Am-sln-17(e)

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Am-sln-17(e) as PDF for free.

More details

  • Words: 5,425
  • Pages: 9
Chapter 17 Indefinite Integral and Its Applications

CHAPTER 17

13.

∫x

2



( x 2 + 4)dx = ( x 4 + 4 x 2 )dx

∫ 2 x dx = 2 4 x

2.



dx 1 = x+C 3 3

3.



dx = x4

4.



3dx x3 9 2 − 13 ( )+C = x3 +C = 3 x dx = 3 2 3 x 2 3

5.

6.

7.

8.

9.

10.

1 3

11 4 1 + C = x4 + C 8



1.2

1

3 2 25 x + 2x 2 + C 5

∫ 8 sin xdx = −8 cos x + C

17.

x 15 ) + C = x 2.2 + C 2.2 11

∫ (sin x + cos x )dx = − cos x + sin x + C

18.

∫ (4 cos x − 3 sin x )dx = 4 sin x + 3 cos x + C

x 0.6 2 ) = x 0.6 + C 0.6 3

19.

∫ (a cos x + b sin x )dx = a∫ cos xdx + b∫ sin xdx

2.2





x3 x2 (3 x − 2 x + 1)dx = 3( ) − 2( ) + x + C 3 2 = x3 − x2 + x + C

= a sin x − b cos x + C

2

∫ (2 x

3

x4 x2 ) − 7( ) + 6 x + C 4 2 1 4 7 2 = x − x + 6x + C 2 2

− 7 x + 6)dx = 2(

20.

∫ 5 sec

21.

∫ sin 2 x = ∫ csc

22.

∫ (3

2

xdx = 5 tan x + C

dx

− x − 6)dx

3

= 3(

x2 3 2

1

) + 2(

3

x2

23.

∫ (4 x

2 3

+

3 x

− 13

1



2

5



=

24.



x3

2



+ 3 x − 5) x 3 dx = ( x 5 + 3 x 4 − 5 x 3 )dx =

1 6 3 5 5 4 x + x − x +C 6 5 4

1

5 3

4

) + 3(

x3 4 3

)+C

12 53 9 43 x + x +C 5 4

3 1 1 3x 2 + 2 x − 1 dx = (3 x 2 + 2 x 2 − x − 2 )dx x



5

∫ (x

)+C

)dx = ( 4 x 3 + 3 x 3 )dx = 4(

= 6(

12.

1 2

= 2x 2 + 4x 2 + C

(2 x + 4)(3 x − 8)dx = (6 x 2 − 4 x − 32)dx x3 x2 ) − 4( ) − 32 x + C 3 2 = 2 x 3 − 2 x 2 − 32 x + C

xdx = − cot x + C



3

2

2

1 1 2 )dx = (3 x 2 + 2 x − 2 )dx x

x+

x6 x4 x2 ( 4 x − 2 x + 9 x )dx = 4( ) − 2( ) + 9( ) + C 6 4 2 2 6 1 4 9 2 = x − x + x +C 3 2 2 5

∫ ( x + 2)( x − 3)dx = ∫ ( x ∫

3

16.

2

1 1 = x3 − x2 − 6x + C 3 2

11.



xdx = ( x 2 + 3 x 2 )dx

∫ 4 cos xdx = 4 sin x + C

1 x −3 + C = − x −3 + C −3 3

0.4 x −0.4 dx = 0.4(



∫ ( x + 3)

15.

x −4 dx =

dx = 3(

14.

=



∫ 3x

1 5 4 3 x + x +C 5 3

=

Exercise 17A (p.177) 1.

115

= 3( =

x2 5 2

3

) + 2(

x2 3 2

1

)−

x2 1 2

+C

1 6 25 4 23 x + x − 2x 2 + C 5 3

116

25.

