Am-sln-10(e)

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Am-sln-10(e) as PDF for free.

More details

  • Words: 11,642
  • Pages: 23
146

Chapter 10 Straight Lines and Rectilinear Figures

(d) Let (x, y) be the coordinates of the point.

CHAPTER 10 Exercise 10A (p.233)

x=

1. (a) d = ( 4 − 2)2 + (7 − 1)2 = 40 = 2 10

0 + 12 ⋅ 3 1+

1 2

= 1, y =

3 + 12 ⋅ 0 1+

1 2

=2

∴ The point is (1, 2) .

(b) d = [ −5 − ( −2)] + [3 − ( −1)] = 5 2

2

(c) d = (2 p − p)2 + ( − q − q )2 =

p2 + 4q 2

(d) d = ( − a − a)2 + [ − a − ( −2 a)]2 = 5a 2.

( p + 5)2 + (8 − 3)2 = 13

−1 + 7 4 + 0 , ) = (3, 2) 2 2 3+3 2+6 N =( , ) = (3, 4) 2 2

6. M = (

7. Let (x, y) be the coordinates of the point.

2

When r = 2 ,

( p + 5) + 25 = 169 ( p + 5) = 144 p + 5 = ±12 2

−4 + 2(5) =2 1+ 2 −1 + 2(11) y= =7 1+ 2 1 When r = , 2 x=

p = 7 or −17 3. Let (2a, a) be the coordinates of P. (2 a − 3)2 + ( a − 1)2 = (2 a − 5)2 + ( a − 3)2 5a 2 − 14 a + 10 = 5a 2 − 26 a + 34 12 a = 24 a=2 ∴ The point P is ( 4, 2) .

x= y=

−4 + 12 (5) 1+

1 2 −1 + 12 (11) 1 + 12

= −1 =3

∴ The points are (2, 7) and (−1, 3).

4. Let (0, y) be the coordinates of C. AB = BC [ −3 − ( −2)]2 + (2 − 4)2 = [0 − ( −2)]2 + ( y − 4)2 12 + 2 2 = 2 2 + ( y − 4)2 ( y − 4)2 = 1 y = 4 ±1 = 3 or 5 ∴ C is (0, 3) or (0, 5).

5. (a) Let (x, y) be the coordinates of the point. −1 + 4 ⋅ 4 15 −3 + 4 ⋅ 2 5 = = 3, y = = =1 1+ 4 5 1+ 4 5 ∴ The point is (3, 1) . x=

8. Let AP : PB = r : 1 and (0, y) be the coordinates of P. −3 + 2 r =0 1+ r 3 r= 2 3 ∴ AP : PB = : 1 = 3 : 2 2 y=

2 + 3(3) 11 = 3+2 5

∴ The point P is (0,

(b) Let (x, y) be the coordinates of the point. x=

−1 − 14 ⋅ 2 1−

1 4

= −2 , y =

1 − 14 ⋅ 1 1−

1 4

=1

∴ The point is ( −2, 1) . (c) Let (x, y) be the coordinates of the point. 3− 2⋅5 1− 2⋅3 = 7, y = =5 1− 2 1− 2 ∴ The point is (7, 5) . x=

9. Let AP : PB = r : 1 −1 + 3r =2 r +1 r=3 ∴ AP : PB = 3 : 1 2 + 6(3) 3 +1 =5

k=

11 ). 5

Chapter 10 Straight Lines and Rectilinear Figures

10. Let (x, y) be the coordinates of the other end of this diameter. 3+ x =4 2 x=5 −4 + y =5 2 y = 14 ∴ The other end is (5, 14) . m +1+1 2 −1 , ) 2 2 m+2 1 =( , ) 2 2

11. (a) Mid-point of AC = (

−2 + 3 −2 + n + 3 , ) 2 2 1 n +1 =( , ) 2 2

Mid-pint of BD = (

m+2 1 (b) = 2 2 m = −1

0 −1 1 4 14. Area = 2 3 0

2 0 0 square units 3 2

1 (12 + 6 + 2) square units 2 = 10 square units

=

15. (2t + 2)2 + t 2 = t 2 + (3t − 3)2 (2t + 2)2 − (3t − 3)2 = 0 (2t + 2 + 3t − 3)(2t + 2 − 3t + 3) = 0 (5t − 1)( −t + 5) = 0 5t − 1 = 0 or −t + 5 = 0 1 t = or t = 5 5 16. (a) AB = (5 − 1)2 + (9 − 2)2 = 65 AC = (5 − 4)2 + (9 − 1)2 = 65 ∴ AB = AC (b) Q BP = CP

n +1 1 = 2 2 n=0



(1 − h)2 + (2 − k )2 = ( 4 − h)2 + (1 − k )2

1 − 2h + h 2 + 4 − 4k + k 2 = 16 − 8h + h 2 + 1 − 2 k + k 2 6h − 2 k − 12 = 0 3h − k − 6 = 0

3( 4) + 2 a 12. =2 3+2 a = −1 2( 4) + 3( −1) =b 3+2 b =1

5 5 1 −6 7 13. (a) Area = 2 −7−2 5 5

147

17. (a) BC = (5 + 1)2 + ( −4 + 1)2 = 6 2 + 32 = 3 5 (b) Area of ∆ABC

square units

1 = (35 + 12 − 35 + 30 + 49 + 10) square 2 units = 50.5 square units 3 0 1 4 3 (b) Area = square units 2 −2 −1 3 0 1 = (9 − 4 + 6 + 3) square units 2 = 7 square units

3 2 1 −1 −1 square units = 2 5−4 3 2 1 ( −3 + 4 + 10 + 2 + 5 + 12) square units 2 = 15 square units

=

(c) Length =

2 ⋅ 15 =2 5 3 5

2 −1 1 a +1 a − 3 18. Area = square units a 2 a+2 2 −1 1 = a − square units 2

148

Chapter 10 Straight Lines and Rectilinear Figures

Exercise 10B (p.240)

1 , area = 0 2 ∴ They are collinear. When a =

1. Let m be the slope and α be the inclination. Then 6−0 3 = 4−0 2 α = 56.3° (corr. to 1 d.p.) 3 ∴ Slope = 2

(a) m = tan α = 19. Let (a, 0) be the coordinates of C. a 0 1 5 −1 ∴ Area of ∆ABC = 2 −2 2 a 0



square units

Inclination = 56.3° 1 − ( −4) =1 6 −1 α = 45° (corr. to 1 d.p.) ∴ Slope = 1 Inclination = 45°

(b) m = tan α =

8 − 3a = 20 8 − 3a = 20

8 − 3a = −20 28 a = −4 or a= 3 28 ∴ C is ( −4, 0) or ( , 0) . 3 or

2r 2 , 2) , Q(2, ) 1+ r 1+ r (b) Area of ∆OPQ

20. (a) P(

2 1+2 r 2r 1 1+ r 2 = 2 0 0 2 1+2 r

∴ The y-intercept is −3 .

square units

=

1 4r square units 4− 2 (1 + r )2

=

1 4(r 2 + r + 1) square units 2 (1 + r )2

As r > 0 ,

2. Let C(0, b) and D(a, 0) be the intersections of AB with the coordinate axes. Then Slope of AC = slope of AB −4 − b −4 − 3 = −1 − 0 −1 − 6 4+b =1 b = −3

r2 + r + 1 > 0. (1 + r )2

Slope of AD = slope of AB −4 − 0 −4 − 3 = −1 − a −1 − 6 4 = 1+ a a=3

∴ The x-intercept is 3 .

