Am-sln-16(e)

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Am-sln-16(e) as PDF for free.

More details

  • Words: 19,502
  • Pages: 38
Chapter 16 Applications of differentiation

CHAPTER 16 Exercise 16A (p.119) 1. 4 x 2 + y 2 = 8 dy =0 4( 2 x ) + 2 y dx dy 4x =− dx y dy 4(1) =− dx (1, 2 ) (2) = −2 2. y 2 = x dy 2y =1 dx dy 1 = dx 2 y dy 1 = dx ( 4, 2 ) 2(2) 1 = 4 3. x 2 y + xy 2 = 6 dy dy 2 xy + x 2 + 2 xy + y2 = 0 dx dx dy y( y + 2 x ) =− dx x ( x + 2 y) (2)(2 + 2) dy =− (1)(1 + 4) dx (1, 2 ) 8 =− 5 4. x + 2 xy = 3 y 2

2x + 2x

2

dy dy + 2y = 6y dx dx dy x+y = dx 3 y − x dy 1+1 = dx (1, 1) 3(1) − 1 =1

5. x 3 + 3 x 2 y − 6 xy 2 + 2 y 3 = 0 dy dy dy 3x 2 + 3x 2 + 6 xy − 12 xy − 6 y2 + 6 y2 =0 dx dx dx dy 2 y 2 − 2 xy − x 2 = dx x 2 − 4 xy + 2 y 2 2 − 2 −1 dy = dx (1, 1) 1 − 4 + 2 =1

6. y = cos 2 x dy = −2 sin 2 x dx π dy = −2 sin 2( ) dx ( 12π , 23 ) 12 π = −2 sin 6 = −1 7. y = x 2 + 5 x − 3 dy = 2x + 5 dx dy = 2(1) + 5 = 7 dx (1, 3) The equation of the tangent is y − 3 = 7 ( x − 1) 7x − y − 4 = 0 The equation of the normal is y−3= − x + 7 y − 22 = 0

1 ( x − 1) 7

8. y = x 3 − 2 x 2 + 7 x − 4 dy = 3x 2 − 4 x + 7 dx dy = 3(2)2 − 4(2) + 7 = 11 dx ( 2, 10 ) The equation of the tangent is y − 10 = 11( x − 2) 11x − y − 12 = 0 The equation of the normal is −1 y − 10 = ( x − 2) 11 x + 11y − 112 = 0 3

9. y = x x = x 2

dy 3 12 = x dx 2 1 dy 3 = ( 4) 2 = 3 dx ( 4, 8) 2 The equation of the tangent is y − 8 = 3 ( x − 4) 3x − y − 4 = 0 The equation of the normal is y−8= − x + 3 y − 28 = 0

1 ( x − 4) 3

77

78

Chapter 16 Applications of differentiation

10. y = ( x 2 − 1)2 dy = 2( x 2 − 1)(2 x ) = 4 x ( x 2 − 1) dx dy = 4(1)(12 − 1) = 0 dx (1, 0 ) The equation of the tangent is y = 0 . The equation of the normal is x − 1 = 0 . 1

11. y = x − 1 = ( x − 1) 2 1 dy 1 = ( x − 1) − 2 dx 2 1 dy 1 1 = (2 − 1) − 2 = dx ( 2, 1) 2 2 The equation of the tangent is 1 y − 1 = ( x − 2) 2 x − 2y = 0 The equation of the normal is y − 1 = − 2( x − 2 ) 2x + y − 5 = 0 1

12. y = x x 2 + 1 = x ( x 2 + 1) 2 1 1 1 dy = ( x 2 + 1) 2 + x ( )( x 2 + 1) − 2 (2 x ) 2 dx 1 1 = ( x 2 + 1) 2 + x 2 ( x 2 + 1) − 2

= ( x 2 + 1) − 2 ( x 2 + 1 + x 2 ) 1

= ( x 2 + 1) − 2 (2 x 2 + 1) 1

dy dx ( 0,

= (0 + 1) − 2 = 1 1

0)

The equation of the tangent is y − 0 = (1)( x − 0) x−y=0 The equation of the normal is y − 0 = ( −1)( x − 0) x+y=0 13. y =

2 = 2( 4 − x ) −1 4−x

dy = 2[( −1)( 4 − x ) −2 ( −1)] = 2( 4 − x ) −2 dx dy = 2( 4 − 3) −2 = 2 dx (3, 2 )

The equation of the tangent is y − 2 = 2 ( x − 3) 2x − y − 4 = 0 The equation of the normal is 1 y − 2 = − ( x − 3) 2 x + 2y − 7 = 0

14. y =

2 = 2(1 − x ) −2 (1 − x )2

dy = 2[( −2)(1 − x ) −3 ( −1)] = 4(1 − x ) −3 dx dy = 4(1 − 0) −3 = 4 dx ( 0, 2 ) The equation of the tangent is y − 2 = 4x 4x − y + 2 = 0 The equation of the normal is 1 y−2= − x 4 x + 4y − 8 = 0 15. x 4 − x 2 y = 1 1 y = x2 − 2 x When y = 0 , x 4 − 1 = 0 ( x 2 + 1)( x − 1)( x + 1) = 0 ∴ x = 1 or −1 dy = 2 x − ( −2 x −3 ) = 2 x + 2 x −3 dx At (1, 0), dy =2+2= 4 dx (1, 0 )

The equation of the tangent is y − 0 = 4 ( x − 1) 4x − y − 4 = 0 The equation of the normal is 1 y − 0 = − ( x − 1) 4 x + 4y − 1 = 0 At (−1, 0), dy = 2( −1) + 2( −1) −3 = −4 dx ( −1, 0 ) The equation of tangent is y − 0 = − 4( x + 1) 4x + y + 4 = 0 The equation of normal is 1 y − 0 = ( x + 1) 4 x − 4y + 1 = 0 16. x 2 + 5 xy + y 2 = 4 When x = 0 , y 2 = 4 ∴ y = 2 or −2 dy dy 2 x + 5x + 5y + 2 y =0 dx dx dy 5y + 2 x =− dx 5x + 2 y

Chapter 16 Applications of differentiation

At (0, 2),

dy 5(2) + 2(0) 5 =− =− dx ( 0, 2 ) 5(0) + 2(2) 2 The equation of tangent is 5 y − 2 = − (x − 0) 2 5x + 2 y − 4 = 0 The equation of normal is 2 y − 2 = ( x − 0) 5 2 x − 5 y + 10 = 0 At (0, −2), dy dx ( 0,

− 2)

=−

5( −2) + 2(0) 5 =− 5(0) + 2( −2) 2

The equation of tangent is 5 y + 2 = − ( x − 0) 2 5x + 2 y + 4 = 0 The equation of normal is 2 y + 2 = ( x − 0) 5 2 x − 5 y − 10 = 0 17. Let ( x1, y1 ) be the point of contact. Slope of the given line = tan135° = −1 dy = 2x + 7 dx dy At ( x1, y1 ) , slope of the tangent = dx ( x1 , y1 ) = 2 x1 + 7 ∴ 2 x1 + 7 = −1 x1 = −4 When x1 = −4 , y1 = ( −4) + 7( −4) + 2 = −10 ∴ The point of contact is ( −4, − 10) . The equation of the tangent is y + 10 = ( −1)( x + 4) x + y + 14 = 0 2

dy dx ( x1 , y1 ) 9x =− 1 16 y1

At ( x1, y1 ) , slope of the tangent =





9 x1 9 = 16 y1 8 x1 = −2 y1

When x1 = −2 y1 , 9( −2 y1 )2 + 16 y12 = 52 y12 = 1 y1 = 1, − 1 ∴ The points of contact are (−2, 1) and (2, −1). The equation of the tangent at (−2, 1) is 9 y − 1 = ( x + 2) 8 9 x − 8 y + 26 = 0 The equation of the tangent at (2, −1) is 9 y + 1 = ( x − 2) 8 9 x − 8 y − 26 = 0 19. Let ( x1, y1 ) be the point of contact. 1 Q Slope of the given line = − 3 ∴ Slope of the tangent = 3 dy = 3x 2 dx dy Slope of the tangent = dx ( x1 , y1 ) ∴

3 x12 = 3 x1 = 1, − 1

= 3 x12

When x1 = 1 , y1 = 6 When x1 = −1 , y1 = 4 ∴ The points of contact are (1, 6) and (−1, 4). The equation of the tangent at (1, 6) is y − 6 = 3 ( x − 1) 3x − y + 3 = 0 The equation of the tangent at (−1, 4) is

18. Let ( x1, y1 ) be the point of contact. 9 Slope of the given line = 8

9 x 2 + 16 y 2 = 52 dy 18 x + 32 y =0 dx dy 9x =− dx 16 y

79

y − 4 = 3 ( x + 1) 3x − y + 7 = 0 20. Let ( x1, y1 ) be the point of contact. Since ( x1, y1 ) lies on the curve, 4 x12 + 9 y12 = 36 ......................(1) dy 4x =− 1 Slope of the tangent = dx ( x1 , y1 ) 9 y1



80

Chapter 16 Applications of differentiation

The slope of the line joining ( x1, y1 ) and (3, −3) = ∴

y1 + 3 x1 − 3 y1 + 3 4x =− 1 x1 − 3 9 y1

4 x12 + 9 x12 − 12 x1 + 27 y1 = 0 ...........(2) (1) − (2), 12 x1 − 27 y1 = 36 4 x1 − 9 x1 = 12 1 x1 = (12 + 9 y1 ) ...............(3) 4 Substitute (3) into (1), 1 4[ (12 + 9 y1 )]2 + 9 y12 = 36 4 (12 + 9 y1 )2 + 36 y12 = 144 y1 (117 y1 + 216) = 0 24 y1 = 0 or − 13 When y1 = 0 , x1 = 3

24 15 , x1 = − 13 13 ∴ The points of contact are (3, 0) and 15 24 (− , − ) . 13 13 At (3, 0), the equation of the tangent is x − 3 = 0 . 15 24 At ( − , − ) , 13 13 ) 4( − 15 13 = − 5 Slope of the tangent = − 24 18 9( − 13 ) When y1 = −

The equation of the tangent is 24 5 15 = − (x + ) 13 18 13 5 x + 18 y + 39 = 0 y+

(2) − (1), x1 + 10 y1 = −7 x1 = −7 − 10 y1 ......................(3)

Substitute (3) into (1), ( −7 − 10 y1 )2 − 2 y12 = 7 98 y12 + 140 y1 + 42 = 0 7 y12 + 10 y1 + 3 = 0 ( y1 + 1)(7 y1 + 3) = 0 3 7 When y1 = −1 , x1 = 3 y1 = −1 or −

3 19 When y1 = − , x1 = − 7 7 ∴ The points of contact are (3, −1) and 19 3 (− , − ) . 7 7 3 At (3, −1), slope of the tangent = −2 The equation of the tangent is 3 y + 1 = − ( x − 3) 2 3x + 2 y − 7 = 0 − 19 19 3 7 , − ) , slope of the tangent = 2( − 37 ) 7 7 19 = 6 The equation of the tangent is At ( −

3 19 19 = (x + ) 7 6 7 19 x − 6 y + 49 = 0 y+

22. y = 4 x 3 − 3 x ...................................(1) 21. Let ( x1, y1 ) be the point of contact. Since ( x1, y1 ) lies on the curve, ∴

x12 − 2 y12 = 7 ..........................(1) dy x Slope of the tangent = = 1 dx ( x1 , y1 ) 2 y1 The slope of the line joining ( x1, y1 ) and ( −1, 5) =



y1 − 5 x1 + 1 y1 − 5 x = 1 x1 + 1 2 y1

x12 − 2 y12 + x1 + 10 y1 = 0 ...............(2)

dy = 12 x 2 − 3 dx 1 dy = 12( − )2 − 3 = 0 2 dx ( − 12 , 1) ∴ The equation of the tangent is y − 1 = 0 .........................................(2) Solving (1) and (2), ( x − 1)( 4 x 2 + 4 x + 1) = 0 ( x − 1)(2 x + 1)2 = 0 x = 1 or −