Chapter 17 Indefinite Integral and Its Applications

∫ ( x 4 − 23 x )dx = ∫ ( x 1

1

−4



−3

1 − 13 x )dx 2

(b) From (a), 4

2 3

x 1x − +C −3 2 23 1 3 2 = − x −3 − x 3 + C 3 4 =

26.

∫ 2 sin 2 cos 2 dx = ∫ sin xdx = − cos x + C

27.



28.

29.

x

4 sin 2

∫ 3 tan



2



x





1.

∫ = ∫ (sec 2 x + csc 2 x )dx

2.

= sec x + tan x − x + C

=

32. (a)

2 + 2x2 dx = dy = y + C (1 − x 2 )2

dy = 8x − 1 dx



dy = 4x + 1 dx



y = ( 4 x + 1)dx = 2x2 + x + C Put (−1, 3) into y = 2 x 2 + x + C , C = 2 Hence the equation of the curve is y = 2 x 2 + x + 2 .

2

∫ (1 − x 2 )2 + ∫ (1 − x 2 )2 ] dx

2 + 2x

y = 2x − 1

Put (−1, −1) into y = 4 x 2 − x + C ,

3.

dy 2(1 − x 2 ) − 2 x ( −2 x ) 2 + 2x2 = = 2 2 dx (1 − x ) (1 − x 2 )2

=

dx = 4 x + x + C

−1 = 4( −1)2 − ( −1) + C C = −6 ∴ y = 4x2 − x − 6

∫ = ∫ (sec x tan x + sec 2 x − 1)dx

2[

x x+ x



= (sec x tan x + tan 2 x )dx



2 x +1

dx

y = (8 x − 1)dx = 4 x 2 − x + C

(sec x + tan x ) tan xdx



x x+ x

dy =2 dx y = 2x + C ∴

= 3(tan x − x ) + C = 3 tan x − 3 x + C

(b) From (a),

2 x +1

Put (1, 1) into y = 2 x + C , C = −1



xdx = 3(sec 2 x − 1)dx

(tan x + cot x )2 dx = (tan 2 x + 2 + cot 2 x )dx

31. (a)

x x+ x

Exercise 17B (p.183)

x dx = 2(1 − cos x )dx 2 = 2( x − sin x ) + C = 2 x − 2 sin x + C

= tan x − cot x + C 30.

∫ 4dy = ∫



2 x +1

dy = dx

x dx

2

∫ (1 − x 2 )2 dx 2x +C 1 − x2

1 dy 1 1 1 = ( x + x ) − 2 (1 + x − 2 ) dx 2 2 1+ 1 2 x = 2 x+ x 2 x +1 = 4 x x+ x

4. If Q

dy d2y = kx + 3, =k dx dx 2 d2y =2 dx 2 k=2

∴ dy = 2x + 3 dx y = (2 x + 3)dx



= x 2 + 3x + C

Put (0, 4) into y = x 2 + 3 x + C , C = 4 Hence the equation of the curve is y = x 2 + 3 x + 4 .

Chapter 17 Indefinite Integral and Its Applications

5. Since



dy = tan x sec x , dx

y = (tan x sec x )dx = sec x + C

Put (0, 1) into y = sec x + C , C = 0 Hence the equation of the curve is y = sec x .

6. Since

dy = 3 x + cos x , dx



y = (3 x + cos x )dx 3 = x 2 + sin x + C 2 3 Put (0, 3) into y = x 2 + sin x + C , C = 3 2 Hence the equation of the curve is 3 y = x 2 + sin x + 3 . 2

d2y =4 7. dx 2 dy = 4 dx = 4 x + C1 dx dy When x = 1 , = 2 . ∴ C1 = −2 dx dy = 4x − 2 dx y = ( 4 x − 2)dx





= 2 x 2 − 2 x + C2

Put (2, 5) into y =

1 3 1 2 x − x − x + C2 , 6 2

8 − 2 − 2 + C2 6 2 C2 = 7 3 Hence the equation of the curve is 1 1 2 y = x3 − x2 − x + 7 . 6 2 3 5=