2 −1 1 = 1 − ( −3) 4 4−2 1 Slope of BC = = 9 −1 4 ∴ AB // BC They are parallel and have a common point B. Therefore A, B and C are collinear.

3. Slope of AB =

∴ Area of ∆OPQ =

2(r 2 + r + 1) square units (1 + r )2

r2 + r + 1 (1 + r )2 ∴ y(1 + 2 r + r 2 ) = r 2 + r + 1 (1 − y)r 2 + (1 − 2 y)r + (1 − y) = 0

(c) Let y =

As r is real, ∴ (1 − 2 y)2 − 4(1 − y)2 ≥ 0 3 y≥ 4 3 3 ∴ Area of ∆OPQ = 2 y ≥ 2( ) = 4 2 ∴ Minimum area of ∆OPQ 3 = square units 2

4.

2 − ( −4) −7 − 2 = −7 − 1 x − ( −7) 6 −9 = −8 x + 7 x=5

5. Let the acute angle be α. 6 −1 5 = 1 + (6)(1) 7 α = 35.5° (corr. to 1 d.p.)

(a) tan α =

Chapter 10 Straight Lines and Rectilinear Figures

0.6 − 0.25 7 = 1 + (0.6)(0.25) 23 α = 16.9° (corr. to 1 d.p.)

(b) tan α =

4 − ( − 23 )

14 (c) tan α = = 5 1 + 4( − 23 ) α = 70.3° (corr. to 1 d.p.) −1 − ( − 43 )

1 (d) tan α = = 4 7 1 + ( −1)( − 3 ) (corr. to 1 d.p.) α = 8.1° (e) m1 = m2 = − ∴

α = 0°

1 2

6. Slope of AB =

5 −1 1 = 6+2 2

Slope of CD =

0+2 1 = 4−0 2



AB ⊥ AC

(1 + 5)2 + ( 4 − 6)2 square units 1 ( 10 )(2 10 ) square units 2 = 10 square units

=

10. Let A = (−2, −1), B = (0, 2), C = (3, 0), D = (1, −3)

5 +1 3 =− −2 − 2 2

1+1 2 = 5−2 3 ∴ (Slope of QR) ⋅ (Slope of PQ) = −1 PQ ⊥ QR y

8.

7−4 =3 2 −1 7−6 1 Slope of BC = = 2+5 7 4−6 1 Slope of CA = =− 1+ 5 3 ∴ (Slope of AB)(Slope of CA) = −1

9. Slope of AB =

1 ( AB)( AC ) 2 1 = (7 − 4)2 + (2 − 1)2 2

Slope of QR =



A = 180° − B − C = 180° − 53.1° − 45° = 81.9° (corr. to 1 d.p.)

Area =

AB // CD

7. Slope of PQ =

−1 − 0 =1 1 C = 45°

tan C =



1 (f) m1m2 = ( −2)( ) = −1 2 ∴ α = 90°

A

AB = BC = CD = DA = 2 2 + 32 = 13 3 Slope of AB = Slope of CD = 2 2 Slope of BC = Slope of DA = − 3 (Slope of AB)(Slope of BC) = −1 (Slope of CD)(Slope of DA) = −1 ∴ A, B, C, D form a square area Area = ( 13 )2 square units = 13 square units

B −4

−1 0

149

C 3

x

4−0 4 = −1 + 4 3 Slope of BC = 0 4−0 Slope of AC = = −1 −1 − 3 Slope of AB =

4 −0 4 tan B = 3 = 1 3

B = 53.1° (corr. to 1 d.p.)

11. Let (a, 0) be the coordinates of C. −3 + 2 1 Slope of AB = = −1 − 2 3 −3 − 0 3 Slope of BC = = −1 − a 1 + a Q AB ⊥ BC ∴ (Slope of AB)(Slope of BC) = −1 1 3 ( )( ) = −1 3 1+ a 1 = −1 − a a = −2 ∴ The point C is ( −2, 0) .

150

Chapter 10 Straight Lines and Rectilinear Figures

(b) BD : DA = OB : OA = 2 : 4 = 1 : 2 Let (x, y) be the coordinates of D.

0−2 k−2 = h −1 0 −1 (h − 1)( k − 2) = 2 2 h −1 = k−2 k h= k−2

12. Slope =

13. Let A be (1, 0) , B be (t 2 , 2t ) , C be ( 2t − 0 2t = Slope of AB = 2 t − 1 t2 − 1

Slope of CA =



∴ The coordinates of D is (2, 1 2 , − ). 2 t t

(c) (i) Slope of OD = Slope of OB =

2 t

2t = 1 − 12 t 2 − 1 t

∴ AB // CA They are parallel and have a common point A. Therefore A, B, C are collinear. 14. (a) BC = 2 a ∴ The coordinates of C = (2 a cos θ + a, 2 a sin θ) DA = BC = 2 a ∴ The coordinates of D = (2 a cos θ, 2 a sin θ)

(b) Coordinates of F = (2 a, 0) Coordinates of E = ( − a, 0) 2 a sin θ Slope of DF = 2 a cos θ − 2 a sin θ = cos θ − 1 2 a sin θ Slope of CE = 2 a cos θ + 2 a sin θ = cos θ + 1 (Slope of DF)(Slope of CE) sin θ sin θ =( )( ) cos θ − 1 cos θ + 1 sin 2 θ = cos 2 θ − 1 sin 2 θ = − sin 2 θ = −1 ∴ DF ⊥ CE 15. (a) OA = 4 OB = 12 + ( 3 )2 = 2

1(2) + 4(1) 6 = =2 1+ 2 3 3 (2) + 0(1) 2 3 y= = 1+ 2 3 x=

(ii)

2 3 3

−0

2−0

=

2 3 ). 3

3 3

3 = 3 1

3 ) = 30° 3 −1 ∠BOA = tan ( 3 ) = 60° ∴ ∠BOD = 60° − 30° = 30° = ∠DOA ∴ OD is the angle bisector of ∠AOB . ∠DOA = tan −1 (

Exercise 10C (p.246) 1. (a) y − 2 = 3( x − 1) y − 2 = 3x − 3 3x − y − 1 = 0 1 (b) y − 3 = − ( x − 2) 2 2y − 6 = −x + 2 x + 2y − 8 = 0 (c) y − 0 = −4( x + 1) y = −4 x − 4 4x + y + 4 = 0 (d) y − 1 = 0( x − 2) y −1 = 0 4 −1 ( x − 3) 2−3 y − 1 = −3 x + 9 3 x + y − 10 = 0

2. (a) y − 1 =

−2 − 0 ( x − 5) −1 − 5 3y = x − 5 x − 3y − 5 = 0

(b) y − 0 =

−4 − 3 −7 = and the 1−1 0 x-coordinates of the points are 1.

(c) Q The slope = ∴

x −1 = 0

151

Chapter 10 Straight Lines and Rectilinear Figures

y-intercept is −2 .

4a − 2a ( x − a) 3a − a y − 2a = x − a x−y+a=0

(d) y − 2 a =

There is no x-intercept. y

−2

3. (a) x + 3 y − 9 = 0 3y = − x + 9 1 y = − x+3 3 1 ∴ The slope is − . 3

x

−1 O −1 −2

1

2

y+2=0

(d) 2 x + 5 = 0 5 2 ∴ The slope is undefined. There is no y-intercept. x=−

y-intercept is 3 . Substitute y = 0 into the equation. ∴

x−9=0 x=9 ∴ x-intercept is 9 .