1 2

Chapter 16 Applications of differentiation

When x = 1 , y = 1 1 When x = − , y = 1 2 ∴ The required point is (1, 1) .

y1 = ( 4)2 − 7( 4) + 14 = 2 ∴ The coordinates of C are ( 4, 2) . (ii) Slope of the tangent at C = 2( 4 ) − 7 =1 The equation of the tangent at C is

23. x + 4 xy + 5 y = 1 2

2

2x + 4x

dy dy + 4 y + 10 y =0 dx dx dy x + 2y =− dx 2 x + 5y

Let ( x1, y1 ) be the point of contact.

y−2= x −4 x−y−2=0 25. Substitute (0, 4) into y = ax 3 + bx 2 + c ,

4 = a( 0 ) 3 + b ( 0 ) 2 + c

1 2 x1 + 2 y1 Slope of the tangent = − 2 x1 + 5 y1

Slope of the given line = −







c=4

dy = 3ax 2 + 2 bx dx

x1 + 2 y1 1 =− 2 x1 + 5 y1 2 y1 = 0

dy dx (1,

= 3a + 2 b = −3 ..................(1) 2)

Substitute y1 = 0 into the equation of the curve,

Substitute (1, 2) into y = ax 3 + bx 2 + 4 ,

x12 = 1 x1 = 1, − 1

a+b+4=2 a + b = −2 .................................(2) Solving (1) and (2),

∴ The points of contact are (1, 0) and (−1, 0). The equation of the tangent at (1, 0) is 1 y − 0 = − ( x − 1) 2 x + 2y − 1 = 0 The equation of the tangent at (−1, 0) is 1 y − 0 = − ( x + 1) 2 x + 2y + 1 = 0

24. (a) Slope of AB =

8−4 =1 6−2

(b) (i) Let the coordinate of C be ( x1, y1 ) .

dy = 2x − 7 dx dy = 2 x1 − 7 dx ( x1 , y1 )



a = 1 , b = −3

26 − 28. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons.

Exercise 16B (p.133) 1.

y = x3 − 4x2 + 4x − 8 dy = 3x 2 − 8 x + 4 dx = ( x − 2)(3 x − 2) d2y = 6x − 8 dx 2

dy d2y = 0, > 0 and y = −8 dx dx 2 (2, − 8) is a minimum point.

When x = 2 , ∴

d2y 2 dy 184 < 0 and y = − , = 0, 2 3 dx 27 dx 2 184 ( , − ) is a maximum point. 3 27

Since the slope of the tangent at C is parallel to the chord AB,

When x =

2 x1 − 7 = 1 x1 = 4



Substitute x1 = 4 into

Also, when x = 0 , y = −8

y1 =

A sketch of the curve is shown below:

x12

− 7 x1 + 14 ,

81

82

Chapter 16 Applications of differentiation

y

3. y = x 3 − 4x 2 + 4x − 8 x

O

(

2 184 ,− ) 3 27

−8

y = 12 x − x 3 dy = 12 − 3 x 2 = 3(2 − x )(2 + x ) dx d2y = −6 x dx 2 d2y dy < 0 and y = 16 When x = 2 , = 0, dx dx 2 ∴ (2, 16) is a maximum point.

dy d2y = 0, > 0 and y = −16 dx dx 2 ( −2, − 16) is a minimum point.

When x = −2 ,

(2, −8)



Also, when x = 0 , y = 0 2.

y = 2 x − 3 x − 12 x + 10 dy = 6 x 2 − 6 x − 12 = 6( x − 2)( x + 1) dx d2y = 12 x − 6 = 6(2 x − 1) dx 2 dy d2y When x = 2 , = 0, > 0 and y = −10 dx dx 2 ∴ (2, − 10) is a minimum point. 3

2

A sketch of the curve is shown below: y (2, 16)

dy d2y = 0, < 0 and y = 17 dx dx 2 ( −1, 17) is a maximum point.

When x = −1 , ∴

y = 12x − x 3

Also, when x = 0 , y = 10 A sketch of the curve is shown below: y

O

(−1, 17)

x

10

y = 2x 3 − 3x 2 − 12x + 10 (−2, −16)

x

O

4.

(2, −10)

y = x 3 − 3x 2 + 1 dy = 3 x 2 − 6 x = 3 x ( x − 2) dx d2y = 6 x − 6 = 6( x − 1) dx 2 dy d2y When x = 2 , = 0, > 0 and y = −3 dx dx 2 ∴ (2, − 3) is a minimum point.

Chapter 16 Applications of differentiation

d2y dy < 0 and y = 1 = 0, dx dx 2 (0, 1) is a maximum point.

When x = 0 , ∴

6.

y = ( x + 2)( x − 2)3 dy = ( x + 2)[3( x − 2)2 ] + ( x − 2)3 dx = 3( x − 2)2 ( x + 2) + ( x − 2)3

A sketch of the curve is shown below:

= 4( x + 1)( x − 2)2

y

d2y = 4( x + 1)[2( x − 2)] + 4( x − 2)2 dx 2 = 8( x + 1)( x − 2) + 4( x − 2)2 = 12 x ( x − 2)

(0, 1) y = x 3 − 3x 2 + 1

x

O

When x = −1 , ∴

(2, −3)

5.

d2y dy > 0 and y = −27 = 0, dx dx 2

( −1, − 27) is a minimum point.

d2y dy = 0 and y = 0 = 0, dx dx 2 dy When x < 2 (slightly), >0 dx dy >0 When x > 2 (slightly), dx

When x = 2 ,

y = ( x − 1)3 + 1 dy = 3( x − 1)2 dx d2y = 6( x − 1) dx 2 dy d2y = 0, = 0 and y = 1 dx dx 2 dy When x < 1 (slightly), >0 dx dy When x > 1 (slightly), >0 dx dy This shows that does not change sign as x dx increases through 1, i.e. (1, 1) is neither a maximum point nor a minimum point.

dy does not change sign as x dx increases through 2. ∴ (2, 0) is neither a maximum point nor a minimum point.

When x = 1 ,

This shows that

Also, when x = 0 , y = −16 As x → − ∞ , y → + ∞ ; x → + ∞, y → + ∞. A sketch of the curve is shown below: y

∴ There is no turning point for the function. O

When x = 0 , y = 0

x 2

Also, as x → − ∞ , y → − ∞ ; y = (x + 2)(x − 2)3

x → + ∞, y → + ∞. −16

A sketch of the curve is shown below: y

(−1, −27)

(1, 1)

O

y = (x − 1) 3 + 1

83

x

7.

y = x 6 (7 − 6 x ) dy = 42 x 5 − 42 x 6 dx = 42 x 5 (1 − x )

84

Chapter 16 Applications of differentiation

d2y = 210 x 4 − 252 x 5 = 42 x 4 ( −6 x + 5) 2 dx d2y dy < 0 and y = 1 When x = 1 , = 0, dx dx 2 ∴ (1, 1) is a maximum point.

9.

d2y = ( x 2 − 1)[ −2( x 2 + x + 1) −3 ](2 x + 1) dx 2 + ( x 2 + x + 1) −2 (2 x )

dy d2y When x = 0 , = 0, = 0 and y = 0 dx dx 2 dy When x < 0 (slightly), <0 dx dy When x > 0 (slightly), >0 dx ∴ (0, 0) is a minimum point.

= −2( x 2 − 1)(2 x + 1)( x 2 + x + 1) −3 + 2 x ( x 2 + x + 1) −2

= −2( x 2 + x + 1) −3 ( x 3 − 3 x − 1) When x = 1 ,

A sketch of the curve is shown below: (1, 1)

8.

A sketch of the curve is shown below:

x2 y= 2 x +4 dy ( x 2 + 4)(2 x ) − x 2 (2 x ) 8x = 2 = 2 2 dx ( x + 4) ( x + 4)2 d 2 y ( x 2 + 4)2 (8) − 8 x[2( x 2 + 4)(2 x )] = dx 2 ( x 2 + 4) 4 8( x 2 + 4)( 4 − 3 x 2 ) = ( x 2 + 4) 4 8( 4 − 3 x 2 ) = 2 ( x + 4 )3 When x = 0 , ∴

(1,

Also, when x = 0 , y = 1 As x → − ∞ , y → 1; x → + ∞ , y → 1.

x

O (0, 0)

2 dy d2y = 0, > 0 and y = 3 dx dx 2

2 ) is a minimum point. 3 d2y dy < 0 and y = 2 When x = −1 , = 0, dx dx 2 ∴ ( −1, 2) is a maximum point.



y y = x 6(7 − 6x )

x2 + 1 x2 + x + 1 dy ( x 2 + x + 1)(2 x ) − ( x 2 + 1)(2 x + 1) = dx ( x 2 + x + 1)2 2 2 = ( x − 1)( x + x + 1) −2 y=

y (−1, 2) 1

2 (1, ) 3

y=

x2 + 1 x + x+ 1 2

x

O

10. y 2 = x 2 (2 x − x 2 ) The curve is undefined for x < 0 or x > 2 , and it is composed of the two curves

d2y dy > 0 and y = 0 = 0, dx dx 2

1

1

y = x (2 x − x 2 ) 2 and y = − x (2 x − x 2 ) 2 , which are symmetrical about the x-axis. Consider

(0, 0) is a minimum point.

1

y = x (2 x − x 2 ) 2 1 1 1 dy = x[ (2 x − x 2 ) − 2 ](2 − 2 x ) + (2 x − x 2 ) 2 2 dx 1 = ( 2 x − x 2 ) − 2 (3 x − 2 x 2 )

Also, as

x → − ∞ , y → 1; x → + ∞ , y → 1.

A sketch of the curve is shown below: y 1

y=

1 d2y = ( 2 x − x 2 ) − 2 (3 − 4 x ) 2 dx 3 1 + (3 x − 2 x 2 )[ − (2 x − x 2 ) − 2 ](2 − 2 x ) 2 1 = ( 2 x − x 2 ) − 2 (3 − 4 x )

2

x x2 + 4

− (3 x − 2 x 2 )(1 − x )(2 x − x 2 ) − 2

3

O (0, 0)

x

= x (2 x − x 2 ) − 2 (2 x 2 − 6 x + 3) 3

85

Chapter 16 Applications of differentiation

When x =

A sketch of the curve is shown below:

3 3 d2y 3 dy < 0 and y = , , = 0, 2 4 2 dx dx

y

3 3 is a relative maximum of y. 4



By symmetry, −

π 1 ( , ) 4 2

3 3 is a relative minimum of y. 4

π 2

O

3 3 3 ( , ) is a maximum point, and 2 4



( 1 y = sin 2x 2

5π 1 , ) 4 2

x

π (



3π 2

3π 1 ,− ) 4 2

(

7π 1 ,− ) 4 2

3 3 3 ( , − ) is a minimum point. 2 4 A sketch of the curve is shown below: y

(

3 3 3 , ) 4 2

y 2 = x 2(2x −x 2)

x

O

12.

y = x − 2 sin x dy = 1 − 2 cos x dx d2y = 2 sin x dx 2

When x = ∴

∴ y=

1 sin 2 x 2







5π 5π , + 3 3

3)

d2y π dy 1 < 0 and y = , = 0, 2 4 dx 2 dx O

2

d y 5π dy 1 < 0 and y = , = 0, 2 4 dx 2 dx 5π 1 ( , ) is a maximum point. 4 2

x π π ( , − 3 3

2π 3)

13. (a) The coordinates of A are (n, 0) . The coordinates of B are ( m, 0) .