9. v = 2t + 1



s = (2t + 1)dt = t 2 + t + C When t = 0 , s = 0 . ∴ C = 0 s = t2 + t

10. v = 3 t + 2



3

s = (3 t + 2)dt = 2t 2 + 2t + C When t = 0 , s = 5 . ∴ C = 5 3

s = 2t 2 + 2t + 5 11. a = 6t 2 + 4t



v = (6t 2 + 4t )dt = 2t 3 + 2t 2 + C When t = 0 , v = 4 . ∴ C = 4

v = 2t 3 + 2t 2 + 4 12. a = 12t 2 + 6t



Put (1, 3) into y = 2 x 2 − 2 x + C2 , C2 = 3

v = (12t 2 + 6t )dt = 4t 3 + 3t 2 + C1

Hence the equation of the curve is

When t = 0 , v = −3 . ∴ C1 = −3

y = 2x2 − 2x + 3. d2y = x −1 8. dx 2 1 dy = ( x − 1)dx = x 2 − x + C1 2 dx



When x = 2 , ∴

dy = −1. ∴ C1 = −1 dx

dy 1 2 = x − x −1 dx 2 1 y = ( x 2 − x − 1)dx 2 1 3 1 2 = x − x − x + C2 6 2



117

v = 4t 3 + 3t 2 − 3



s = ( 4t 3 + 3t 2 − 3)dt = t 4 + t 3 − 3t + C2

When t = 0 , s = 0 . ∴ C2 = 0

s = t 4 + t 3 − 3t 13. v = 4t + 2



s = ( 4t + 2)dt = 2t 2 + 2t + C Let s = 0 when t = 0 , then C = 0 .

s = 2t 2 + 2t When t = 4 , s = 2( 4)2 + 2( 4) = 40 ∴ The distance that the particle moves in the first four seconds is 40 .

118

Chapter 17 Indefinite Integral and Its Applications

When s = 20 , 5t 2 = 20 t = 2 or −2 (rejected) v = 10(2) = 20

14. v = 2t − 4



s = (2t − 4)dt = t 2 − 4t + C When t = 0, s = 0 2 − 4(0) + C = C

∴ The velocity is 20 m / s .

(a) When t = 2 , s = (2)2 − 4(2) + C = −4 + C ∴ Distance = C − ( −4 + C ) = 4 (b) When t > 2 , v > 0

17. (a) (b)

When t = 5 , s = (5) − 4(5) + C = 5 + C 2

∴ Distance = 2( 4) + 5 + C − C = 13 15. a = 48t − 24



v = ( 48t − 24)dt = 24t 2 − 24t + C1 When t = 0 , v = 6 . ∴ C1 = 6 v = 24t 2 − 24t + 6



2 (a) s = (24t − 24t + 6)dt

= 8t 3 − 12t 2 + 6t + C2

d ( x tan x ) = x sec 2 x + tan x dx dy 1 = x sec 2 x + tan x dx 2 1 dy = ( x sec 2 x + tan x )dx 2 1 ∴ y = x tan x + C 2





π Since the curve passes through ( , 1) , 4 1 π π 1 = ( ) tan( ) + C 2 4 4 π C = 1− 8 Hence the equation of the curve is 1 π y = x tan x + 1 − . 2 8

When t = 0 , s = −3 . ∴ C2 = −3 s = 8t 3 − 12t 2 + 6t − 3

(b) Put v = 0 into v = 24t 2 − 24t + 6 , 24t 2 − 24t + 6 = 0 4t 2 − 4t + 1 = 0 (2t − 1)2 = 0 1 t= 2 1 ∴ The particle is stationary when t = . 2

16. a = 10



v = 10 dt = 10t + C1 When t = 0 , v = 0 ∴

C1 = 0

Then v = 10t



s = 10tdt = 5t + C2 2

When t = 0 , s = 0 ∴

C2 = 0

Then s = 5t 2

18. (a) v = 60t − 30t 2 Put v = 0 , 60t − 30t 2 = 0 t (2 − t ) = 0 t = 0 or t = 2 ∴ His travelling time is 2 hours.