5 x-intercept is − . 2 y

y 2x + 5 = 0

3

5 2

1

−2

−1 O −1



x + 3y − 9 = 0

2

−4

−3

1

x

O

1

2

3

4

5

6

7

8

9

x + 3 y − 11 = 0 4. (a)  2  x − y −1 = 0

(b) 2 x − 5 y + 10 = 0 5 y = 2 x + 10 2 y= x+2 5 2 ∴ The slope is . 5

7 y − 21 = 0 y=3 x=2

The intersection is (2, 3) .

y-intercept is 2 .

4 x − 5 y − 12 = 0 (b)  x − 2 y − 6 = 0

Substitute y = 0 into the equation. ∴

2 x + 10 = 0 x = −5 ∴ x-intercept is −5 .

3 y + 12 = 0 y = −4 x = −2

The intersection is ( −2, − 4) .

y

2x − 5y + 10 = 0

2

5. Perpendicular bisector of BC: 1

−5

−4

−3

−2

(c) y + 2 = 0 y = −2 ∴ The slope is 0 .

−1 O

x

[

y− x−

1+ ( −3) 2 ][ 1 − ( −3) ] = 7 + ( −1) 7 − ( −1) 2

−1

y +1 = −2 x−3 y + 1 = −2 x + 6 2x + y − 5 = 0

x

152

Chapter 10 Straight Lines and Rectilinear Figures

Perpendicular bisector of AC: y − 62+1 6 − 1 ( )( ) = −1 x − 7 +2 2 2 − 7 7 9 y− = x− 2 2 x − y −1 = 0

2 x + y − 5 = 0 x − y − 1 = 0  3x − 6 = 0 x=2 y =1 ∴ The circumcentre is (2, 1) . 6. (a) x − 3 y + 4 = 0 3y = x + 4 1 4 y= x+ 3 3 1 ∴ Slope is . 3 2x − y − 5 = 0 y = 2x − 5 ∴ Slope is 2. Let α be the acute angle. tan α =

2 − 13 1 + 2( 13 )

=1

α = 45° (b) 2 x + 5 y + 4 = 0 5 y = −2 x − 4 2 4 y=− x− 5 5 2 ∴ Slope is − . 5 x − 3y = 0 3y = x 1 y= x 3 1 ∴ Slope is . 3 Let α be the acute angle. tan α =

− 25 − 13

=

11 13

1 + (− α = 40.2° (corr. to 3 sig. fig.) 2 )( 1 ) 5 3

7. Let A and B be (a, 0) and (0, b) respectively. If OA = OB , then a = b or a = − b . i.e. m = 1

or

m = −1

y −1 = x − 4

or

y − 1 = −( x − 4 )

x − y − 3 = 0 or

x+y−5=0

8. (a) 3 x − 4 y − 1 = 0 4 y = 3x − 1 3 1 y= x− 4 4 3 Slope is . 4 ∴ The required equation: 3 y − 2 = ( x − 5) 4 3 x − 15 = 4 y − 8 3x − 4 y − 7 = 0 (b) Slope of required equation =

−1 3 4

=−

4 3

∴ The required equation: 4 ( x − 5) 3 −3 y + 6 = 4 x − 20 4 x + 3 y − 26 = 0 y−2= −

9. 4 x + 6 y − 3 = 0 6 y = −4 x + 3 2 1 y=− x+ 3 2 2 Slope is − . 3 3 x + ky − 7 = 0 ky = −3 x + 7 3 7 y=− x+ k k 3 Slope is − . k Q Two lines are perpendicular to each other. ∴

2 3 ( − )( − ) = −1 3 k 2 = −1 k k = −2

5x − y − 7 = 0 10.  18 x − 7 y + 2 = 0 17 x − 51 = 0 x=3 Substitute x = 3 into L1 , 5(3) − y − 7 = 0 y=8 The intersection is (3, 8).

Chapter 10 Straight Lines and Rectilinear Figures

By using the two-point form, the equation of the line is 8−2 y−2= ( x − 1) 3 −1 2y − 4 = 6x − 6 6x − 2y − 2 = 0 3x − y − 1 = 0 11. Slope of CD =

153

Substitute y = −2 into AD, 2x − 2 − 6 = 0 x=4 ∴ The coordinates of D are ( 4, − 2) . 13. x-intercept of 2 x − y + 4 = 0 is −2. x-intercept of 4 x + y − 4 = 0 is 1. 2 x − y + 4 = 0 4 x + y − 4 = 0 

2 5 −1

5 Slope of AD = 2 = − 2 5

By using point-slope form, the equation of AD is 5 y − 5 = − ( x − 2) 2 −2 y + 10 = 5 x − 10 5 x + 2 y − 20 = 0 2 5 By using point-slope form, the equation of AB is 2 y − 5 = ( x − 2) 5 2 x − 4 = 5 y − 25 2 x − 5 y + 21 = 0

Slope of AB = slope of CD =

6x = 0 x=0 y=4

The intersection is (0, 4). 0 1 −2 Area = 2 1 0

4 0 square units 0 4

1 ( 4 + 8) square units 2 = 6 square units =

14. Let ( s, 1 − s) be the coordinates of the required point. ( s − 2)2 + (1 − s − 2)2 = ( s − 3)2 + (1 − s + 1)2

12. (a) A is the intersection of AB and CA. 3 x − y − 4 = 0 3 x + 4 y − 14 = 0  5 y − 10 = 0 y=2 Substitute y = 2 into AB, 3x − 2 − 4 = 0 x=2 ∴ The coordinates of A are (2, 2) . (b) Slope of BC = Slope of AD =

1 2 −1 1 2

s 2 − 4s + 4 + s 2 + 2 s + 1 = s 2 − 6s + 9 + s 2 − 4s + 4 8s = 8 s =1 ∴ The required point is (1, 0) .

15. Slope of 4 x − y − 5 = 0 is 4. Slope of ax − 15 y + 7 = 0 is tan 45° =

= −2

By using point-slope form, the equation of AD is y − 2 = − 2( x − 2 ) y − 2 = −2 x + 4 2x + y − 6 = 0 D is the intersection of AD and BC. 2 x + y − 6 = 0 x − 2 y − 8 = 0  5 y + 10 = 0 y = −2

1=

a 15

a . 15

−4

a) 1 + ( 4)( 15

a − 60 15 + 4 a

a − 60 a − 60 = 1 or = −1 15 + 4 a 15 + 4 a or 5a = 45 3a = −75 a = −25 or a = 9 16. (a) By using point-slope form, the equation of L is y−4 =m x−2 y − 4 = m( x − 2 )

154

Chapter 10 Straight Lines and Rectilinear Figures

4 +2 m y-intercept of L = −2 m + 4

(b) x-intercept of L = −

Area =

1 −4 ( + 2)( −2 m + 4) square units 2 m

1 −4 ( + 2)( −2 m + 4) 2 m 16 4 = 16 − − 4m m

1 3 The coordinates of M are ( , ) . 2 2 Slope of AB = −1 −1 ∴ Slope of the required line = =1 −1 ∴ The equation of the line is

y − 23

2=

16 − =4

16 − 4m m

or 16 − = −4

=1 x − 12 x − y +1 = 0 16 − 4m m

16 m − 16 − 4 m 2 or 16 m − 16 − 4 m 2 = 4m = −4 m

Exercise 10D (p.258) y

1. (a)

4 m 2 − 12 m + 16 or 4 m 2 − 20 m + 16 = 0 =0 ( m − 1)( m − 4) = 0 no solution ∴ m = 1 or 4

or m = 1 or m = 4 L1

2

135°

x

O

17. Slope of L = 2 In the figure, the equation of L 1 is

Let m be the slope of L1 or L 2 . Then

1 m−2 tan θ = = 3 1 + 2m m−2 1 m−2 1 =− = or 1 + 2m 3 1 + 2m 3 m =1 m = 7 or By using point-slope form,

x cos 135° + y sin 135° − 2 = 0 x y − + −2=0 2 2 x−y+2 2 =0 y

(b)

L1 : 7 x − y + 9 = 0 , L 2 : x − y + 3 = 0 18. 3 x 2 + y 2 = 6 ......................(1) x + y = 2 ...........................(2) From (2), y = 2 − x ...........(3) Substitute (3) into (1), 3 x 2 + (2 − x ) 2 = 6 2x2 − 2x − 1 = 0 Let A, B be ( x 1, y 1 ) and ( x 2 , y 2 ) respectively.