2

1 d2y 7π dy > 0 and y = − , = 0, 2 2 4 dx dx 7π 1 ( , − ) is a minimum point. 4 2

When x =

(

y = x − 2 sin x

3π dy 1 d y , = 0, > 0 and y = − 2 4 dx 2 dx 3π 1 ( , − ) is a minimum point. 4 2

When x = ∴

y

π 1 ( , ) is a maximum point. 4 2

When x =

5π dy 5π d2y , + 3 = 0, < 0 and y = 2 3 dx 3 dx 5π 5π ( , + 3 ) is a maximum point. 3 3

A sketch of the curve is shown below:

dy = cos 2 x dx d2y = −2 sin 2 x dx 2 When x =

π π ( , − 3 ) is a minimum point. 3 3

When x =

3 3 3 ( ,− ) 4 2

11.

d2y π dy π > 0 and y = − 3 , =0, 2 3 dx 3 dx

(b)

y = −( x − m)( x − n) dy = −( x − m ) − ( x − n) dx = −2 x + m + n m+n = −2( x − ) 2 d2y = −2 dx 2

86

Chapter 16 Applications of differentiation

When x =

d2y m+n dy < 0 and , =0, 2 dx dx 2

( m − n) 2 , 4 m + n ( m − n) 2 , ) is a maximum point. ∴ ( 2 4 y=

y = x 3 − 4 x 2 − 16 x + 15 dy = 3 x 2 − 8 x − 16 dx = ( x − 4)(3 x + 4) d2y = 6x − 8 dx 2 = 2 (3 x − 4 ) d2y dy > 0 and y = −49 = 0, dx dx 2 ( 4, − 49) is a minimum point.

When x = 4 ,

f ( x ) = x 2 ( x − p) + q

14. (a) (i)

15. (a)

f ' ( x ) = x 2 + ( x − p)(2 x )



= x 2 + 2 x 2 − 2 px = 3 x 2 − 2 px

d2y −4 dy 23 < 0 and y = 26 , = 0, 2 3 dx 27 dx 4 23 ( − , 26 ) is a maximum point. 3 27

When x =

(ii) f ' ( x ) = 3 x 2 − 2 px = x (3 x − 2 p )



By referring to the figure , when x = 2 , f ' ( x) = 0

3(2) − 2 p = 0 p=3

(b) When x = 0 , y = 15 A sketch of the curve is shown below: y

(b) Substitute p = 3 , f ( x ) = 0 and x = 1 into f ( x ) = x 2 ( x − p) + q ,

(−

4 23 , 26 ) 27 3

(1)2 (1 − 3) + q = 0 q=2 15

The equation becomes f ( x ) = x 2 ( x − 3) + 2 . A sketch of the curve is shown below:

y = x 3 − 4x 2 − 16x + 15

y −3

y = x 2(x − 3) + 2

x

O

6

2

1−

3

O

x 1+

1

3

(4, −49) (2, −2)

87

Chapter 16 Applications of differentiation

16. (a) y = x 3 + ax 2 + bx + c dy = 3 x 2 + 2 ax + b dx

(d) When x = 0 , y = −5 A sketch of the curve is shown below: y

Since C passes (5, 0), 0 = 125 + 25a + 5b + c .................(1)

Since C touches x-axis at ( −1, 0) ,

0 = −1 + a − b + c ........................(2) 0 = 3 − 2 a + b .............................(3) (1) − (2), 0 = 126 + 24 a + 6b

0 = 21 + 4 a + b ...........................(4) (4) − (3), 0 = 18 + 6 a ∴

y = x 3 − 3x 2 − 9x − 5

a = −3

Substitute a = −3 into (3), ∴

0 = 3+6+ b b = −9

(−1, 0) −2

x

−1 O −5

5

6

Substitute b = −9 into (2), ∴

0 = −1 − 3 + 9 + c c = −5

(b) By (a), y = x 3 − 3x 2 − 9 x − 5 dy = 3x 2 − 6 x − 9 dx = ( x + 1)( x − 3) d2y = 6x − 6 dx 2 = 6( x − 1) d2y dy < 0 and y = 0 When x = −1 , = 0, dx dx 2 ∴ ( −1, 0) is a maximum point. d2y dy > 0 and y = −32 = 0, dx dx 2 (3, − 32) is a minimum point.

When x = 3 , ∴

(c) When x = 5 , slope of the tangent = 3(5) − 6(5) − 9 = 36 2

The equation of the tangent is y − 0 = 36( x − 5) 36 x − y − 180 = 0

(3, −32)

17. (a) Substitute x = 0 into y = f ( x ) = 3 sin 2 x + cos 2 x , y = 3 sin 2(0) + cos 2(0) = 1 The coordinates of the point of intersection are (0, 1) . Substitute y = 0 into y = f ( x ) = 3 sin 2 x + cos 2 x,

3 sin 2 x + cos 2 x = 0 1 3 π 2x = − , 6 π x=− , 12

tan 2 x = −

5π 6 5π 12

The coordinates of the points of intersection π 5π are ( − , 0), ( , 0) . 12 12

88

Chapter 16 Applications of differentiation

(b)

y = 3 sin 2 x + cos 2 x dy = 2 3 cos 2 x − 2 sin 2 x dx d2y = −4 3 sin 2 x − 4 cos 2 x dx 2 dy When = 0 , 2 3 cos 2 x − 2 sin 2 x = 0 dx

tan 2 x = 3 2π π , 2x = − 3 3 π π x=− , 3 6



When

dy = 3 x 2 − 18 + 15 dx d2y = 6 x − 18 dx 2

dy = 0 , 3 x 2 − 18 x + 15 = 0 dx

x2 − 6x + 5 = 0 ( x − 1)( x − 5) = 0 x = 1 or x = 5

d2y < 0 and y = 16 dx 2 (1, 16) is a maximum point.

When x = 1 , ∴

π d2y > 0 and y = −2 When x = − , 3 dx 2 π ∴ ( − , − 2) is a minimum point. 3 When x =

(b) From (a),

d2y > 0 and y = −16 dx 2 (5, − 16) is a minimum point.

When x = 5 , ∴

π d2y < 0 and y = 2 , 6 dx 2

(c) A sketch of the curve y = x 3 − 9 x 2 + 15 x + 9 is shown below:

π ( , 2) is a maximum point. 6

y (1, 16)

(c) A sketch of the curve is shown below: y π ( , 2) 6

y = x 3 − 9x 2 + 15x + 9

1



π 2



π O 12

5π π 12 2

y=

x

3 sin 2x + cos 2x

O

x 1

3

5

π (− , −2) 3

18. y = x 3 − 9 x 2 + 15 x + 9, 0 ≤ x ≤ 7 (a)

dy = 3 x 2 − 18 x + 15 dx dy For ≤ 0 , 3 x 2 − 18 x + 15 ≤ 0 dx x2 − 6x + 5 ≤ 0 ( x − 1)( x − 5) ≤ 0 1≤ x ≤ 5

(5, −16)

Chapter 16 Applications of differentiation

A sketch of the curve y 2 = x 3 − 9 x 2 + 15 x + 9 is shown below: y

2. Let x cm be the length of side of square base, y cm be the height, and V cm 3 be the volume. Q

y=

∴ O

1

3

x

−4

19 − 22. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons.

Exercise 16C (p.142) 1. Let x cm, y cm be the length and width respectively and A cm 2 be the area. Q 2( x + y) = 100 x + y = 50 x = 50 − y ∴ A = xy = (50 − y) y

x 2 + 4 xy = 300 300 − x 2 4x 75 x = − x 4

y 2 = x 3 − 9x 2 + 15x + 9

4

89

V = x2y

75 x − ) x 4 x3 = 75 x − 4 1 dV = 75 − (3 x 2 ) 4 dx 3 d 2V =− x 2 dx 2 dV When = 0, dx = x2 (

75 −

3x 2 =0 4 x = 10 or −10 (rejected)

d 2V 3 = − (10) = −15 < 0 2 2 dx Hence the volume of the box is maximum when x = 10 . When x = 10 , y = 5 When x = 10 ,

∴ If the box has a maximum volume, its dimensions are 10 cm × 10 cm × 5 cm .

= − y 2 + 50 y dA = −2 y + 50 dy d2A = −2 dy 2 dA When =0, dy −2 y + 50 = 0 y = 25 d2A When y = 25, = −2 < 0 dy 2 Hence the area of the rectangle is maximum when y = 25.

3. Transpose a circle of radius 5 cm so that its centre is transposed to the origin. Let θ be the acute angle between a diagonal and the positive x-axis, A cm 2 be the area of the inscribed rectangle. y

5

cm

θ

O

When y = 25, A = −(25)2 + 50(25) = 625 ∴ The maximum area of the rectangle is

625 cm 2 .

A = 4(5 cos θ)(5 sin θ) = 100 cos θ sin θ = 50 sin 2θ

x

90

Chapter 16 Applications of differentiation

dA = 100 cos 2θ dθ d2A = −200 sin 2θ dθ 2 π dA When = 0, θ = 4 dθ

d2A = −200 < 0 dθ 2 θ = π 4

∴ The area of a rectangle is maximum when π θ= . 4 π Maximum area = 50 sin 2( ) cm 2 = 50 cm 2 4

1 1 A = x 2 + π[ (3 − 2 x )]2 = x 2 + (3 − 2 x )2 π π dA 1 4 = 2 x + (2)(3 − 2 x )( −2) = 2 x − (3 − 2 x ) dx π π 6 dA When = 0, x = π+4 dx 6 When x = , π+4 4 d2A = 2 − ( −2) 2 π dx 8 =2+ >0 π

6 , the area is minimum but π+4 not maximum.

∴ When x =

4. Let x m, y m be the length and width respectively, and A m 2 be the area.

x + 2 y = 120 A = xy ∴

A = y(120 − 2 y) = 120 y − 2 y 2 dA = 120 − 4 y dy

d2A = −4 dy 2 dA = 0 , y = 30, When dy d2A = −4 < 0 dy 2 Hence the area of enclosure is maximum when y = 30 . When y = 30, x = 60 ∴ Maximum area of enclosure is A = (60)(30) m 2 = 1 800 m

2

5. Let x m be the length of the side of the square, 4x m be part of the wire used to form the square, (6 − 4x) m be the remaining part of the wire to form the circle of radius r m, A m 2 be the sum of the areas of the circle and the square. Q 6 − 4x ≥ 0 3 ∴ x≤ 2 3 i.e. 0 ≤ x ≤ 2 2 πr = 6 − 4 x 1 r = (3 − 2 x ) π

9 π 3 9 When x = , A = 2 4

When x = 0 , A =

9 9 > π 4 ∴ If the total area is maximum, the length of the side of the square is 0 .

Q

x y + = 1. a b Substitute P(5, 3) into the equation,

6. (a) The equation of AB is

5 3 + =1 a b 3a + 5b = ab 3a b= a−5 1 ab square units 2 3a 2 square units = 2( a − 5)

(b) Area of ∆OAB =

(c) Let A square units be the area of ∆OAB. 3a 2 2( a − 5) dA 3 ( a − 5)(2 a) − a 2 = da 2 ( a − 5)2 2 3( a − 10 a) = 2( a − 5)2 A=

When

dA = 0 , a = 10 or 0 (rejected) da

Chapter 16 Applications of differentiation

d2A da 2 3 ( a − 5)2 (2 a − 10) − ( a 2 − 10 a)(2 a − 10) = 2 ( a − 5) 4

d2A 3 = >0 2 da a =10 5 Hence the area of ∆OAB is minimum when a = 10 . ∴ Least area of ∆OAB 3(10)2 square units 2(10 − 5) = 30 square units

=

When

91

dA = 0, r = 5 dr

1 000 π d2A = 4π + 2 dr r3 2 d A = 12 π > 0 dr 2 r = 5 Hence when the base radius of each can is 5 cm , the material required will be the least. 9. Let r cm be the radius of the cylindrical can, h cm be the height and V cm 3 be the volume. 2 πr 2 + 2 πrh = 600 π

7. Let x cm be the length of side of square base, h cm be the height and $C be the cost.

V = πr 2 h = π(300 r − r 3 ) dV = π(300 − 3r 2 ) dr

x 2 h = 64 C = 20 x 2 + 40 xh 2 560 = 20 x 2 + x dC 2 560 = 40 x − 2 dx x

When

dC = 0, x = 4 dx

5 120 d 2C = 40 + 3 2 dx x 2 d C = 120 > 0 dx 2 x = 4 Hence the cost of the container is minimum when x = 4. 2 560 ∴ C = 20( 4)2 + 4 = 960 The minimum cost of the container is $960 . 8. Let r cm be the radius of each can, h cm be the height, 2

When

dV = 0 , r = 10 dr

d 2V = π( −6r ) dr 2 d 2V = −60 π < 0 dr 2 r =10 Hence the can will have the largest volume when the base radius is 10 cm . 10. Let s km be the distance between A and B after t hours. Then s 2 = (15t )2 + (90 − 20t )2 ds 2s = 450t + 2(90 − 20t )( −20) dt ds 625t − 1 800 = dt s When

ds = 0 , t = 2.88 dt

When t > 2.88 (slightly),

A cm be the surface area. πr 2 h = 250 π

A = 2 πr 2 + 2 πrh ∴

500 π r dA 500 π = 4 πr − 2 dr r A = 2 πr 2 +

ds >0 dt

ds <0 dt When t = 2.88 , s attains its minimum. Hence two ships will be closest at When t < 2.88 (slightly),

2 : 52 : 48 p.m.