(b) v = 60t − 30t 2



s = (60t − 30t 2 )dt = 30t 2 − 10t 3 + C When t = 0, s = 30(0)2 − 10(0)3 + C =C When t = 2 , s = 30(2)2 − 10(2)3 + C = 40 + C ∴ The distance between town A and town B is ( 40 + C − C ) km = 40 km . (c) v = 60t − 30t 2 = 30 − (30 − 60t + 30t 2 ) = 30 − 30(1 − t )2 Therefore, v reaches its maximum when t = 1 . ∴ The maximum velocity is 30 km / h .

Chapter 17 Indefinite Integral and Its Applications

19. (a) a = 8 − 15t 2

4.



v = (8 − 15t 2 )dt = 8t − 5t 3 + C

∫ (x

−2

119

+ 2 x −3 + 3 x −4 ) dx

x −1 x −2 x −3 + 2( ) + 3( )+C −1 −2 −3 = − x −1 − x −2 − x −3 + C =

When t = 0 , v = 24 . ∴ C = 24 Put v = 0 , then −5t 3 + 8t + 24 = 0

5t 3 − 8t − 24 = 0 (t − 2)(5t 2 + 10t + 12) = 0 t=2 ∴ It stops once when t = 2 .

5.

∫ (x − x ) 2

2



4 )dx x2 1 4 = x3 − 4x − + C x 3

dx = ( x 2 − 4 +

(b) (i) v = −5t 3 − 8t + 24



s = ( −5t 3 + 8t + 24)dt 5 4 t + 4t 2 + 24t + C1 4 5 = − t 4 + 4t 2 + 24t (Put C1 = 0 ) 4 When t = 2 , 5 s = − (2) 4 + 4(2)2 + 24(2) = 44 4 ∴ Distance travelled is 44 m .



7.



8.

∫ (x

=−

(ii) When t = 4 , 5 s = − ( 4) 4 + 4( 4)2 + 24( 4) 4 = −160 When 2 < t < 4 , v < 0 ∴ Distance travelled = [2( 44) + 160] m = 248 m

9.

Revision Exercise 17 (p.186)

∫ (x

2



+ 2)2 dx = ( x 4 + 4 x 2 + 4)dx =

2.

1 5 4 3 x + x + 4x + C 5 3

∫ ( x − a)( x − b)dx = ∫ [ x =

3.

2

− ( a + b) x + ab]dx

1 3 1 x − ( a + b) x 2 + abx + C 3 2

∫ (ax + b)( px + q) dx = ∫ [apx 2 + (bp + aq ) x + bq] dx =

1 1 apx 3 + (bp + aq ) x 2 + bqx + C 3 2



x x x dx =

5

∫x

7 8

dx =

11.

12.

8 158 x +C 15



+ 3 x 3 − 5 x ) x −3 dx = ( x 2 + 3 − 5 x −2 )dx =

10.

1.

x 4 + 2x3 + 9 dx = ( x 2 + 2 x + 9 x −2 )dx 2 x 1 = x 3 + x 2 − 9 x −1 + C 3

6.

1 3 x + 3 x + 5 x −1 + C 3

∫ (3sin θ + 4 cos θ)dθ = −3 cos θ + 4 sin θ + C

∫ cot

2

∫ (sec



θ dθ = (csc 2 θ − 1) dθ = − cot θ − θ + C

2

θ + csc 2 θ)dθ = tan θ − cot θ + C

1 − cos 2θ 1 − (1 − 2 sin 2 θ) = 1 + cos 2θ 1 + (2 cos 2 θ − 1) 2 sin 2 θ = 2 cos 2 θ = tan 2 θ = sec 2 θ − 1