Q ∴ ∴

2 =1 2 1 = 2 =2 =2 y + y2 + 1 =2 2 1 3 =2− = 2 2

x1 + x2 = x1 + x2 2 x1 + y1 x2 + y2 x1 + x2 2 y1 + y2 2

4

L2

30°

O

x

In the figure, the equation of L 2 is

x cos 30° + y sin 30° − 4 = 0 1 3 x+ y−4=0 2 2 3x + y − 8 = 0

Chapter 10 Straight Lines and Rectilinear Figures

2. (a) The normal form is 5 x + 12 y

d1 =

=0

52 + 12 2 5 x + 12 y =0 13 5 12 x+ y=0 13 13

d2 =

7. r =

p=3

(d) d =

2 − ( −3) 2

2

=

5 = 5 5

4 + 21 18 + 24 2

2

=

25 5 = 30 6

3( −1) − 4(5) − 12 32 + 4 2

=7

= 5 12 + 2 2 k −3 = 5

k − 3 = 5 or k − 3 = −5 k = 8 or k = −2 9. Let P(x, y) be a point on the perpendicular bisector, then the distance from P to the two lines are equal.

p = 10

(a)

3(1) + 4( 4) − 9 32 + 4 2

(b)

12 2 + 52 5 − ( −2) − 3 2

2( −4) + 3 0 +2

2

=4

=

2x − y − 5 x + 2y − 2 = 5 5 2 x − y − 5 = ±( x + 2 y − 2) 2 x − y − 5 = x + 2 y − 2 or 2 x − y − 5 = −( x + 2 y − 2 )

=2 2

1 +1 2

x+ y−3 x − y +1 = 2 2 x + y − 3 = ±( x − y + 1) x + y − 3 = − ( x − y + 1) or x + y − 3 = x − y + 1 or x −1 = 0 y−2=0

=2

12( −2) − 5(7) + 7

2

3 5

1 − 2( 2 ) + k

3 1 , sin θ = 2 2 θ = 120°

cos θ = 1 , sin θ = 0 ∴ θ = 0°

(c) d =

=

2

8. By considering the distance from (1, 2) to the line,

(b) The normal form is x − 10 =0 1 x − 10 = 0

(b) d =

2

d=

cos θ = −

4. (a) d =

3 5

2 +1 (b) First rewrite equations as 18 x − 24 y − 21 = 0 , 18 x − 24 y + 4 = 0 .

x 3 − + y−3= 0 2 2



=

=0

− 12 + ( 3 )2



2

4(0) + 3(1) − 6

6. (a) d =

3. (a) The normal form is



3 +4 2

4 +3 ∴ The point (0, 1) is equidistant from the lines.

(b) The normal form is 2x − y − 5 =0 2 2 + 12 2 1 x− y− 5 =0 5 5

x − 3y + 6

3(0) − 4(1) + 1

155

5 2

5. Let d 1 be the distance from (0, 1) to the line 3 x − 4 y + 1 = 0 , d 2 be the distance from (0, 1) to the line 4 x + 3 y − 6 = 0 .

x − 3 y − 3 = 0 or 3 x + y − 7 = 0 (c)

3x + 2 y + 7 2 x − 3y − 1 = 13 13 3 x + 2 y + 7 = ±(2 x − 3 y − 1) or 3 x + 2 y + 7 3x + 2 y + 7 = −(2 x − 3 y − 1) = 2 x − 3y − 1 x + 5 y + 8 = 0 or 5 x − y + 6 = 0

156

Chapter 10 Straight Lines and Rectilinear Figures

(d)

7x − y + 4 2x + 2y − 5 = 5 2 2 2 14 x − 2 y + 8 = ±(10 x + 10 y − 25)

14 x − 2 y + 8 = 10 x + 10 y − 25 or 14 x − 2 y + 8 = −(10 x + 10 y − 25) 4 x − 12 y + 33 = 0 or 24 x + 8 y − 17 = 0

10. (a)

k−6

=4

5 + 12 k − 6 = 52 2

2

k − 6 = 52 or k = 58 or

k − 6 = −52 k = −46

(b) Let the equation of L be 5 x + 12 y + c = 0 . c−6 =5 13 c − 6 = 65

c − 6 = 65 or c − 6 = −65 c = −59 c = 71 or ∴ The equation of L is 5 x + 12 y + 71 = 0 or 5 x + 12 y − 59 = 0 .

2 x − 3y + 1 = 0 13.  x + 2 y − 3 = 0

7y − 7 = 0 y =1 x =1 Intersection of the given lines is (1, 1). Slope = 3, y − 1 = 3 ( x − 1) 3x − y − 2 = 0

Passing through (2, −1), −1 − 1 y −1 = ( )( x − 1) 2 −1 y − 1 = −2 x + 2 2x + y − 3 = 0 The slopes of these lines are 3 and −2.

3 − ( −2) =1 1 + 3( −2) θ = 45°

tan θ =

4 and θ is acute. 3 4 3 sin θ = , cos θ = 5 5

14. tan θ = ∴

y θ

11. (3 + k ) x + (2 k − 1) y = 5k + 1 (3 x − y − 1) + k ( x + 2 y − 5) = 0

3 x − y − 1 = 0 x + 2 y − 5 = 0  7x − 7 = 0 x =1 y=2

θ

θ

O

12. Let (x, y) be the coordinates of the point. 3x + y − 2 = 10 10 3 x + y − 2 = ±10

3 x + y − 2 = 10

or

3 x + y − 2 = −10

3 x + y − 12 = 0

or

3x + y + 8 = 0

3 x + y − 12 = 0 or 3 x + y + 8 = 0 2 x − y − 3 = 0 2 x − y − 3 = 0   or 5 x + 5 = 0 5 x − 15 = 0 or x=3 x = −1 y=3 or y = −5 ∴ The point is (3, 3) or (−1, −5).

1

A C

∴ The point P is (1, 2) .

B

2 π −θ 2

x

The equation of AB is π π x cos θ( − θ) + y sin( − θ) − 2 = 0 2 2 x sin θ + y cos θ − 2 = 0 4 3 x+ y−2=0 5 5 4 x + 3 y − 10 = 0 The equation of BC is x cos( π − θ) + y sin( π − θ) − 1 = 0 − x cos θ + y sin θ − 1 = 0 3 4 − x + y −1 = 0 5 5 ∴ 3x − 4 y + 5 = 0

4 x + 3 y − 10 = 0 .................(1) 3 x − 4 y + 5 = 0 ..................(2)  25 y − 50 = 0 y=2 Substitute y = 2 into (1), x = 1 . ∴ The coordinates of B are (1, 2) .