92

Chapter 16 Applications of differentiation

11. Let x km be BP, s km be the length of the road.

13. (a) πr 2 h = 48π 48 h= 2 r

s = x 2 + 4 + (10 − x )2 + 9 1

1

= ( x 2 + 4) 2 + (100 − 20 x + x 2 + 9) 2 1

1

= ( x 2 + 4) 2 + (109 − 20 x + x 2 ) 2 1 ds 1 2 = ( x + 4) − 2 (2 x ) dx 2 1 1 + (109 − 20 x + x 2 ) − 2 ( −20 + 2 x ) 2 1 1 = x ( x 2 + 4) − 2 + ( x − 10)(109 − 20 x + x 2 ) − 2

When

ds = 0, x = 4 dx

3 3 d 2s = 4( x 2 + 4) − 2 + 9(109 − 20 x + x 2 ) − 2 2 dx d 2s >0 dx 2 x = 4

Hence S = 2 πrh + πr 2 48 = 2 πr ( 2 ) + πr 2 r 96 π = + πr 2 r (b) By (a), 96 π S= + πr 2 r dS 96 π = − 2 + 2 πr dr r d 2 S 192 π = 3 + 2π dr 2 r dS Set = 0, dr −

Hence the length of the road is its smallest when the location is 4 km from B. 12. (a) CD = CE 2 + DE 2

1

r = ( 48) 3

= 36 x 2 + 64 x 2 = 10 x

d 2S 192 π = + 2π = 4π + 2π = 6π > 0 2 1 48 dr r = ( 48) 3

(b) 8 x + y + 6 x + y + 10 x = 144 2 y + 24 x = 144 2 y = 144 − 24 x y = 72 − 12 x (c) Let A cm 2 be the area of ABCD. 1 A = (6 x )(8 x + y + y) 2 = 3 x (8 x + 2 y) = 3 x (8 x + 144 − 24 x ) = 3 x (144 − 16 x )

= 48(9 x − x 2 ) dA = 48(9 − 2 x ) dx d2A = −96 dx 2 dA When = 0 , 48(9 − 2 x ) = 0 dx 9 x= 2 9 When x = , 2 d2A 81 81 = −96 < 0 A = 48( − ) = 972 and 2 4 dx 2 Hence the maximum area of ABCD is

972 cm 2 .

96 π + 2 πr = 0 r2 96 π 2 πr = 2 r r 3 = 48

1

Hence S attains a minimum when r = ( 48) 3 .

14. (a)

1 2 128 πr h = π 3 3 128 r2 = h

(b) The slant height of the cone = h 2 + r 2 cm 128 cm = h2 + h (c) Let l cm be the slant height. 128 h dl 1 2 128 − 12 ) (2 h − 128h −2 ) = (h + dh 2 h 128 − 12 ) (h − 64h −2 ) = (h 2 + h h 3 − 64 = 3 1 h 2 (h 3 + 128) 2 l = h2 +

Chapter 16 Applications of differentiation

When

16. (a)

dl = 0, h = 4 dh

When h > 4 (slightly),

93

B

dl >0 dh

16 m

dl <0 dh Hence the slant height is minimum when h = 4. When h < 4 (slightly),

θ

C 2m

128 l = 42 + 4 =4 3

15. (a) xy − (2)(2 y) − (2)( 4)( x − 4) = 200 8( x + 21) y= x−4 (b) The area of the board including the margins = xy m 2 8 x ( x + 21) 2 = m x−4

4m

Let φ be ∠ACD.

16 + 2 x tan θ + tan φ 18 = 1 − tan θ tan φ x tan θ + 2x 18 = 2 1 − (tan θ)( x ) x 16 x (x > 0) tan θ = 2 x + 36 (b) Let T = tan θ tan(θ + φ) =

dT ( x 2 + 36)(16) − 16 x (2 x ) = dx ( x 2 + 36)2 −16( x 2 − 36) = ( x 2 + 36)2

(c) Let A m 2 be the area of the board. 8 x ( x + 21) x−4 dA 8( x − 4)(2 x + 21) − 8( x 2 + 21x ) = dx ( x − 4)2 2 8 x − 64 x − 672 = ( x − 4)2 8( x − 14)( x + 6) = ( x − 4)2 A=

(c) When

dT >0 dx Thus when x = 6 , T attains its maximum value.

16(6) 6 2 + 36 θ = 0.93 (corr. to 2 d.p.) ∴ The required position is 6 m from the screen and the greatest view angle is 0.93 rad. tan θ =

dA <0 dx Hence the area of the board attains minimum when x = 14 . When x < 14 (slightly),

When x = 14 , y = 28

The minimum area of the board is 392 m 2 and the corresponding height is 14 m .

dT <0 dx

When x < 6 (slightly),

dA >0 dx

A = (14)(28) = 392

dT = 0 , x = 6 or −6 (rejected) dx

When x > 6 (slightly),

dA = 0 , x = 14 or −6 (rejected) dx

When x > 14 (slightly),

φ

xm

∴ The minimum slant height is 4 3 cm .

When

A D

17. (a)

y 2 = 2 mx dy 2y = 2m dx dy m = dx y

94

Chapter 16 Applications of differentiation

dy m = dx ( 2 mt 2 , 2 mt ) 2 mt 1 = 2t

Thus when t =

minimum value and so does L. 1 1 When t = or − , 2 2

2 ms − 2 mt 2 ms 2 − 2 mt 2 2 m( s − t ) = 2 m( s − t )( s + t ) 1 = s+t

Slope of AB =

m 2 (1 + 2)3 1 = 27m 2 L = 3 3m or −3 3m (rejected) L 2=

∴ The minimum value of L is 3 3m .

(b) Q Line AB is perpendicular to the tangent to C at A. ∴

(

18. (a) Base radius = R cot θ

1 1 )( ) = −1 2t s + t 1 = −2t ( s + t )

Height = ( R cot θ) tan 2θ 1 ∴ V = π( R cot θ)2 ( R cot θ tan 2θ) 3 1 3 = πR tan 2θ cot 3 θ 3

1 = −2ts − 2t 2 2ts = −(1 + 2t 2 ) s=−

1 + 2t 2 2t

(b)

L 2 = (2 mt 2 − 2 ms 2 )2 + (2 mt − 2 ms)2 = 4 m 2 [(t 2 − s 2 )2 + (t − s)2 ] = 4 m 2 [(t − s)2 (t + s)2 + (t − s)2 ] =

dV 1 3 d tan 2θ cot 3 θ = πR dθ 3 dθ 1 = πR3 ( −3 tan 2θ cot 2 θ csc 2 θ 3 + 2 cot 3 θ sec 2 2θ)

m 2 (1 + 4t 2 )3 4t 4

=

m 2 (1 + 4t 2 )3 4t 4 d( L 2) m2 = [( 4t 4 )3(1 + 4t 2 )2 (8t ) 8 dt 16t − (1 + 4t 2 )3 (16t 3 )]

(c) L 2 =

m (1 + 4t ) (2t − 1) t5 d( L 2) When = 0, dt m 2 (1 + 4t 2 )2 (2t 2 − 1) = 0 =

2

2 2

2

Q

1 + 4t 2 ≠ 0 and m 2 ≠ 0



2t 2 − 1 = 0 1 1 t= or − 2 2

When

d (L ) dt 2 t = −

= 1 2

m 2 ( 4 + 9 + 5) 1 8

1 dV = 0 , cos 2θ = 3 dθ

When 2θ > cos −1

1 dV (slightly), >0 3 dθ

1 dV (slightly), <0 3 dθ ∴ The minimum volume of the cone occurs 1 at cos 2θ = . 3 (c) By (b), When 2θ < cos −1

1 3 1 2 2 cos θ − 1 = 3 2 1 2 cos θ = , sin 2 θ = 3 3 ∴

= 144 m 2 > 0

cot 2 θ = 2

Since 0 < θ <

2

2

1 3 cot 2 θ sin 2θ(1 − 3 cos 2θ) πR 3 cos 2 2θ sin 2 θ

cos 2θ =

d 2 ( L 2 ) m 2 (32t 6 + 18t 2 + 5) = dt 2 t6 2 2 2 d (L ) m ( 4 + 9 + 5) = = 144 m 2 > 0 2 1 dt 1 8 t= 2

1 1 or − , L 2 attains a 2 2



π , 4

cot 3 θ = ( 2 )3 =2 2

Chapter 16 Applications of differentiation

sin 2θ = 1 − cos 2 2θ 1 = 1− 9 8 = 3 sin 2θ tan 2θ = cos 2θ =2 2 ∴ The minimum volume of the cone 1 = ( πR3 )(2 2 )(2 2 ) 3 8 3 = πR 3

∴ When r = 10 ,

3. Let x, y be OA, OB respectively. x 2 + y 2 = 132 dx dy 2x + 2y =0 dt dt (a) When x = 5 , y = 12 , ∴

5 unit/s towards the 6

5 dm −(5)( − 6 ) + (12)(2) = dt 52 169 = 150 The slope of AB is increasing at the rate of 169 per second. 150

When x = 5 ,

The acceleration of the particle is −4 m / s 2 .

S = 4 πr 2 dS dr = 8πr dt dt dr 3 = dt 8πr 4 V = πr 3 3 dV dr 3 3 = 4 πr 2 = 4 πr 2 ( )= r dt dt 8πr 2

dy =0 dt dy 5 =− dt 6

(b) Let m be the slope of AB. y m=− x dy dx dm − x dt + y dt = dt x2

∴ The velocity of the particle is 0 m / s .

2. Let r cm, S cm 2 and V cm 3 be the radius, surface area and volume of the balloon respectively.

dx =2 dt

origin.

When t = 1 , v = 0 and a = −4

0 ≤ t ≤ 3 is 29 m .

2(5)(2) + 2(12)

∴ B is moving at

Exercise 16D (p.153)

(b) When t = 0 , s = 20 m When t = 3 , s = 29 m When t = 1 , s = 21 m ∴ The maximum distance between the particle and A within the time internal

dV 3 = (10) = 15 dt 2

∴ The increase rate is 15 cm 3 / s .

19 − 22. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons.

1. (a) L e t v m / s , a m/s 2 b e t h e v e l o c i t y a n d acceleration of the particle respectively. ds v= = 4t 3 − 12t 2 + 8t dt dv a= = 12t 2 − 24t + 8 dt

95

4. Let r cm, h cm, A cm 2 , V cm 3 and l cm be the radius of surface, height area, volume and slant height of water inside the cone respectively. r 6 = h 12 h 2 1 1 V = πr 2 h = πh 3 3 12 dV 1 2 dh = πh dt dt 4 dh 4π 1 When h = 6 , = = dt π(6)2 9 ∴

h = 2r , r =

∴ The rate of the water level rising is

1 cm / s . 9

96

Chapter 16 Applications of differentiation

8. Let s km be the distance between two cars after t hours.

h 5 l = h 2 + ( )2 = h 2 2 h 5h 5π 2 )= A = πrl = π( )( h 2 2 4 dA 5π dh = h dt dt 2 When h = 6 ,

s 2 = 6 400t 2 + 3 600t 2 = 10 000t 2 When t = 3 , s = 300 2s

dA 5π 1 = (6) dt 2 9 5π = 3

ds 60 000 = dt 2(300) = 100 ∴ After 3 hours, two cars are separating at the rate 100 km / h .