1 − cos 2θ

∫ 1 + cos 2θ dθ = ∫ (sec θ − 1)dθ = ∫ sec 2 θdθ − ∫ dθ 2

= tan θ − θ + C

120

Chapter 17 Indefinite Integral and Its Applications

θ θ + cos 4 4 4 θ θ θ 4θ = (sin + 2 sin 2 cos 2 + cos 4 ) 4 4 4 4 2 θ 2 θ − 2 sin cos 4 4 θ θ 2 θ 2 θ 2 1 = (sin + cos ) − (2 sin cos )2 4 4 2 4 4 1 2θ = 1 − sin 2 2 θ (b) cos θ = 1 − 2 sin 2 2 1 1 1 2θ cos θ = − sin 4 4 2 2 3 1 1 2θ + cos θ = 1 − sin 4 4 2 2 1 θ θ θ (sin 4 + cos 4 )dθ = (1 − sin 2 )dθ 4 4 2 2 3 1 = ( + cos θ)dθ 4 4 3 1 = θ + sin θ + C 4 4

13. (a) sin 4



dy = 3 cot 2 θ( − csc 2 θ) − 3( − csc 2 θ) dθ = −3 cot 4 θ − 3 cot 2 θ + 3 cot 2 θ + 3

∫ (−3 cot

x4 − 3x + C , 2 C=0

Put (2, 2) into y =

Hence the equation of the curve is y = (b)

= cot 3 θ − 3 cot θ + C 1

∫ ∫ 1 4 3 ∫ cot θdθ = −3 [cot θ + −3 cot θ − 3θ] + C

−3 cot 4 θdθ = cot 3 θ − 3 cot θ + C1 − 3 dθ

cot 3 θ + cot θ + θ + C 3

x4 − 3x , 2 7 y= 2

Put x = −1 into y =

∴ The coordinates of the point are ( −1,

7 ). 2

17 − 18. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons. 19. (a)

dV = 3t 2 + 2t dt V = (3t 2 + 2t )dt = t 3 + t 2 + C C = 14 − 2 3 − 2 2 = 2 V = t3 + t2 + 2

(b) When t = 5 ,

V = (5)3 + (5)2 + 2 = 152 ∴ The volume of the bubble is 152 cm 3 . 20. (a) V1 = 40 − 10t V2 = t 2 − 10t + 24 When t = 4 ,

dy = 8 − 4x dx y = (8 − 4 x )dx

V1 = 40 − 10( 4) = 0



V2 = ( 4)2 − 10( 4) + 24 = 0 ∴ When t = 4 , V1 = V2

= 8x − 2 x 2 + C = −2( x − 2) + C1 Q −2( x − 2)2 ≤ 0 ∴ ymax = C1 = 7 2



(b) When 0 ≤ t ≤ 4 , h = V1dt



h = ( 40 − 10t )dt

y = −2( x − 2) + 7 = −2 x + 8 x − 1 2

x4 − 3x . 2

dy = −5 dx 2 x 3 − 3 = −5 x = −1



=−

x4 − 3x + C 2

When t = 2 , V = 14

θ + 3)dθ

= y + C1

15.

=



= −3 cot 4 θ + 3 4

dy = 2x3 − 3 dx y = (2 x 3 − 3)dx



∫ ∫

14. y = cot 3 θ − 3 cot θ



16. (a)

2

= 40t − 5t 2 (constant = 0)

Hence the equation of the curve is

When t = 4 , h = 40( 4) − 5( 4)2 = 80

y = −2 x 2 + 8 x − 1 .

∴ The height of the particle is 80 m .