Chapter 10 Straight Lines and Rectilinear Figures

2x − y − 5 = 0 15.   x − 3 y − 10 = 0 5 y + 15 = 0 y = −3 x =1

3 , the required equation is 2 6 x + 8y − 3 = 0 .

When c =

3 When c = − , the required equation is 2 6 x + 8y + 3 = 0 .

Intersection of L 1 and L 2 is (1, −3). (a) Slope = 3, y + 3 = 3 (x − 1) y + 3 = 3x − 3 3x − y − 6 = 0

17. (a) An equation of L is y − 4 = k ( x − 1) y = k ( x − 1) + 4 , where k is real. (b) (i) Substitute (3, 7) into L,

(b) Slope of L 1 = 2 Slope of required equation = −

1 2

7 = k (3 − 1) + 4 3 k= 2 ∴ The equation is

1 y + 3 = − ( x − 1) 2 x − 1 = −2 y − 6 x + 2y + 5 = 0

3 ( x − 1) + 4 2 2 y = 3x − 3 + 8 y=

−3 + 3 (c) y + 3 = ( x − 1) −1 − 1 y+3= 0

3x − 2 y + 5 = 0

x−2=0 (d)  2  x+y−2=0 x = 2 , y = −2 −2 + 3 y+3= ( x − 1) 2 −1 x−y−4=0

(ii) The slope of line 3 x − 5 y + 8 = 0 is 3 k ( ) = −1 5 5 k=− 3 The equation is



16. (a) An equation of L is 3 x + 4 y − c = 0 , where c is real. (b) (i) Substitute (−2, 1) into L, 3( −2) + 4(1) − c = 0 c = −2 ∴ The required equation is 3x + 4 y + 2 = 0 .

k−2 π = 4 1 + k ( 12 ) 1 k 1 + = ±( k − ) 2 2 1 k = 3 or − 3 When k = 3 , the equation is 1

3

(iii) The distance of L from origin is 3 = 10 32 + 4 2 3 c=± 2

1 . 2

tan

4

∴ The sum of intercepts is c + c = 21 3 4 4 c=9 The required equation is 3 x + 4 y − 9 = 0 .

c

5 ( x − 1) + 4 3 3 y = − 5 x + 5 + 12 5 x + 3 y − 17 = 0 y=−

(iii) Slope of x − 2 y + 1 = 0 is

(ii) Express L in intercept-form: 3 x + 4 y = c x y + c =1 c



157

y = 3( x − 1) + 4 . ∴

3x − y + 1 = 0

1 When k = − , the equation is 3 1 y = − ( x − 1) + 4 . 3 ∴ x + 3 y − 13 = 0

3 . 5

158

Chapter 10 Straight Lines and Rectilinear Figures

18. (a) An equation of L is y − 3 = m( x + 5) , where m is real. (b) Rewrite L as mx − y + (5m + 3) = 0 mx y + =1 −5m + 3 5m + 3 5m + 3 x-intercept = − m y-intercept = 5m + 3 Area =

1 5m + 3 (− )(5m + 3) = 2 2 m

25m 2 + 30 m + 9 = ±4 m 25m 2 + 34 m + 9 = 0 or 25m 2 + 26 m + 9 ( m + 1)(25m + 9) = 0 or no solution 9 m = −1 or m = − 25 ∴ The equation of L 1 :

1 2 ∴ Slope of L 3 = 2

(b) Slope of PQ = −

Let the equation of L 3 be ( x − 2 y + 3) + k (5 x − 7 y + 6) = 0 (5k + 1) x − (7k + 2) y + (3 + 6k ) = 0 5k + 1 =2 Slope = 7k + 2 5k + 1 = 14 k + 4 1 k=− 3 ∴ The equation of L 3 is 2 x − y − 3 = 0 . (c) Substitute the coordinates of T into L 3 , 2(

4r − 2 3 )−( )−3= 0 1+ r 1+ r r=2

∴ The ration = 2 : 1

x + y + 2 = 0 or 9 x + 25 y − 30 = 0

Revision Exercise 10 (P.262) 2x − y + 8 = 0 19. (a) Solving  ,  x − 4 y + 11 = 0 7 y − 14 = 0 y=2 x = −3 ∴ The point A is ( −3, 2) . (b) 2 x − y + 8 + k ( x − 4 y + 11) = 0 (2 + k ) x − (1 + 4 k ) y + (8 + 11k ) = 0 k+2 Slope of L = 4k + 1

1. Let (x, y) be the coordinates of P. −2 + 4r 2 + 6r x= , y= 1+ r 1+ r (Slope of OP)(Slope of AB) = −1

2 + 6r 6−2 ⋅ = −1 −2 + 4r 4 − ( −2) 4(6r + 2) = −6( 4r − 2) 1 r= 12 −1 + 2 −2 + 4 1 , ) = ( , 1) 2 2 2 Substitute into the line 1 a( ) + 3(1) − 5 = 0 2 a=4

2. Mid-point = (

(c) Slope of L 0 = 2

m−2 =1 1 + 2m 1 m = −3 or 3 1 ( x + 3) 3 y − 2 = −3 x − 9 or 3 y − 6 = x + 3 3x + y + 7 = 0 or x − 3 y + 9 = 0 y − 2 = −3( x + 3) or y − 2 =

3. Slope of the lines are

k=4 Distance =

20. (a) Let (x, y) be the coordinates of T.

8 − ( −2) 32 + 4 2

PT : TQ = r : 1 x=

4r − 2 3 , y= 1+ r 1+ r

∴ The point T is (

4r − 2 3 , ). 1+ r 1+ r

4. Equation of PM is 3 y + 2 = ( x − 1) 2 2 y + 4 = 3x − 3 3x − 2 y − 7 = 0

−3 −3 and . 4 k

=2

Chapter 10 Straight Lines and Rectilinear Figures

Equation of PN is

7. Equation of AB is 3 y + 2 = ( x + 1) 4 4 y + 8 = 3x + 3 3x − 4 y − 5 = 0

y − 1 = −2( x + 4) 2x + y + 7 = 0 3 x − 2 y − 7 = 0 2 x + y + 7 = 0 

3 x − 4 y − 5 = 0 x − 2 y − 1 = 0 

7x + 7 = 0 x = −1 y = −5

∴ The point P is ( −1, − 5) . 5. Let the ratio be 1 : r , the intersection of x − y + 1 = 0 and AB be P(a, b). 3r − 1 r+3 ∴ a= , b= 1+ r 1+ r Substitute (a, b) into x − y + 1 = 0 , 3r − 1 r + 3 ∴ − +1 = 0 1+ r 1+ r r =1 ∴ The required ratio is 1 : 1 . y

6.

L2: x − y + c = 0

A O

2y − 2 = 0 y =1 x=3 B = (3, 1)

AB = (3 + 1)2 + (1 + 2)2 = 5 8. Let (x, y) be the coordinates of P. ( x + 1)2 + ( y + 2) 2 = ( x − 1)2 + ( y − 4)2 4 x + 12 y − 12 = 0

4 x + 12 y − 12 = 0 4 x + 3 y − 12 = 0  9y = 0 y=0 x=3 ∴ The point P is (3, 0) . 9 − 10. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons.