When t = 3 ,

∴ The rate of change of the area of the wet part of the cone at this instant is

ds = 20 000t dt

5π cm 2 / s . 3

5. Let x cm and V cm 3 be the side and volume of the cube respectively. V = x3 dV dx = 3x 2 dt dt dV = 3(20)2 (0.01) dt = 12 ∴ The rate of change of the volume is When x = 20 ,

12 cm 3 / h . 6. Let x m be the distance between the man and the lamp post, y m be the distance between the lamp post and tip of the shadow. y − x 180 1 = = y 540 3 3x = 2 y Differentiate both sides with respect to time t: dx dy 3 =2 dt dt dy 3 = (2) = 3 dt 2 ∴ The tip of his shadow is moving at the rate 3 m / s. 7. Let x cm, y cm and A cm 2 be the length, width and area of the rectangle respectively. A = xy dA dy dx =x +y dt dt dt When x = 20 , y = 10 ,

dA −3 = 20( ) + 10(1) dt 2 = −20 ∴ The rate of change of the area is −20 cm 2 / s .

9. Let r cm, C cm and A cm 2 be the radius, circumference and area of the circle respectively. A = πr 2 dA dr = 2 πr dt dt −6 dr = dt 2 πr −3 = πr C = 2 πr dC dr = 2π dt dt −3 dC = 2 π( ) πr dt −6 = r dC 6 = − = −2 dt 3 ∴ The rate of change of the circumference is −2 cm / s . When r = 3 ,

10. Let s m be the distance between B and the balloon after t seconds. s 2 = 36t 2 + 2 500

2s

ds = 72t dt ds 72t 36t = = dt 2s s

When t = 20 , s = 130 , ds (36)(20) = dt 130 7 =5 13 ∴ The rate of change of the distance of the 7 balloon from place B is 5 m / s. 13

Chapter 16 Applications of differentiation

11.

s = 5t 2 ds = 10t dt

dh = dt

When t = 5 , ds = 10(5) = 50 dt ∴ The velocity of the stone is 50 m / s . Let x m be the distance between the stone and boat. x = 10 000 + (200 − 5t ) dx 2x = 2(200 − 5t 2 )( −10t ) dt dx −50t ( 40 − t 2 ) = dt x 2

2 2

When t = 5 , x = 125 dx 50(5)( 40 − 25) =− dt 125 = −30 ∴ The rate of change of the distance between the stone and the boat is −30 m / s .

12.

y = x2 + 8 1

= ( x 2 + 8) 2 1 dx dy 1 2 = ( x + 8) − 2 (2 x ) dt 2 dt x dx = x 2 + 8 dt

When x = 1 ,

dy 1 = (3) dt 3 =1

13. Let x m, h m and V m 3 be the side, height and volume of water in the trough respectively. h = x cos 30° 2 x= h 3 1 V = ( x 2 sin 60°)(2) 2 3 2 x = 2 2 3 2 h = 3 dV 4 3 dh h = dt dt 3 When h =

1 , 2

3 4 3 1 ( ) 3 2

=

97

3 2

∴ The rate of change of the water level rising is 3 m / min. 2 14. Let r cm, h cm and V cm 3 be the base radius, height and volume of the conical pile. 2 r 3 1 2 V = πr 2 h = πr 3 3 9 dV 2 2 dr = πr dt 3 dt h=

When r = 12 , dV 2 1 = π(12)2 ( ) = 12 π dt 3 8 ∴ The rate of change of the volume is

12π cm 3 / s . 15. Let r cm, h cm and V cm 3 be the radius, height and volume of water inside the circular cone respectively. 1 r V = πr 2 h , h = = 3r 3 tan 30° 3 3 1 3 V= πr = πh 3 9 dV 1 2 dh = πh dt 3 dt When h = 6 , dV 1 = π(6)2 (0.2) dt 3 = 2.4 π ∴ The rate of water leaking away is (10 − 2.4 π) cm 3 / s . 16. Let x m be the length of shadow, θ be the angle of elevation. ∴ x = 180 cot θ dx dθ = −180 csc 2 θ dt dt When θ = 30° , dx 0.25π = −180( 4)( ) dt 180 = −π ∴ The rate of change of the length of the shadow is −π m / min.

98

Chapter 16 Applications of differentiation

17. (a) Let r cm be the radius of the stain. After 4 seconds, the area of the stain = 4 cm . 2



πr 2 = 4 4 1 r = ( )2 π ∴ The radius of the stain 4 seconds after the 4 1 ink first touched the shirt was ( ) 2 cm . π

(b) Let A cm 2 be the area of the stain. A = πr 2 dA dr = 2 πr dt dt 4 1 dA Q = 1, r = ( ) 2 (at this instant, from (a)) dt π 4 12 dr ∴ 1 = 2 π( ) π dt dr 1 = dt 4 π ∴ The rate of increase of the radius of the 1 cm / s . stain at this instant is 4 π 18. No solution is provided for the H.K.C.E.E. question because of the copyright reasons. 19. (a) Using cosine formula, we obtain PQ 2 = OP 2 + OQ 2 − 2(OP)(OQ)cosθ π When Q = , 3 5 2 π ( ) = ( 3 )2 + x 2 − 2 3 ( x ) cos 2 3 13 2 x − 3x − =0 4

x=

3+4 2

or

3−4 (rejected) 2

5 (b) ( )2 = ( 3 )2 + x 2 − 2 3 ( x ) cos θ 2 13 x 2 − 2 3 x cosθ − = 0 4



−6 x dx = dt 2 x − 3 3 +4 2 ) 3 +4 2 )− 3

−6(

=

2(

−3( 3 + 4) 4 ∴ The rate of change of OQ with respect to =

time is

−3( 3 + 4) m / s. 4

20. (a) When the depth is h m, using the properties of similar figures, h upper base = 1 + 2( ) = 1 + h 2 ∴ V = 1 (1 + h + 1)h(3) 2 3 = (h 2 + 2 h) 2 3 2 (b) V = (h + 2 h) 2 dV 3 dh = (2 h + 2) dt 2 dt dh = 3(h + 1) dt 1 When h = , 2 dh 4 8 = = dt 3( 12 + 1) 9 ∴ The rate of change of the water level is 8 m / min. 9 21. (a) Let r cm, h cm and V cm 3 be the radius, height and volume of space left inside the circular conical vessel. r = h tan 45° = h 1 ∴ V = πh 3 3 dV dh = πh 2 dt dt

Differentiate both sides with respect to time t,

When h = 6 ,

dx dθ dx + 2 3 x sin θ − 2 3 cos θ =0 dt dt dt π dθ When Q = and = 2, 3 dt π π dx dx + 2 3 x (sin )(2) − 2 3 cos =0 2x dt 3 3 dt dx dx + 6x − 3 =0 2x dt dt

dh −12 = dt π(36) 1 =− 3π ∴ The rate of the water level rising is 1 cm / s . 3π

2x

Chapter 16 Applications of differentiation

(b) Let A cm 2 be the area of the surface of water in the vessel. A = πr 2 = πh 2 dA dh = 2 πh dt dt When h = 6 , dA 1 = 2 π(6)( − ) dt 3π = −4 ∴ The rate of decrease of the area of the surface of the water at that moment is 4 cm 2 / s . π (16 + 12 h − h 3 ) 3 dV π = (12 − 3h 2 ) dh 3 = π( 4 − h 2 )

22. (a) V =





dh dt

dV dh = π( 4 − h 2 ) dt dt dV When h = 1 and = −6π , dt dh −6 π = π[ 4 − (1)2 ] dt dh = −2 dt ∴ The rate of change of h is −2 m / hour.

(c) (i) Radius of the surface = 2 2 − h 2

A = π( 4 − h 2 ) 2 = π( 4 − h 2 )

(ii)

dA dh = π( −2 h) dt dt dA When h = 1 , = π( −2)( −2) dt = 4π ∴ The rate of change of A is 4π m 2 / hour.

23. (a)

A=−

=−

x = A sin 2t + B cos 2t dx = 2 A cos 2t − 2 B sin 2t dt d2x = −4 A sin 2t − 4 B cos 2t dt 2

2 3 , B=− 25 50

2 3 sin 2t − cos 2t 25 50

(b) x = −

1 4 3 ( sin 2t + cos 2t ) 10 5 5

1 4 cos(2t − θ) where θ = tan −1 ( ) 10 3 ∴ The maximum displacement =−

= − =

(b) From (a),



− 4 A sin 2t − 4 B cos 2t + 6 A cos 2t − 6 B sin 2t − 4 A sin 2t − 4 B cos 2t = sin 2t

−8 A − 6 B = 1  6 A − 8B = 0 

dV dV dh = ⋅ dt dh dt = π( 4 − h 2 )

99

1 10

1 10

(c) Let v be the speed of the particle. dx v= dt 4 3 = − cos 2t + sin 2t 25 25 2 A2 + B2 − x 2 1 4 9 2 3 = 2[ + − ( − sin 2t − cos 2t )2 ] 2 625 2 500 25 50 4 4 = 2[ − sin 2 2t 625 625 2 3 − 2( sin 2t )( cos 2t ) 25 50 1 9 9 + − cos 2 2t ] 2 2 500 2 500 4 = 2[ cos 2 2t 625 1 2 3 9 − 2( )( )(sin 2t cos 2t ) + sin 2 2t ] 2 25 50 2 500 16 4 3 =[ cos 2 2t − 2( )( )(sin 2t cos 2t ) 625 25 25 1 9 2 2 + sin 2t ] 625 4 3 = ( − cos 2t + sin 2t )2 25 25 4 3 = − cos 2t + sin 2t 25 25 ∴

v = 2 A2 + B2 − x 2

100

Chapter 16 Applications of differentiation

(d) v = 2 A2 + B2 − x 2 As x 2 ≥ 0 , it is obvious that v is maximum when x = 0. ∴ The maximum speed = 2 A2 + B2 1 = 5

24. (a) (i) Since the minute-hand and the hour-hand move in the same direction at constant rates, the required rate = the rate at which the hour-hand moves − the rate at which the minute-head moves π 2π =( − ) rad. / min. 360 60 −11π = rad. / min. 360 2π 3 If OA coincide with OB after t minutes, 11π 2π t= 360 3 9 t = 21 11 ∴ OA first coincides with OB at 4 : 21 : 49 p.m. (corr. to the nearest second).

s 2 = 2 2 + 12 − 2(2)(1) cos θ = 5 − 4 cos θ ∴

2s

ds dθ = 4 sin θ dt dt ds 2 sin θ dθ = dt s dt

At 4:00 p.m., 2π θ= , 3

s 2 = 5 − 4 cos s= 7 Q

dθ 11π =− dt 360 2π , 3 2 sin 23π 11π ds =( )( − ) 360 dt 7

∴ When θ =

(ii) At 4:00 p.m., θ =

(b) Let A cm 2 be the area of ∆OAB. 1 (2)(1)sin θ 2 = sin θ dA dθ = cos θ dt dt A=

When θ =

2π , 3

2 π 11π dA = cos (− ) 3 360 dt = −0.05 (corr. to the nearest 0.01) ∴ The rate of change of the area of ∆OAB with respect to time at 4:00 p.m. is − 0.05 cm 2 / min. (c) Let s cm be AB. Using cosine formula,

2π 3

=−

11 3π 360 7

= −0.06 (corr. to the nearest 0.01)

∴ The rate of change of AB with respect to time at 4:00 p.m. is −0.06 cm / min. 25 − 26. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons.