Chapter 17 Indefinite Integral and Its Applications



(c) When t ≥ 4 , h = V2 dt



121

(c) By (b), 1 + 2(2) + 3(2)2 + L + 10(2)9

1 − (10 + 1)210 + 10(2)10 +1 (1 − 2)2 = 9 217

1 h = (t − 10t + 24)dt = t 3 − 5t 2 + 24t + C 3 When t = 4 , V1 = V2 (from (a)),

=

2

∫ = ∫ V1dt

h = V2 dt

Enrichment 17 (p.188)

= 80 (from (b)) 2 ∴ C = 42 3 When t = 5 , 1 2 1 h = (5)3 − 5(5)2 + 24(5) + 42 = 79 3 3 3 1 ∴ The height of the particle is 79 m . 3 dV1 (d) Q = −10 ≠ 14 dt dV ∴ Here we only consider a = 2 = 2t − 10 . dt When a = 14 ,

∫ [ dx f ( x )]dx = x d

2. (a)

21. (a) Sn ( x ) = 1 + 2 x + 3 x 2 + L + nx n −1

∫ Sn ( x )dx = ∫ (1 + 2 x + 3 x 2 + L + nx n −1 )dx 2

(b)



x (1 − x n ) Sn ( x )dx = + C ...............(3) 1− x



(1 − x )(1 − nx n − x n ) + x (1 − x n ) Sn ( x ) = (1 − x )2 n 1 − (n + 1) x + nx n +1 = (1 − x )2

d sec 2 x = 2 sec x (sec x tan x ) = 2 sec 2 x tan x dx

x d

x − x n +1 1− x

(b) Differentiate (3) with respect to x, d Sn ( x )dx dx (1 − x )[1 − (n + 1) x n ] − ( x − x n +1 )( −1) = (1 − x )2





x d ( sec 2 x ) 2 dx

∫ 2 ( dx sec x )dx 1 d = [ ∫ ( x sec 2 x )dx − ∫ sec 2 xdx ] 2 dx

(1) − (2), (1 − x ) K = x − x n +1





x d 1 d ( sec 2 x ) = [ ( x sec 2 x ) − sec 2 x ] 2 dx 2 dx

xK = x 2 + x 3 + x 4 + L + x n +1 ................(2)



+ sin x + C

By (a),

Let K = x + x 2 + x 3 + L + x n .................(1)

If x ≠ 1 , K =

2

d [ xf ( x )] = xf ' ( x ) + f ( x ) dx d xf ' ( x ) = [ xf ( x )] − f ( x ) dx d xf ' ( x )dx = [ xf ( x )] dx − f ( x ) dx dx = xf ( x ) − f ( x ) dx

(c) x sec 2 x tan x =

n

nx 2x 3x + +L+ +C n 2 3 = x + x2 + x3 + L + xn + C =x+

d f ( x ) = 2 x + cos x dx

(b)



2

x3 − cos x + C 3

f ( x )dx =

d [ f ( x )dx ] = x 2 + sin x dx

2t − 10 = 14 t = 12



∫ ∫

1. (a)

2

∫ x sec =

2

x tan xdx

1 1 x sec 2 x − tan x + C 2 2

Classwork 1 (p.175)



x2 ) + C = 2x2 + C 2

1.



4 xdx = 4 xdx = 4(

2.



7 x 2 dx = 7 x 2 dx = 7(



x3 7 ) + C = x3 + C 3 3

122

3.

4.

5.



Chapter 17 Indefinite Integral and Its Applications



∫ (2 x

∫ (4

3

Classwork 4 (p.180)

3

x2

1

15 xdx = 15 x 2 dx = 15(

3 2

3

) + C = 10 x 2 + C



dy 3 = 4x − x2 , dx 2 3 2 y = ( 4 x − x )dx 2 x2 3 x3 = 4( ) − +C 2 2 3 1 = 2x2 − x3 + C 2

1. Since







+ x 2 − 1)dx = 2 x 3 dx + x 2 dx − dx x4 x3 = 2( ) + − x+C 4 3 1 1 = x 4 + x3 − x + C 2 3





1 2

1 3

Put the point (2, 5) into y = 2 x 2 −



x − 3 x + 2)dx = 4 x dx − x dx + 2 dx = 4( =

x

3 2

3 2

)−

x

4 3

4 3

1 5 = 2( 2 ) 2 − ( 2 ) 3 + C 2 C =1

+ 2x + C

Hence the equation of the curve is 1 y = − x3 + 2x2 + 1. 2

8 23 3 43 x − x + 2x + C 3 4

Classwork 2 (p.176) 1.