B

C

159

L3: y = 1 x

L1: x + y = 2

Solve for the coordinates of A, x + y = 2  y =1  ∴ The coordinates of A are (1, 1). Solve for the coordinates of B,  x+y=2 x − y + c = 0  c c ∴ The coordinates of B are (1 − , 1 + ) . 2 2 Solve for the coordinates of C, y =1  x − y + c = 0  ∴ The coordinates of C are (1 − c, 1). 1 c Area of ∆ABC = (1 − 1 + c)( ) 2 2 c2 = 4 =4 ∴ c 2 = 16 c = ±4

11. (a) Slope of the perpendicular =

−8 + 3 = −5 3−2

1 5 Equation of BC: 1 y + 8 = ( x − 3) 5 x − 3 = 5 y + 40 x − 5 y − 43 = 0 Slope of BC =

(b) Substitute B(−2, −a) into equation of BC, a = 9 , ∴ B is (−2, −9).

m AB =

−3 − ( −9) 3 = 2 − ( −2) 2

Equation of AC: 2 y + 3 = − ( x − 2) 3 2 x + 3y + 5 = 0  x − 5 y − 43 = 0 2 x + 3 y + 5 = 0  13 y = −91 y = −7 x=8 ∴ The point C is (8, − 7) .

160

Chapter 10 Straight Lines and Rectilinear Figures

3x + y − 2 = 0 12. (a)  5 x − 3 y − 8 = 0 14 x − 14 = 0 x =1 y = −1 ∴ The point P is (1, − 1) . Let R be (x, y), then x +1 y −1 =4, = −7 2 2 x=7, y = −13 ∴ R is (7, − 13) . (b) Let QR be 5 x − 3 y + k1 = 0 , RS be 3 x + y + k2 = 0 . Substitute R(7, −13) into QR, k1 = −74 . ∴ QR is 5 x − 3 y − 74 = 0 . Substitute R(7, −13) into RS, k2 = −8 . ∴ RS is 3 x + y − 8 = 0 . 13 − 16. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons. 17. Substitute (−1, 2) into the given equation, ∴

(2 − a)( −1) + a(2) + a 2 − 2 a = 0



( a − 1)( a + 2) = 0

a = 1 or −2 Substitute a = 1 into the equation, x + y +1− 2 = 0 x + y −1 = 0

Substitute a = −2 into the equation, 4x − 2y + 4 + 4 = 0 2x − y + 4 = 0 18 − 20. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons. 21. (a) Slope of L 1 = 1 , slope of L 2 = −1 y − 3 = −1( x + 2) y − 3 = −x − 2 ∴ The equation of L 2 is x + y − 1 = 0 .

x−y=0 (b)  x + y − 1 = 0 2y − 1 = 0 1 y= 2 1 x= 2 1 1 ∴ The point of intersection is ( , ) . 2 2

(c) Let (x, y) be the coordinates of the required point. Using the mid-point formula,

x−2 1 = 2 2 x=3 y+3 1 = 2 2 y = −2 ∴ The point is (3, − 2) . 22. (a) An equation of the family is 3 x − 4 y − c = 0 , where c is real. (b) Substitute (2, 3) into 3 x − 4 y − c = 0 , ∴

3(2) − 4(3) − c = 0 c = −6 ∴ The required equation is 3 x − 4 y + 6 = 0 .

(c) The distance = 6 − ( −15) 32 + 4 2 21 = 5 21 = 5

8+7

23. (a) d =

32 + 4 2

=3

(b) (i) Let θ be the acute angle, 3 1 ∴ sin θ = = 3 2 2 θ = 45° L1 P

L2 3 2

Q

θ

3

3 (ii) Slope of L 2 is − . Let the slope of L 4 be m. ∴

tan 45° =

m + 43

1 − 34m 3 3m m + = ±(1 − ) 4 4

m=

1 or m = −7 7

Chapter 10 Straight Lines and Rectilinear Figures

1 , the equation of L is 7 1 y − 3 = ( x − 2) 7 x − 7 y + 19 = 0

(c) When m =

When m = −7 , the equation of L is y − 3 = − 7( x − 2) 7 x + y − 17 = 0 24. No solution is provided for the H.K.C.E.E. question because of the copyright reasons.

Enrichment 10 (p.266) 1. (a) Equation of AB is −6 − 2 y−2= ( x + 4) 4+4 x+y+2=0 Substitute P(a, b) into the equation of AB, a+b+ 2=0 b = −a − 2

(b)

4 1 a 2 5 4

−6 −a−2 5 −6

= 12

4( − a − 2) + 5a − 30 + 6 a + 5( a + 2) − 20 = 24 12 a − 48 = 24 12 a − 48 = 24 or 12 a − 48 = −24 a = 6 or a = 2 2. y − 3 = m( x + 2) y = m( x + 2 ) + 3 Substitute into the curve,

1 ( x + 1)2 2 2 mx + 4 m + 6 = x 2 + 2 x + 1 m( x + 2 ) + 3 =

x 2 + 2(1 − m) x − 4 m − 5 = 0 Let ( x1, y1 ) be the coordinates of P, ( x2 , y2 ) be the coordinates of Q. x1 + x2 = 2( m − 1) Since C is the mid-point of PQ, x1 + x2 = −2 2 2( m − 1) = −4 2 m = −2 m = −1 The required equation is y − 3 = −( x + 2 ) x + y −1 = 0

161

3. (a) Let (x, y) be the coordinates of P. 5k − 2 x= 1+ k 5k + 3 y= 1+ k 5k − 2 5k + 3 , ) ∴ The point P = ( 1+ k 1+ k (b) Equation of AB is 5−3 y−3= ( x + 2) 5+2 2 x − 7 y + 25 = 0 2 x − 7 y + 25 = 0 x + y − 5 = 0 

9 y − 35 = 0 35 y= 9 10 x= 9 10 35 , ) 9 9 5k − 2 10 = By (a), 1+ k 9 4 k= 5 ∴ AH : HB = 4 : 5 The point H = (

2x − y = 0 4. (a)  3 x + y − 10 = 0

5 x − 10 = 0 x=2 y=4 The point A is (2, 4). Q H is (2, −1). ∴ Equation of AD is x − 2 = 0 . (b) BE passes through H and perpendicular to AC. The equation of BE is 1 y + 1 = ( x − 2) 3 3y + 3 = x − 2 x − 3y − 5 = 0  x − 3y − 5 = 0 2 x − y = 0 

5x + 5 = 0 x = −1 y = −2 The point B is ( −1, − 2) .

162

Chapter 10 Straight Lines and Rectilinear Figures

The point C is ( 4, − 2) .

Area of ∆ABC 2 2 2 2m 1 2m − 1 2m − 1 = 2 2m 2 2−m 2−m 2 2 1 2m 2 2m 2 2( = )+( )( ) + 2( ) 2 2m − 1 2m − 1 2 − m 2−m 2 2m 2 2m − 2( )−( )( ) − 2( ) 2m − 1 2m − 1 2 − m 2−m 1 4m 4 4 4m = + − − 2 2m − 1 2 − m 2m − 1 2 − m

Equation of BC is

=

−2 + 2 ( x + 1) 4 +1 y+2=0

1 8m − 4 m 2 + 8m − 4 − 8 + 4 m − 8m 2 + 4 m 2 (2 m − 1)(2 − m)

=

1 −12( m 2 − 2 m + 1) 2 (2 m − 1)(2 − m)

(c) CF passes through H and perpendicular to AB. The equation of CF is 1 y + 1 = − ( x − 2) 2 2y + 2 = −x + 2 x + 2y = 0

x + 2 y = 0 3 x + y − 10 = 0  5 x − 20 = 0 x=4 y = −2

y+2=

=

x − 2y + 2 = 0 5. (a)  2  x−y−2=0

6( m − 1)2 ( m − 2)(2 m − 1)

Classwork 1 (p.225)

3y − 6 = 0 y=2 x=2

1. AB = ( −2 − 4)2 + ( −1 − 1)2 = 40 = 2 10 AC = ( −2 − 2)2 + ( −1 + 5)2 = 4 2

The point A is (2, 2) .