Revision Exercise 16 (p.158) 1. y + xy = 6 x 3

dy 1 + dx 2

y 1 + x 2 (1 +

1 2

x dy = 18 x 2 y dx 1 x dy = 18 x 2 − ) 2 y dx

y x y

dy 18 x − 2 x = y dx 1+ 1 2

1

2

x

The slope of the tangent to the curve at (1, 4) is 1 dy 18 − 2 4 = dx 1 + 1 1 2 4 68 = 5

Chapter 16 Applications of differentiation

When x = 0 , y = 3

2. y 2 + 10 x = 0

2y

A sketch of the curve is shown below :

dy + 10 = 0 dx dy 5 =− dx y

2 17 y (− , 4 ) 3 27

Slope of the line = − ∴

5 1 − =− y 2 y = 10



x=

1 2

y = 2x 3 − x 2 − 4x + 3 3

− y2 = −10 10

∴ The equation of the tangent is 1 y − 10 = − ( x + 10) 2 x + 2 y − 10 = 0 O

3.

f ( x ) = x 3 − 3x + 4 5.

f ' ( x ) = 3x 2 − 3 When f ' ( x ) > 0 , the value of f ( x ) increases. 3x 2 − 3 > 0

Consider

x −1 > 0 ( x + 1)( x − 1) > 0 x < −1 or x > 1 2

4.

(1, 0)

y = 2 cos 2 x − cos 4 x dy = −4 sin 2 x + 4 sin 4 x dx

When

dy = 0, dx

−4 sin 2 x + 4 sin 4 x = 0 2 sin 2 x cos 2 x − sin 2 x = 0 sin 2 x (2 cos 2 x − 1) = 0 1 2 π 5π 2 π or 2 x = , 3 3 π 5π π or x = , 6 6

y = 2x3 − x2 − 4x + 3 dy = 6x2 − 2x − 4 dx dy When = 0, dx 6x2 − 2x − 4 = 0



3x 2 − x − 2 = 0 (3 x + 2)( x − 1) = 0

d2y = −8 cos 2 x + 16 cos 4 x dx 2

x=− d2y = 12 x − 2 dx 2

2 or 1 3

2 d2y 17 When x = − , < 0 and y = 4 , 3 dx 2 27 2 17 ∴ ( − , 4 ) is a maximum point. 3 27 d2y > 0 and y = 0 , dx 2 (1, 0) is a minimum point.

When x = 1 , ∴

sin 2 x = 0 or cos 2 x =

2 x = 0, π, x = 0,

For x = 0 ,

π , 2

d2y > 0 , y = 1; dx 2

x=

π d2y 3 < 0, y = ; , 6 dx 2 2

x=

π d2y > 0 , y = −3 ; , 2 dx 2

x=

5π d 2 y 3 , < 0, y = ; 6 dx 2 2

x = π,

d2y > 0 , y = 1. dx 2

x

101

102

Chapter 16 Applications of differentiation

5π 3 π 3 ( , ) and ( , ) are maximum points; 6 2 6 2



(0, 1), (

π , −3) and (π, 1) are minimum points. 2

A sketch of the curve is shown below: y

π 3 ( , ) 6 2

5π 3 ( , ) 6 2

(0, 1)

d2A πH =− <0 2 4 dr

∴ When the radius is 8 cm , the curved surface area is maximum. 7. Let x m be the distance between the man and the light, y m be the height of the man’s shadow on the wall.

(π, 1)

2m

x

π

O

ym

xm 10 m

y = 2 cos 2x − cos 4x

π ( , −3) 2

2 y = x 10 20 y= x 20 dx dy =− 2 dt x dt

dx 8 000 20 = = dt 3 600 9

Q

6. Let r cm, h cm and A cm 2 be the radius, height and surface area of the cylinder respectively. Let H cm be the height of the cone.

∴ When x = 4 , dy 20 20 25 =− ( )=− dt 16 9 9 ∴ The rate of change of the height of the man’s shadow on the wall is 25 1 − × 3 600 × km / h = −10 km / h 9 1 000

H cm

8. Let r cm, h cm and V cm 3 be the radius, depth and volume of water in the filter respectively.

h cm

6 cm

16 cm

r cm

Using the properties of similar triangles, 16 H = r H−h H h=H− r 16 H r) 16 dA H H H = 2 π[( H − r ) + r ( − )] = 2 π( H − r ) dr 16 16 8

r cm 12 cm

h cm

A = 2 πrh = 2 πr ( H −

When H−

dA = 0, dr

H r=0 8 r=8

6 r = h 12 1 r= h 2 1 2 1 1 1 πh 3 V = πr h = π( h 2 )h = 3 3 4 12 dV 1 2 dh = πh dt dt 4

Chapter 16 Applications of differentiation

dh = 0.5 dt ∴ The rate of change of the volume of water 1 = π(8)2 (0.5) 4 = 8π cm 3 / s

When x = π + tan −1 (2) ,

When h = 8 ,

Since the rate of change of the volume of water = the rate of water pouring into the filter − the rate of water flowing out of the filter ∴ The rate of water pouring into the filter is

d2y >0 dx 2

∴ When x = tan −1 (2) , y attains a maximum. The maximum value of y = 5 11 − 16. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons. 17. (a) When f ' ( x ) = 0 , x = 0 , 2 or 3 When x = 0 , f "( x ) < 0

(8π + 4) cm 3 / s .

When x = 2 , f "( x ) > 0 When x = 3 , f "( x ) < 0 7 ∴ (0, 10), (3, − ) are maximum points, 2

9. (a) Let $P be the daily profit.

P = x (800 − x ) − ( x 2 + 52 x + 38)

and (2, − 6) is a minimum point.

= 800 x − x 2 − x 2 − 52 x − 38 = −2 x 2 + 748 x − 38

(b) A sketch of the curve is shown below: y

dP = −4 x + 748 dx d2P = −4 dx 2 dP When = 0 , −4 x + 748 = 0 dx x = 187

10

(0, 10)

y = f (x)

2

d P = −4 < 0 dx 2 ∴ When the number of fans produced daily is 187 , the daily profit is a maximum.

When x = 187 ,

O

x 1 7 (3, − ) 2

(b) The maximum daily profit

= $[ −2(187)2 + 748(187) − 38] = $69 900

(2, −6)

18. (a) 10. (a)

dy = 2 cos x − sin x dx d2y = −2 sin x − cos x dx 2

(b) When

103

dy 3( 4t 2 )2 3 = = t dx ( 4t 2 , 4t 3 ) 2 8( 4t 3 )

dy = 0, dx

2 cos x − sin x = 0 tan x = 2 x = tan −1 (2) , π + tan −1 (2)

When x = tan −1 (2) ,

4 y2 = x 3 dy 8y = 3x 2 dx dy 3 x 2 = dx 8 y

d2y < 0 and y = 5 dx 2

The equation of the tangent is 3 y − 4t 3 = t ( x − 4t 2 ) 2 2 y − 8t 3 = 3tx − 12t 3 3tx − 2 y − 4t 3 = 0

104

Chapter 16 Applications of differentiation

(b) 4 y 2 = x 3 ...............................................(1) 3tx − 2 y − 4t 3 = 0 ..................................(2) 3 tx − 2t 3.........................(3) 2 Substitute (3) into (1), 3 4( tx − 2t 3 )2 = x 3 2 9t 2 x 2 − 24t 4 x + 16t 6 − x 3 = 0 x 3 − 9t 2 x 2 + 24t 4 x − 16t 6 = 0 ................(4)

Substitute x = 0 , ∴

From (2), y =

Let g( x ) = x 3 − 9t 2 x 2 + 24t 4 x − 16t 6 g(t 2 ) = t 6 − 9t 6 + 24t 6 − 16t 6 = 0 ∴

x = t 2 is a root of equation (3).

∴ The coordinates of B are (t 2 , −

t3 ). 2

(c) Let P(x, y) be the mid-point of AB. 4t 2 + t 2 2 5 2 = t ................................................(5) 2 3 4t 3 − t2 y= 2 7 3 = t ................................................(6) 4 x=

(5)3 ÷ (6)2 , 3

x = y2 x3 =

y 49 250 y 2 = 49 x 3

250 y = 49 x . 2

3

9 y = ax + bx + cx + d ......................(1) dy 9 = 3ax 2 + 2 bx + c dx dy 1 2 2 c = ax + bx + ........................(2) dx 3 9 9 2

Substitute (0, 0) into (1), ∴

0=0+d d=0

∴ ∴

0 = 27a + 9b + 3c + d 3a + b + 3 = 0 .................................(4)

(b) ∴ The equation of C is 9 y = x 3 − 6 x 2 + 9 x dy 1 2 4 = x − x +1 dx 3 3 dy When = 0, dx 1 2 4 x − +1 = 0 3 3 x2 − 4x + 3 = 0 ( x − 1)( x − 3) = 0 x = 1 or 3 4 When x = 1 , y = ; 9 when x = 3 , y = 0 d2y 2 4 = x− 2 3 3 dx

(3, 0) is a minimum point.

∴ The equation of the locus of P is

19. (a)

dy = 0 into (2), dx 1 2 c ∴ 0 = a(3)2 + b(3) + 3 9 9 2 ∴ 3a + b + 1 = 0 ...............................(3) 3 Substitute x = 3 , y = 0 into (1), Substitute x = 3 ,

d2y 2 d2y 2 ; = − < = >0 0 2 2 3 dx x =1 dx x =3 3 4 ∴ (1, ) is a maximum point, and 9

( 25 )3 t 6 ( 47 )2 t 6 250 2

3

1=

Solving (3) and (4), we obtain a = 1, b = −6 .

Substitute x = t 2 into (3), 3 t3 y = t (t 2 ) − 2 t 3 = − 2 2

c 9 c=9

dy = tan 45° = 1 into (2), dx

(c) When x = 0, y = 0; when x = −1, y = −

16 ; 9

4 9 A sketch of the curve is shown below:

when x = 4, y = y

3 (1, 4 ) y = x − 2 x 2 + x 9 9 3 (3, 0)

−1

O

x 3

4

Chapter 16 Applications of differentiation

20. (a) The length of the tangent is z = a 2 + b 2 + ( −2)a + ( −6)b + 5 z 2 = a 2 + b 2 − 2 a − 6b + 5 ...................(1) Since (a, b) lies on L, ∴ 3a + b + 4 = 0 b = −3a − 4 ........................(2) Put (2) in (1),

z = a + (3a + 4) − 2 a + 6(3a + 4) + 5 2

2

2

= a 2 + 9a 2 + 24 a + 16 − 2 a + 18a + 24 + 5

2r 2 h= 2 r −1 r 2 h − h = 2r 2



r 2 (h − 2) = h r2 =

= 10 a + 40 a + 45

(b) Volume of cone

=

1 2 1 h πh 2 πr h = π( )h = 3 3 h−2 3(h − 2)

∴ 1

z = (10 a 2 + 40 a + 45) 2 1 dz 1 = (10 a 2 + 40 a + 45) − 2 (20 a + 40) da 2

When

dz = 0 , a = −2 da

dz > 0; da dz when a < −2 (slightly), <0 da ∴ z attains its minimum when a = −2 . when a > −2 (slightly),

Put a = −2 in (2), ∴ b=6−4=2 ∴ The coordinates of A are ( −2, 2) .

V=

πh 2 3(h − 2)

dV π 2 h(h − 2) − h 2 π(h 2 − 4h) = = dh 3 3(h − 2)2 (h − 2)2 Put

As 10 a 2 + 40 a + 45 = 10( a + 2)2 + 5 > 0 ,

dV = 0, dh



h 2 − 4h = 0 h( h − 4 ) = 0 ∴ h = 4 or

h = 0 (rejected) dV When h > 4 (slightly), >0 dh dV When h < 4 (slightly), <0 dh ∴ When h = 4 , V attains a minimum. π( 4 2 ) 3( 4 − 2) 8 = π 3

∴ Minimum volume =

(c) Let O be the centre of C, ∴ the coordinates of O are (1, 3). 3−2 1 = 1+ 2 3 Slope of line L = −3 Slope of AO =

22. (a) Curved surface of one of the cones

= πr r 2 + h 2 1 ( −3) 3 = −1

(Slope of AO) × (Slope of L) = ∴ AO is perpendicular to L. 21. (a) Let ∠EBD = θ DE = r tan θ r tan θ = 1 AD = h = r tan 2θ r (2 tan θ) = 1 − tan 2 θ 2 r ( 1r ) = 1 − ( 1r )2

h h−2

(c) Let V be the volume of cone.