∫ 3 sin xdx = 3∫ sin xdx = −3 cos x + C

2.

∫ (3 sin x + 2 cos x )dx = 3∫ sin xdx + 2∫ cos xdx = −3 cos x + 2 sin x + C

3.



4.

∫ 3 sin



sin x dx = sec x tan xdx = sec x + C cos 2 x 2

∫ ∫

1 x ( )dx = 3 (1 − cos x )dx 2 2 3 3 = cos xdx dx − 2 2 3 3 = x − sin x + C 2 2



2.

d2y = 2(1 − x ) dx 2 d dy ( ) = 2(1 − x ) dx dx dy = 2(1 − x )dx dx x2 = 2 x − 2( ) + C1 2 = − x 2 + 2 x + C1



dy = 5 = −(1)2 + 2(1) dx C1 = 4

At (1, 3), ∴

Then

dy = −x2 + 2x + 4 dx y = ( − x 2 + 2 x + 4)dx



Classwork 3 (p.177) (a) f ' ( x ) = − x sin x + cos x (b) Using the result of (a), we obtain

∫ (− x sin x + cos x ) dx = f ( x ) + C1 = x cos x + C1 ∴ ∫ − x sin xdx + ∫ cos xdx = x cos x + C1 ∫ x sin xdx = ∫ cos xdx − x cos x − C1

= sin x + C2 − x cos x − C1 = sin x − x cos x + C

1 = − x 3 + x 2 + 4 x + C2 3 Since (1, 3) is on the curve, 1 3 = − (1)3 + (1)2 + 4(1) + C2 3 5 C2 = − 3 Hence the equation of the curve is 1 5 y = − x3 + x2 + 4x − . 3 3

1 3 x +C, 2

Chapter 17 Indefinite Integral and Its Applications

Classwork 5 (p.183) 1. Suppose v m/s and s m are the velocity of the particle and its displacement from O after travelling t1 seconds.



v = 10 dt = 10t + C1 When t = 0 , v = 2 ∴ C1 = 2 ∴

(c) When t = 2 , s =



s = (10t + 2)dt = 5t 2 + 2t + C2

When t = 0 , s = 0 C2 = 0



s = 5t 2 + 2t

∴ When t = t1 , s = 5t12 + 2t1 ∴ The displacement at time t1 is (5t12 + 2t1 ) m .

2. (a) Let s m be the distance of the stone from the ground at time t seconds after projection. ds = v = 4t − 2t 2 dt



s = ( 4t − 2t 2 )dt = 2t 2 −

2 3 t +C 3

When t = 0 , s = 0 ∴

C=0

2 3 t 3 ∴ The distance at time t seconds after projection 2 is (2t 2 − t 3 ) m . 3 ∴

s = 2t 2 −

(b) When

8 3

When t = 2.5 , 2 s = 2(2.5)2 − (2.5)3 3 25 = 12

v = 10t + 2



∴ The maximum height 2 = [ 2( 2 ) 2 − ( 2 ) 3 ] m 3 8 = m 3 = 2.67 m (corr. to 2 d.p.)

ds = v = 0 , 4t − 2t 2 = 0 dt t = 0 or 2

d 2s = 4 − 4t dt 2 d 2s = 4 − 4( 0 ) = 4 > 0 dt 2 t = 0 d 2s = 4 − 4(2) = −4 < 0 dt 2 t = 2

∴ s attains its maximum when t = 2 .

∴ The distance it travels from t = 2 to t = 2.5 8 25 =( − )m 3 12 = 0.58 m (corr. to 2 d.p.)

123