lecture 10
3
Large Signal Review
2
Valid operating ranges
V S
v O
5V
corresponding interesting region for vO
vO > vI −VT
vO = vI −VT vO < vI −VT
1V
vI
VT
1V
2V
“interesting” region for vI . Saturation discipline satisfied.
6.002 Fall 2000
Lecture 10
4
But… VS 5V
vO
vO = vI −VT
vO 1V
vI VT
1V
Demo
vI
2V
Amplifies alright, but distorts
vI
vO
t
Amp is nonlinear … / 6.002 Fall 2000
Lecture 10
5
Small Signal Model vO
~ 5V VS
Focus on this line segment
(VI , VO )
~ 1V vI
VT 1V
~ 2V 2 K (vI − VT ) vO = VS − RL 2 Amp all right, but nonlinear! Hmmm … So what about our linear amplifier ???
Insight: But, observe vI vs vO about some point (VI , VO) … looks quite linear ! 6.002 Fall 2000
Lecture 10
6
Trick ∆vO
vo VO
vi
(VI ,VO )
looks linear
VI ∆vI
Operate amp at VI , VO Æ DC “bias” (good choice: midpoint of input operating range)
Superimpose small signal on top of VI
Response to small signal seems to be approximately linear
6.002 Fall 2000
Lecture 10
7
Trick ∆vO
vo VO
vi
(VI ,VO )
looks linear
VI ∆vI
Operate amp at VI , VO Æ DC “bias” (good choice: midpoint of input operating range)
Superimpose small signal on top of VI Response to small signal seems to be approximately linear Let’s look at this in more detail — I graphically II mathematically III from a circuit viewpoint 6.002 Fall 2000
Lecture 10
next week 8
I Graphically
We use a DC bias VI to “boost” interesting input signal above VT, and in fact, well above VT .
VS RL
interesting input signal
∆vI + – VI + –
vO
Offset voltage or bias
6.002 Fall 2000
Lecture 10
9
Graphically
VS RL
interesting input signal
vO
∆vI + – VI + –
VS
vO
operating point
VO
0
VI , VO
VT
Good choice for operating point:
midpoint of input operating range
6.002 Fall 2000
vO = vI −VT
vI
Lecture 10
VI
10
Small Signal Model
aka incremental model aka linearized model
Notation — Input:
vI = VI + vi
total DC small variable bias signal (like ∆vI) bias voltage aka operating point voltage Output: vO = VO + vo Graphically, vI
vO
vi
vo
VI
VO
0
6.002 Fall 2000
t
0
Lecture 10
t
11
II Mathematically
(… watch my fingers)
RL K 2 vO = VS − (vI −VT ) VO = VS − RL K (VI −VT )2
2
2
substituting vI = VI + vi vi << VI
RL K vO = VS − 2
( [VI + vi ] − vT )2
RL K 2
( [VI −VT ] + vi )2
= VS −
(
RL K [VI −VT ]2 + 2 [VI − vT ]vi + vi 2 = VS − 2
RL K VO + vo = VS − (VI − VT )2 − RL K (VI −VT ) vi
2 From ,
)
vo = −RL K (VI −VT ) vi
gm
6.002 Fall 2000
related to
Lecture 10
VI
12
Mathematically vo = −RL K (VI −VT ) vi
gm
related to
VI
vo = −g m RL vi
For a given DC operating point voltage VI,
VI – VT is constant. So,
vo = − A vi
constant w.r.t. vi
In other words, our circuit behaves like a linear amplifier for small signals
6.002 Fall 2000
Lecture 10
13
Another way RL K vO = VS − (vI −VT )2
2
(
)
R K
2 L v −V VS − I T 2 d vo = dv I
⋅ vi
v = V
I I
slope at VI
vo = −RL K (VI −VT ) ⋅ vi
g m = K (VI −VT ) A = −g m RL
amp gain
Also, see Figure 8.9 in the course notes for a graphical interpretation of this result 6.002 Fall 2000
Lecture 10
14
More next lecture … Demo
iDS load line
input signal response operating point VI
VO
vO
How to choose the bias point: 1. Gain component g m ∝ VI 2. vi gets big Æ distortion. So bias carefully 3. Input valid operating range. Bias at midpoint of input operating range for maximum swing. 6.002 Fall 2000
Lecture 10
15