2

(b)

105



1

S = 2 πr (r 2 + h 2 ) 2 + 2 πrh 1 S − h = (r 2 + h 2 ) 2 2 πr S ( − h)2 = r 2 + h 2 2 πr S2 hS − + h2 = r 2 + h2 4 π 2 r 2 πr hS S2 = − r2 πr 4 π 2 r 2 hS S 2 − 4 π 2 r 4 = πr 4π 2 r 2 S 2 − 4π 2 r 4 h= 4 πrS

106

Chapter 16 Applications of differentiation

2 2 πr h + πr 2 h 3 5 = πr 2 h 3 5 S 2 − 4π 2 r 4 = πr 2 ( ) 3 4 πrS 5r 2 = (S − 4π 2 r 4 ) 12 S 5 (c) From (b), V = (rS 2 − 4 π 2 r 5 ) 12 S dV 5 ( S 2 − 20 π 2 r 4 ) = dr 12 S dV When = 0 , S 2 − 20 π 2 r 4 = 0 dr

1 (1 + h) x 2 1 = (1 + h)( 4 cos θ − cot θ) 2 1 = (1 + 4 sin θ)( 4 cos θ − cot θ) 2 1 = (16 sin θ cos θ − cot θ) 2 1 = 4 sin 2θ − cot θ 2

(ii) A =

(b) V =

(b)

S2 20 π 2 S 12 r=( ) 2 5π

r4 =

d 2V 5 = ( −80 π 2 r 3 ) 2 12 S dr 3 −100 π 2 ( S ) 2 2 S 12 d V 2 5π = ) , When r = ( 3S dr 2 2 5π <0 S 12 ) , V attains a ∴ When r = ( 2 5π maximum, S 12 ) i.e. r0 = ( 2 5π

h0 =

4S 1 1 5 4 πS r0 S = 5πr0 =

h0 S = r0 5πr0 2 S 2 5π = 5π S 2 = 5



1 1 ∴ When sin θ = ( ) 3 , x attains a maximum. 4

2 S 2 − 4π 2 ( S 2 )

20 π 1 S 4 πS( )2 2 5π 2

h0 : r0 = 2 : 5 1 OA OA = cot θ x = OB − OA = 4 cos θ − cot θ

23. (a) (i) tan θ =

dx = −4 sin θ + csc 2 θ dθ 1 − 4 sin 3 θ = sin 2 θ dx When = 0, dθ 1 − 4 sin 3 θ =0 sin 2 θ 1 − 4 sin 3 θ = 0 1 sin 3 θ = 4 1 1 sin θ = ( ) 3 4 1 1 dx When θ > sin −1[( ) 3 ] (slightly), <0 4 dθ 1 1 dx When θ < sin −1[( ) 3 ] (slightly), >0 4 dθ

(c)

1 dA = 8 cos 2θ + csc 2 θ 2 dθ 1 2 sin 2 θ 2 16 sin θ(1 − 2 sin 2 θ) + 1 = 2 sin 2 θ 4 −32 sin θ + 16 sin 2 θ + 1 = 2 sin 2 θ = 8(1 − 2 sin 2 θ) +

dA = 0, dθ −32 sin 4 θ + 16 sin 2 θ + 1 =0 2 sin 2 θ −32 sin 4 θ + 16 sin 2 θ + 1 = 0

When

sin 2 θ =

−16 ± 16 2 − 4( −32) 2( −32)

2+ 6 2− 6 or (rejected) 8 8 sin θ = 0.75 (corr. to the nearest 0.01) =

Chapter 16 Applications of differentiation

(b)

d2A = −16 sin 2θ − csc 2 θ cot θ dθ 2

0 0 −t 0

As θ is acute, −16 sin 2θ − csc 2 θ cot θ < 0 , i.e.

Area =

d2A < 0 when sin θ = 0.75 . dθ 2

∴ W h e n sin θ = 0.75 , t h e a r e a o f t h e trapezium attains a maximum.

24. (a) C1: x 2 + y 2 + 2tx = 0 ................(1) ∴ The coordinates of the centre of C1 are ( −t, 0) . 2y = 0 ...............(2) t ∴ The coordinates of the centre of C2 are 1 (0, − ) . t (1) − (2), C2 : x 2 + y 2 +

2y =0 t t2x − y = 0

2tx −

Put (3) into (1),

−2t 3 1 + t4 1 0 − t 0 0

1 2t 4 2 + ( ) 2 1 + t4 1 + t4 =1 ∴ The area of the quadrilateral is a constant. =

(c) Let L be the length of common chord. 2t 2 2t 3 2 L2 = (0 + 0 + + ) ( ) 1 + t4 1 + t4 4t 2 + 4t 6 = (1 + t 4 )2 4t 2 (1 + t 4 ) = (1 + t 4 )2 4t 2 = (1 + t 4 )

d ( L2 ) (1 + t 4 )8t − 4t 2 ( 4t 3 ) = dt (1 + t 4 )2 2L

x 2 + t 4 x 2 + 2tx = 0 (1 + t 4 ) x 2 + 2tx = 0 x[(1 + t 4 ) x + 2t ] = 0

dL 8t + 8t 5 − 16t 5 = dt (1 + t 4 )2 dL 4t − 4t 5 = dt L(1 + t 4 )2

When

−2t x = 0 or x = 1 + t4

dL = 0, dt

∴ 4t (1 − t 4 ) = 0 t = 0 or t = ±1 Put t = 0 into L,

Put x = 0 into (3), y=0

y=

1 −2t 2 1 + t4

When L > 0 ,

y = t 2 x .........................(3)

Put x =

107

L=0 Since the length of chord should be greater than zero,

−2t into (3), 1 + t4

−2t 3 1 + t4



The coordinates of intersecting points are −2t −2t 3 , ). (0, 0) and ( 1 + t4 1 + t4 ∴ The coordinates of the vertices of the q u a d r i l a t e r a l a r e (0, 0) , ( −t, 0) , 1 −2t −2t (0, − ) and ( , ). 4 t 1+ t 1 + t4

L = 0 is rejected.

Put t = ±1 into L, 4 ∴ L2 = = 2 2 L = 2 or − 2 (rejected) ∴ The stationary value of the length of the common chord is

2.

3

25 − 34. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons.

108

Chapter 16 Applications of differentiation

Enrichment 16 (p.167)

Classwork 1 (P.116)

4x 1. (a) f ( x ) = 2 x − x +1

1.

1 3 Consider x 2 − x + 1 = ( x − )2 + 2 4 1 2 (x − ) ≥ 0 Q 2 1 2 3 (x − ) + > 0 2 4 x2 − x + 1 > 0 ∴

dy dx ( 2,

y − 4 = 4 ( x − 2) 4x − y − 4 = 0

f ( x ) is defined for all real values of x. ( x 2 − x + 1)( 4) − ( 4 x )(2 x − 1) ( x 2 − x + 1)2 −4( x 2 − 1) = 2 ( x − x + 1)2

The equation of the normal is 1 y − 4 = − ( x − 2) 4 x + 4 y − 18 = 0

( x 2 − x + 1)2 > 0

Consider ∴

x2 − 1 < 0 ( x + 1)( x − 1) < 0 −1 < x < 1

2.

(c) f "( x ) = [ −4( x 2 − x + 1)2 (2 x ) + 4( x 2 − 1) ( 4 x − 6 x + 6 x − 2)] ÷ ( x − x + 1) 3

2

2

4

−8 x 5 − 8 x 4 − 16 x 3 + 32 x 2 − 32 x + 8 ( x 2 − x + 1) 4 When x = 1 , f ' ( x ) = 0 , f "( x ) < 0 and y = 4 =



= 3(2)2 − 4(2) 4)

=4 The equation of the tangent is

(b) f ' ( x ) =

Q

y = x3 − 2x2 + 4 dy = 3 x 2 − 2( 2 x ) dx = 3x 2 − 4 x

(1, 4) is a maximum point.

W h e n x = −1 , f ' ( x ) = 0 , f "( x ) > 0 a n d 4 y=− 3 4 ∴ ( −1, − ) is a minimum point. 3 (d) When x = 0 , y = 0 A sketch of the curve is shown below: y

x 2 − xy 2 + y 2 = 9 dy dy 2 x − y 2 − 2 xy + 2y =0 dx dx dy y2 − 2 x = dx 2 y − 2 xy dy (2)2 − 2( −1) = dx ( −1, 2 ) 2(2) − 2( −1)(2) 3 = 4 The equation of the tangent is 3 y − 2 = ( x + 1) 4 3 x − 4 y + 11 = 0

The equation of the normal is 4 y − 2 = − ( x + 1) 3 4 x + 3y − 2 = 0

(1, 4)

Classwork 2 (P.119) y=

O (−1, −

4x x2 − x + 1

1. Let ( x1, y1 ) be the point of contact of a required tangent. Slope of the given line = −9 x

4 ) 3

2 − 5. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons.

y = x 3 − 12 x + 4 dy = 3 x 2 − 12 dx At ( x1, y1 ) , slope of the tangent =

dy dx ( x1 , y1 )

= 3 x12 − 12

109

Chapter 16 Applications of differentiation



Substitute x1 = 0 into (3),

3 x12 − 12 = −9 x1 = ±1

y1 = 3(0) − 5 = −5

When x1 = 1 ,

Substitute x1 = 3 into (3),

y1 = (1)3 − 12(1) + 4 = −7 ∴ (1, − 7) is a point of contact.

y1 = 3(3) − 5 =4



( x1, y1 ) = (0, − 5) or (3, 4)

At (1, − 7) , the equation of the tangent is y + 7 = − 9( x − 1) 9x + y − 2 = 0

At (0, −5), slope of the tangent = 0. ∴ At (0, −5), the equation of the tangent is

When x1 = −1 , y1 = ( −1) − 12( −1) + 4 = 15

At (3, 4), slope of the tangent = −

y + 5 = 0.

3



3 , 4 ∴ At (3, 4), the equation of the tangent is 3 y − 4 = − ( x − 3) 4 3 x + 4 y − 25 = 0

( −1, 15) is another point of contact.