BC = ( 4 − 2)2 + (1 + 5)2 = 40 = 2 10

(b) Equation of BC is y−0 =m x−0 y = mx

x − 2y + 2 = 0 (c)   y = mx

Q AB = BC = 2 10 ∴ ABC is an isosceles triangle. 2. (a) AB = (0 − 2)2 + (2 − 2)2 = 2

BC = (2 − 2)2 + (2 − 8)2 = 6

x − 2 mx + 2 = 0 2 2m − 1 2m y= 2m − 1 2 2m The point B = ( , ). 2m − 1 2m − 1 x=

2 x − y − 2 = 0  y = mx 

2 x − mx − 2 = 0 2 2−m 2m y= 2−m 2 2m The point C = ( , ). 2−m 2−m x=

AC = (0 − 2)2 + (2 − 8)2 = 40 = 2 10 (b) AB2 + BC 2 = 2 2 + 6 2 = AC 2 By the converse of Pyth. thm, ∆ABC is a right-angled triangle.

3.

(10 − p)2 + ( − p − 7)2 = 13 100 − 20 p + p 2 + p 2 + 14 p + 49 = 169

2 p 2 − 6 p − 20 = 0 p 2 − 3 p − 10 = 0 ( p − 5)( p + 2) = 0 p = 5 or p = −2

Chapter 10 Straight Lines and Rectilinear Figures

Classwork 2 (p.229) 3r =2 1+ r r=2 2 + 5r (ii) = −4 1+ r 2 r=− 3 (b) (i) Let (x, y) be the coordinates of P. −8 − 4(3) x= = −5 1+ 3 −4 + 8(3) =5 y= 1+ 3 ∴ The point P is ( −5, 5) . (ii) Let (x, y) be the coordinates of P. −1 + 8( 12 ) x= =2 1 + 12

1. (a) (i)

y=

4 − 8( 12 ) 1+

1 2

=0

∴ The point P is (2, 0) . (iii) Let (x, y) be the coordinates of P. −5 + 1( −2) x= =7 1− 2 1 + 5( −2) y= =9 1− 2 ∴ The point P is (7, 9) .

2. (a) Let (0, y) be the coordinates of C and

AC : CB = r : 1 . r−3 =0 r +1 r=3 ∴

AC : CB = 3 : 1

3( −6) + 2 = −4 3 +1 ∴ The point C is (0, − 4) .

1 [ 46 − ( −26)] square units 2 = 36 square units (b) Area −2 5 −6 −1 1 4 −5 square units = 2 2 2 −2 5 1 = {[( −2)( −1) + ( −6)( −5) + ( 4)(2) + (2)(5)] 2 − [( −6)(5) + ( 4)( −1) + (2)( −5) + ( −2)(2)]} square units 1 = [50 − ( −48)] square units 2 = 49 square units =

2. (a) Area of ∆ABC

1 = 2 =

−4 k 2 3 5 6+k −4 k

square units

1 [( −4)(3) + (2)(6 + k ) + (5)( k )] − [(2)( k ) 2 + (3)(5) + (6 + k )( −4)] square units

1 7k + 9 + 2 k square units 2 9 = k + 1 square units 2

=

(b) If area of ∆ABC = 18 square units, 9 k + 1 = 18 2 k +1 = 4 k +1 = 4 or k = 3 or k = −5

k + 1 = −4

(b) y =

Classwork 4 (p.236) 1. (a) m = tan α =

Classwork 3 (p.233) 1. (a) Area

5 −3 1 −5 8 = square units 2 −7 3 5 −3 1 = {[(5)(8) + ( −5)(3) + ( −7)( −3)] 2 − [( −5)( −3) + ( −7)(8) + (5)(3)]} square units

163

3 − ( −5) 8 =− 1− 4 3

α = 111° (corr. to 3 sig. fig.)

(b) m = tan α =

1− 2 1 =− 4 − ( −1) 5

a = 169° (corr. to 3 sig. fig.) (c) m = tan α = α = 0°

−2 − ( −2) =0 0 − ( −3)

164

Chapter 10 Straight Lines and Rectilinear Figures

5 − ( −6) 2−2 ∴ m is undefined.

2. (a) Let θ be the required angle.

(d) m = tan α =

tan θ =

α = 90°

2 3 1 + 2( 23 )

=

4 7

θ = 29.7° (corr. to 3 sig. fig.) (b) Let θ be the required angle.

5−k =1 2−0 k=3 0 − ( −2) (b) =3 k−5

4 − ( −1) 5 = 1 + 4( −1) 3 θ = 59.0° (corr. to 3 sig. fig.)

2. (a)

k=5

2−

tan θ =

2 3

Classwork 5 (p.239) 1. Slope of AB =

−2 − ( −6) = −2 −4 − ( −2)

Slope of BC =

6 − ( −2) = −2 −8 − ( −4)

∴ AB // BC They are parallel and have a common point B. Therefore A, B, C are collinear.

7 − ( −6) 13 = 7 − ( −2) 9 −3 − 6 −9 Slope of CD = = 7 − ( −6) 13 13 −9 Product of slopes = ( )( ) = −1 9 13 ∴ AB ⊥ CD

Classwork 7 (p.243) 1. (a) y = − x + b 5 = −1 + b b=6

5 x+b 3 5 3 = (3) + b 3 b = −2

(b) y =

2.

Equation of straight line Point Slope y-intercept

Point-slope form

2. Slope of AB =

Classwork 6 (p.240) 1. Let C(0, b) and D(a, 0) be the intersections of AB with the coordinate axes. Then slope of AC = slope of AB b − ( −3) 9 − ( −3) = 0 − ( −4) 4 − ( −4) 8b + 24 = 48 b=3 ∴ y-intercept is 3 . Slope of AD = Slope of AB 0 − ( −3) 9 − ( −3) = a − ( −4) 4 − ( −4) 24 = 12 a + 48 a = −2 ∴ x-intercept is −2 .

Slopeintercept form

(−2, 6)

−1

4

(y − 6) = −(x + 2) y = −x + 4

(1, 4)

2

2

(y − 4) = 2(x − 1) y = 2x + 2

(−2, 0) −

5 2

−5

y=−

4

−3

y = 4x − 3

−2

5

y = −2x + 5

5 (x + 2) 2

y=−

5 x−5 2

Classwork 8 (p.246) 1. (a) By using the two-point form, the equation of the line is 6−3 y−3=( )( x − 2) −1 − 2 y − 3 = −( x − 2 ) x+y−5=0 (b) By using the two-point form, the equation of the line is 1+ 2 y+2=( )( x + 3) 5+3 3 y + 2 = ( x + 3) 8 3x − 8y − 7 = 0

Chapter 10 Straight Lines and Rectilinear Figures

(c) y = 2

2 ∴ The slope is − . 3 y-intercept is 0 .