At ( −1, 15) , the equation of the tangent is y − 15 = −9( x + 1) 9x + y − 6 = 0

2. Let ( x1, y1 ) be the point of contact of a required tangent. Since ( x1, y1 ) lies on the curve, ∴

x12 + y12 = 25 .........................(1) 2x + 2y

Classwork 3 (P.125) 1. A sketch of the curve is shown below: y

dy =0 dx dy x =− dx y

(0, 5)

dy dx ( x1 , y1 ) x =− 1 y1

Slope of the tangent =

y = f (x)

Slope of the line joining ( x1, y1 ) and (15, −5) y +5 = 1 x1 − 15 ∴



x1 y +5 = 1 y1 x1 − 15

(2, 1)

x12 + y12 − 15 x1 + 5 y1 = 0 ................(2)

x

O

(1) − (2),

15 x1 − 5 y1 = 25 3 x1 − y1 = 5 y1 = 3 x1 − 5 ........................(3) Substitute y1 = 3 x1 − 5 into (1), x12 + (3 x1 − 5) = 25 + 9 x12 − 30 x1 + 25 = 25 10 x1 ( x1 − 3) = 0 x1 = 0 or 3

f ( x ) = 2 x 3 + 3 x 2 − 12 x + 2

2.

f ' ( x ) = 6 x 2 + 6 x − 12 = 6( x − 1)( x + 2) ∴ When x = 1 or x = −2 , f ' ( x ) = 0

2

x12

x

x < −2 x = −2 −2 < x < 0 x = 0 0 < x < 1 x = 1 x > 1

f (x) f' (x)

22 +

0

−5

2 −





0

+

110

Chapter 16 Applications of differentiation

5π into f ( x ), 6 5π 5π 5π − 2 cos f( ) = 2 − 6 6 6 5π =2+ 3− 6 5π 5π f "( ) = 2 cos 6 6 =− 3 <0 5π 5π ∴ ( , 2 + 3 − ) is a maximum point. 6 6

A sketch of the curve is shown below:

Put x =

y (−2, 22)

y = 2x 3 + 3x 2 − 12x + 2

(c) When x = 0 , y = 0 A sketch of the curve is shown below: y (

2

5π ,2+ 6

5π ) 6

y = 2 − x − 2 cos x

x

O

3−

O

π ( ,2 − 6

(1, −5)

3−

x

π

π ) 6

Classwork 4 (P.127) (a)

y = 2 − x − 2 cos x dy = −1 + 2 sin x = 0 dx 1 sin x = 2 π 5π x= , 6 6

Classwork 5 (P.129) 2x 1 + x2 (1 + x 2 )(2) − (2 x )(2 x ) f ' ( x) = (1 + x 2 )2 2(1 − x 2 ) = (1 + x 2 )2 f ( x) =

(a)

(b) f ' ( x ) = −1 + 2 sin x Set f ' ( x ) = 0 for turning points. π 5π From (a), x = , 6 6 π Put x = into f ( x ), 6 π π π f ( ) = 2 − − 2 cos 6 6 6 π =2− 3− 6 f "( x ) = 2 cos x π When x = , 6 π π f "( ) = 2 cos 6 6 = 3>0 π π ∴ ( , 2 − 3 − ) is a minimum point. 6 6

Consider



2(1 − x 2 ) >0 (1 + x 2 )2 2(1 − x 2 ) > 0 (1 + x )(1 − x ) > 0

−1 < x < 1

(b) When x = −1 or x = 1 , f ' ( x ) = 0 x

x < −1 x = −1 −1 < x < 0 x = 0 0 < x < 1 x = 1 x > 1 −1

f (x) −

f' (x)

0

1

0 +

+

+

0



The turning points of C are ( −1, − 1) and (1, 1) . dy changes sign from negative to positive dx as x increases through −1,

Since ∴

( −1, − 1) is a minimum point.

Chapter 16 Applications of differentiation

dy Since changes sign from positive to negative dx as x increases through 1, ∴ (1, 1) is a maximum point. (c) When x = 0 , y = 0 A sketch of the curve is shown below: y (1, 1)

y= O

1 or x = 1 , f ' ( x ) = 0 2 1 When x = − , f "( x ) = 18 > 0 and 2 27 f ( x) = − , 8 1 27 ∴ ( − , − ) is a minimum point. 2 8

(b) When x = −

When x = 1 , f "( x ) = 0 , f ( x ) = 0

2x 1 + x2 x

When x < 1 (slightly), f ' ( x ) > 0 When x > 1 (slightly), f ' ( x ) > 0 dy does not change sign as dx x increases through 1.

This shows that

(−1, −1)

∴ (1, 0) is neither a maximum point nor a minimum point.

Classwork 6 (P.130) (a)

f ( x ) = −( x + 1) 4

When x = 0 , f ( x ) = −2

f ' ( x ) = −4( x + 1)3

When x = −1 , f ( x ) = 0

f "( x ) = −12( x + 1)2

(b) When x = −1 , f ' ( x ) = 0

Also, as x → −∞ , y → +∞ ;

When x = −1 , f "( x ) = 0

x → +∞ , y → +∞ .

When x < −1 (slightly), f ' ( x ) > 0 When x > −1 (slightly), f ' ( x ) < 0 dy Since changes sign from positive to negative dx as x increases through −1, ∴

111

( −1, 0) is a maximum point.

(c) A sketch of the curve is shown below: y

−1

O

(1, 0)

x

(c) A sketch of the curve is shown below: y (−1, 0)

O

y = 2(x − 1)3(x + 1)

x −2

−1

y = −(x + 1)4 1 27 (− , − ) 2 8

Classwork 7 (P.131) 1. (a)

f ( x ) = 2( x − 1)3 ( x + 1) f ' ( x ) = 2( x + 1)[3( x − 1)2 ] + 2( x − 1)3

1. (a) y 2 = (1 − x )( x + 2)2

= 6( x + 1)( x − 1)2 + 2( x − 1)3 = 4(2 x + 1)( x − 1)2

The curve is composed of the two curves:

f "( x ) = 4(2 x + 1)[2( x − 1)] + 4( x − 1) (2) 2

= 8(2 x + 1)( x − 1) + 8( x − 1)2 = 24 x ( x − 1)

Classwork 8 (P.133)

1

y = (1 − x ) 2 ( x + 2) and 1

y = −(1 − x ) 2 ( x + 2) .

112

Chapter 16 Applications of differentiation

For each value of x, the values of y of the above two curves only differ from each other by an opposite sign. Therefore, the curve of the given equation is symmetrical about the x-axis. (b)

y 2 = (1 − x )( x + 2)2 dy 2y = (1 − x )[2( x + 2)] + ( x + 2)2 ( −1) dx = 2(1 − x )( x + 2) − ( x + 2)2 dy 2y = −3 x ( x + 2) dx −3 x ( x + 2) dy = 1 dx ±2(1 − x ) 2 ( x + 2) 1 3 = ± x (1 − x ) − 2 2 1 2

(c) Consider y = (1 − x ) ( x + 2) 1 dy 3 = − x (1 − x ) − 2 dx 2 3 1 d2y 3 1 3 = − x[ − (1 − x ) − 2 ] − (1 − x ) − 2 2 2 2 2 dx 1 3 3 − 23 = x (1 − x ) − (1 − x ) − 2 4 2 3 − 23 = (1 − x ) (3 x − 2) 4 dy d2y When x = 0 , = 0, < 0 and y = 2 dx dx 2 ∴ 2 is a relative maximum of y.

By symmetry, −2 is a relative minimum of y. ∴

(0, 2) and (0, − 2) are the turning points

where 0 < r < 15 (b)

dV 1 = π(30 r − 3r 2 ) dr 3 = πr (10 − r ) d 2V = π(10 − 2 r ) dr 2 = 2 π( 5 − r ) dV = 0 , r = 10 or r = 0 (rejected) dr d 2V When r = 10 , = −10 π < 0 dr 2 ∴ The volume of the cone is maximum when r = 10 . When

2. (a) The height of trapezium ABCD = (2 3 ) 2 − x 2 = 12 − x 2

The area of trapezium ABCD 1 = (10 + 10 + 2 x ) 12 − x 2 2 = (10 + x ) 12 − x 2 ∴

(d) When x = 1 , y = 0 ; when x = −2 , y = 0

12 − x 2 > 0 and x > 0 ,

i.e. 0 < x < 2 3

When x → −∞ ,

(c) Let A be the area of the trapezium.

1 2

y = (1 − x ) ( x + 2) → −∞ , 1 2

y = −(1 − x ) ( x + 2) → +∞ A sketch of the curve is shown below : y

A = (10 + x ) 12 − x 2 1 dA 1 = 12 − x 2 + (10 + x )[ (12 − x 2 ) − 2 ( −2 x )] dx 2 = 12 − x 2 − x (10 + x )(12 − x 2 ) − 2 1

= −2( x − 1)( x + 6)(12 − x 2 ) − 2 1

maximum point (0, 2)

When

y 2 = (1 − x)(x + 2)2

−2

1. h + r = 15 1 (a) V = πr 2 h 3 1 2 = πr (15 − r ) 3

(b) As the height and x are positive,

for the curve.

O

Classwork 9 (P.139)

x 1

(0, −2) minimum point

dA = 0 , x = 1 or x = −6 (rejected) dx or x = 2 3 (rejected)

dA <0 dx dA When x < 1 (sightly), >0 dx Hence the area of the trapezium is maximum when x = 1 . When x > 1 (sightly),

Chapter 16 Applications of differentiation

∴ The total rental and travelling cost of a factory is minimum when A is located 2.5 km from O, and the minimum total

Classwork 10 (P.142) 1. Let s km be the distance between A and B after t minutes. Then

1 1 s 2 = (5 + t )2 + ( 2 t )2 − 2(5 + t )( 2 t )cos 45° 2 2 1 2 1 2 = (5 + t ) + ( 2 t ) − 2t (5 + t ) 2 2 ds 1 1 1 2s = 2(5 + t )( ) + 2( 2 t )( 2 ) − t − 2(5 + t ) dt 2 2 2 ds 1 5t = ( − 5) dt 2 s 2 5 = (t − 2 ) 4s ds When = 0, t = 2 dt ds When t < 2 (slightly), <0 dt ds When t > 2 (slightly), >0 dt ∴ When t = 2 , s attains its minimum.

cost is $4 000 .

Classwork 11 (P.150) 15t +1 4 ds 15 = −3t 2 + 6t + (a) dt 4

1. s = −t 3 + 3t 2 +

(b) Let v and a be the velocity and acceleration respectively at time t. ds 15 = −3t 2 + 6t + dt 4 dv a= = −6t + 6 dt 15 When t = 0 , v = and a = 6 4 15 The required velocity is units per second. 4 The required acceleration is 6 units per square second. v=

When t = 2 , s = 2 5 Hence they will be closest to each other at 12: 02 p.m. with distance 2 5 km . 2. (a) Let T and R be the travelling cost and rental cost respectively. R x When x = 2 , C = Tx +



(c) Since the particle is instantaneously at rest at ds point B, = 0 then. dt ds 15 From (a), = −3t 2 + 6t + =0 dt 4 12t 2 − 24t − 15 = 0

C = 1 600 + 2 500 5 000 = 800(2) + 2 5 000 C = 800 x + x

5 000 C = 800 x + (b) x dC = 800 − 5 000 x −2 dx d 2C = 10 000 x −3 dx 2 5 5 dC When = 0 , x = or − (rejected) 2 2 dx 2

5 d C , > 0 and C = 4 000 2 dx 2 5 Hence, when x = , C attains its minimum. 2

When x =

113

4t 2 − 8t − 5 = 0 (2t + 1)(2t − 5) = 0 t=−

5 1 (rejected) or t = 2 2

∴ It happens at 2.5 s .

2. Let θ, y km and x km be ∠ALP, AP and LP respectively. L θ

x km 3 km

A

y km

P

114

Chapter 16 Applications of differentiation

dy dθ = 3 sec 2 θ dt dt y dθ When = 4 π , y = 4 , x = 5 and tan θ = , 3 dt dy 5 2 = 3( ) ( 4 π) dt 3 100 π = 3 100 π km / min. ∴ The required velocity is 3

When h = 2 ,

dA 25π ⋅ 2 8 = (− ) dt 8 5π = −10 ∴ The rate of decrease of the area of water surface is 10 m 2 / hour. 2. (a) Using cosine formula, we obtain AB2 = OA2 + OB2 − 2(OA)(OB)cosθ

(2 2 )2 = (2 2 )2 + x 2 − 2(2 2 )( x ) cos θ

Classwork 12 (P.152) 1. (a) Let h m, r m and V m 3 be the depth, radius of the surface and volume of water in the tank respectively. Using the properties of similar triangles, r 5 = h 4 5 r= h 4 1 2 1 5 25 3 πh V = πr h = π( h)2 h = 3 3 4 48 dV 25 dh = π(3h 2 ) 48 dt dt 25 2 dh = πh 16 dt When h = 2 , 25 dh π( 2 ) 2 16 dt dh 8 = dt 5π 10 =

∴ The rate of increase of the depth of water 8 is m / hour. 5π (b) Let A m 2 be the area of the surface of water. A = πr 2 5 = π( h ) 2 4 25 2 πh = 16 dA 25 dh π( 2 h ) = dt 16 dt 25πh dh = 8 dt

0 = x 2 − 4 2 x cos θ 0 = x ( x − 4 2 cos θ) x = 0 (rejected) or x − 4 2 cos θ = 0 x = 4 2 cos θ

(b) Given that A is 2 revolutions per second, dθ = 4π dt From (a), x = 4 2 cos θ dx dθ = −4 2 sin θ dt dt π = −4 2 (sin )( 4 π) 4 = −16 π

∴ The rate of change of OB is −16π units per second.