(d) x = 3 (e) y = 0

Substitute y = 0 into the equation,

(f) By using the intercept form, the equation of the line is x y + =1 3 4 4 x + 3 y − 12 = 0 2. (a) x + 2 y − 3 = 0 2y = −x + 3 1 3 y=− x+ 2 2 1 ∴ The slope is − . 2 3 y-intercept is . 2 Substitute y = 0 into the equation, ∴ x−3= 0 x=3 ∴ x-intercept is 3 . (b) 3 y − x + 1 = 0 3y = x − 1 1 1 y= x− 3 3 1 ∴ The slope is . 3 1 y-intercept is − . 3 Substitute y = 0 into the equation,



x=0 x-intercept is 0 . (e) 2 − x = 0 x=2 ∴ The slope is undefined.

There is no y-intercept. x-intercept is 2 . (f) y + 5 = 0 y = −5 ∴ The slope is 0 . y-intercept is −5 . There is no x-intercept.

Classwork 9 (p.249)

L1 1

O

(c) 2 y = 1 − 4 x

1 2 ∴ The slope is −2 .

1 . 2

Substitute y = 0 into the equation, ∴

0 = 1 − 4x 1 x= 4

1 ∴ x-intercept is . 4 (d) 3 y + 2 x = 0 3 y = −2 x 2 y=− x 3

x

π 6

In the figure, the equation of L1 is π π x cos + y sin − 1 = 0 6 6 3 1 x + y −1 = 0 2 2 3x + y − 2 = 0

−x + 1 = 0 x =1 ∴ x-intercept is 1 .

y = −2 x +

y

(a)



y-intercept is

165

y

(b)

L2 3

2π 3

O

In the figure, the equation of L 2 is 2π 2π x cos + y sin −3= 0 3 3 1 3 − x+ y−3= 0 2 2 x − 3y + 6 = 0

x

166

Chapter 10 Straight Lines and Rectilinear Figures

y

(c)



p=

L3

2 2 , sin θ = 2 2 ∴ θ = 45° (c) The normal form is 3x − 2 y + 7 cos θ =

x

O

In the figure, the equation of L 3 is π π x cos + y sin = 0 4 4 2 2 x( ) + y( )=0 2 2 x+y=0

4

O

x

In the figure, the equation of L 4 is x cos 0 + y sin 0 − 4 = 0 x−4=0

Classwork 10 (p.251) (a) The normal form is

3x + 4 y − 5

=0

32 + 4 2 3 4 x + y −1 = 0 5 5 p =1

3 4 , sin θ = 5 5 θ = 53.1° (corr. to 3 sig. fig.)

cos θ = ∴



7 13

p=

3 2 , sin θ = 13 13 ∴ θ = 146° (corr. to 3 sig. fig.) (d) The normal form is x − 3y =0 − 12 + 32 1 3 − x+ y=0 10 10

L4



=0 − 32 + 2 2 3 2 7 − x+ y− =0 13 13 13

cos θ = −

y

(d)

2 2

(b) The normal form is



p=0

1 3 , sin θ = 10 10 ∴ θ = 108° (corr. to 3 sig. fig.) (e) The normal form is y+5 =0 − 12 −y − 5 = 0 cos θ = −

∴ p=5 cos θ = 0 , sin θ = −1 ∴ θ = 270° (f) The normal form is x−3 =0 12 x−3= 0 ∴ p=3 cos θ = 1 , sin θ = 0 ∴ θ = 0°

−x − y + 1

=0 − 12 + 12 1 1 1 x+ y− =0 2 2 2 2 2 2 x+ y− =0 2 2 2

Classwork 11 (p.252) 1. (a) By considering the distance from (4, −2) to the line, d=

2( 4) − ( −2) + 7 2 2 + ( −1)2

=

17 5 units 5

Chapter 10 Straight Lines and Rectilinear Figures

(b) By considering the distance from (−2, 3) to the line,

d=

−4( −2) + 3(3) − 1 ( −4)2 + 32

16 units = 5

2. Let (s, 0) be the coordinates of P.

5s + 36

=2 52 + ( −12)2 5s + 36 =2 13 5s + 36 5s + 36 or =2 = −2 13 13 5s = −10 or 5s = −62 62 s = −2 or s=− 5 62 ∴ The point P is ( −2, 0) or ( − , 0) . 5 3. Let P(x, y) be a point on the perpendicular bisector, then the distance from P to the two lines are equal. 2x − 4y + 1

=

or 2x − 4y + 1 = 4x + 2y − 6 2 x + 6 y − 7 = 0 or

2x − 4y + 1 = −( 4 x + 2 y − 6) 6x − 2y − 5 = 0

Classwork 12 (p.254) 1. The distance between L1 and L 2 is d=

8 − ( −2) 4 2 + 32

Classwork 13 (p.255) (a) An equation of L is 3 x − y + k = 0 , where k is real. (b) Mid-point of AB −1 + 3 2 + 3 5 =( , ) = (1, ) 2 2 2 Substitute the point into L, 5 3(1) − + k = 0 2 1 k=− 2 ∴ An equation of L1 is 6 x − 2 y − 1 = 0 . (c) Let the equation of L 2 be 3 x − y + k2 = 0 . 3( −1) − 2 + k2

= 2 10 32 + 12 k2 − 5 = ±2 10 10 k2 − 5 = 2(10) or k2 − 5 = −2(10) or k2 = 25 k2 = −15 ∴ The equation of L is 3 x − y + 25 = 0 or 3 x − y − 15 = 0 .

2x + y − 3

22 + 42 2 2 + 12 2x − 4y + 1 2x + y − 3 = 2 5 5 2 x − 4 y + 1 = ±( 4 x + 2 y − 6)

units

= 2 units 2. Let the equation of L' be x + y − p = 0 . −1 − ( − p)

= 2 12 + 12 −1 + p =± 2 2 −1 + p = 2 or −1 + p = −2 p = 3 or p = −1

∴ The equation of L' is x + y − 3 = 0 or x + y + 1 = 0 .

167

Classwork 14 (p.256) (a) An equation of L is y − 3 = k[ x − ( −5)] y = k ( x + 5) + 3 , where k is real (b) Since L1 passes through (2, 1), 1 = k (2 + 5) + 3 2 k=− 7 ∴ The equation of L1 is 2 x + 7 y − 11 = 0 . (c) From the equation of L y = k ( x + 5) + 3 y − kx = 5k + 3 − kx y + =1 5k + 3 5k + 3 x-intercept 5k + 3 = −1 k k = 5k + 3 3 k =− 4 ∴ The equation of L 2 is 3 y = − ( x + 5) + 3 4 3x + 4 y + 3 = 0 =−

168

Chapter 10 Straight Lines and Rectilinear Figures

Classwork 15 (p.258) (a) An equation of L is 3 x − 2 y − 1 + k ( x + y + 3) = 0 , where k is real. (b) (i) Rearrange the equation as (3 + k ) x + ( k − 2) y + (3k − 1) = 0 1 Since the slope is , 4 3+ k 1 − = k−2 4 k − 2 = −12 − 4 k 5k = −10 k = −2 Substitute k = −2 into (1), (3 x − 2 y − 1) − 2( x + y + 3) = 0 x − 4y − 7 = 0 (ii) Since y-intercept is 2, −

3k − 1 =2 k−2 2 k − 4 = −3k + 1 5k = 5 k =1

Substitute k = 1 into (1), 3x − 2 y − 1 + x + y + 3 = 0 4x − y + 2 = 0