Am-sln-07(e)

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Am-sln-07(e) as PDF for free.

More details

  • Words: 8,750
  • Pages: 13
Chapter 7 Sums and Products of Trigonometric Functions

CHAPTER 7 Exercise 7A (p.166) 1 1. 2 sin 40° cos 20° = 2[ (sin 60° + sin 20°)] 2 = sin 60° + sin 20° 1 2. 2 cos 120° sin 80° = 2[ (sin 200° − sin 40°)] 2 = sin 200° − sin 40°

1 3. 4 cos 70° cos 50° = 4[ (cos 120° + cos 20°)] 2 = 2 cos 120° + 2 cos 20° 1 4. sin x sin 3 x = − [cos 4 x − cos( −2 x )] 2 1 = − (cos 4 x − cos 2 x ) 2 1 1 = cos 2 x − cos 4 x 2 2 1 (cos 8 A + cos 2 A) 2 1 1 = cos 8 A + cos 2 A 2 2

5. cos 5 A cos 3 A =

6. 4 cos( x + 60°)sin( x − 60°) 1 = 4[ (sin 2 x − sin 120°)] 2 = 2 sin 2 x − 2 sin 120° 7. cos 60° + cos 140° = 2 cos 100° cos( −40°) = 2 cos 100° cos 40° 8. sin 5 x − sin 3 x = 2 cos 4 x sin x 9. cos 2 y − cos 6 y = −2 sin 4 y sin( −2 y) = 2 sin 4 y sin 2 y 10. sin(3 A + B) + sin( A + 3 B) 3 A + B + A + 3B 3 A + B − A − 3B = 2 sin cos 2 2 = 2 sin 2( A + B) cos( A − B) 11. sin(

π − θ) + cos 3θ = cos θ + cos 3θ 2 = 2 cos 2θ cos( −θ) = 2 cos 2θ cos θ

12. sin A + cos B π = cos( − A) + cos B 2 1 π 1 π = 2 cos ( − A + B) cos ( − A − B) 2 2 2 2

107

13. 4 cos x cos 3 x cos 5 x 1 = 4 cos x ⋅ [cos 8 x + cos( −2 x )] 2 = 2 cos x (cos 8 x + cos 2 x ) = 2 cos x cos 8 x + 2 cos x cos 2 x 1 1 = 2 ⋅ [cos 9 x + cos( −7 x )] + 2 ⋅ [cos 3 x + cos( − x )] 2 2 = cos 9 x + cos 7 x + cos 3 x + cos x 14. cos 75° cos 45° 1 = [cos(75° + 45°) + cos(75° − 45°)] 2 1 = (cos 120° + cos 30°) 2 1 cos 75° cos 45° = (cos 120° + cos 30°) 2 2 1 1 3 cos 75°( ) = (− + ) 2 2 2 2 1 1 3 cos 75° = (− + ) 2 2 2 2 ( −1 + 3 ) = 4 1 = ( 6 − 2) 4 15.

75°+15° 75°−15° cos 75° + cos 15° 2 cos 2 cos 2 = sin 75° − sin 15° 2 cos 75°+2 15° sin 75°−2 15° 75° − 15° = cot 2 = cot 30° = 3

16. cos x + cos( x + 120°) + cos( x + 240°) x + x + 120° x − x − 120° cos = 2 cos 2 2 + cos( x + 240°) = 2 cos( x + 60°) cos( −60°) + cos( x + 240°) = 2 cos( x + 60°) cos 60° + cos( x + 240°) 1 = 2 cos( x + 60°)( ) + cos( x + 240°) 2 = cos( x + 60°) + cos( x + 240°) x + 60° + x + 240° x + 60° − x − 240° cos = 2 cos 2 2 = 2 cos( x + 150°) cos( −90°) = 2 cos( x + 150°) cos 90° =0 17. sin( A + B) =

3 7

sin A cos B + sin B cos A = sin( A − B) =

1 7

3 ..............(1) 7

108

Chapter 7 Sums and Products of Trigonometric Functions

A+ B ) 2 A+ B A+ B ) cos( ) = 2 sin( 2 2 a b = 2⋅ ⋅ 2 2 2 ± a + b ± a + b2 2 ab = 2 a + b2

1 ..............(2) 7 3 1 4 (1) + (2), 2 sin A cos B = + = 7 7 7 2 sin A cos B = 7

(b) sin( A + B) = sin 2(

sin A cos B − sin B cos A =

(1) − (2), 2 sin B cos A = sin B cos A = sin A cos B = sin B cos A tan A =2 tan B

3 1 2 − = 7 7 7

A+ B ) 2 A+ B = 2 cos 2 ( ) −1 2 2b 2 = 2 −1 a + b2 b2 − a2 = 2 a + b2

1 7

(c) cos( A + B) = cos 2(

2 7 1 7

18. sin A + sin B = a A+ B A− B 2 sin cos =a 2 2 A+ B A− B a sin cos = ..............(1) 2 2 2 A+ B A − B a2 sin 2 cos 2 ............(2) = 2 2 4 cos A + cos B = b A+ B A− B 2 cos cos =b 2 2 A+ B A− B b cos cos = ..............(3) 2 2 2 A + B A − B b2 cos 2 cos 2 ...........(4) = 2 2 4 (2) + (4), cos 2

A− B A+ B A+ B a2 b2 (sin 2 )= + cos 2 + 2 2 2 4 4

cos 2

A − B a2 + b2 = 2 4

cos

π 3π 5π 7π 9π + cos + cos + cos + cos 11 11 11 11 11 π π π π 3π 2 y sin = 2 sin cos + 2 sin cos 11 11 11 11 11 π π 5π 7π + 2 sin cos + 2 sin cos 11 11 11 11 9π π + 2 sin cos 11 11 2π 1 4π −2 π ) = sin + 2 ⋅ (sin + sin 11 2 11 11 1 6π −4 π ) + 2 ⋅ (sin + sin 2 11 11 1 8π −6 π + 2 ⋅ (sin + sin ) 2 11 11 1 10 π −8π + 2 ⋅ (sin + sin ) 2 11 11 2π 4π 2π = sin + (sin − sin ) 11 11 11 6π 4π + (sin − sin ) 11 11 6π 10 π 8π 8π + (sin − sin ) + (sin − sin ) 11 11 11 11

19. Let y = cos

A − B ± a2 + b2 = 2 2

From (1), A+ B a a 2 sin = ⋅ = 2 2 2 2 2 ± a +b ± a + b2

2 y sin

= sin( π −

From (3),

= sin

A+ B b 2 b cos = ⋅ = 2 2 ± a2 + b2 ± a2 + b2 sin( A +2 B ) A+ B )= = (a) tan( 2 cos( A +2 B )

a ± a2 +b2 b ± a2 +b2

10 π π = sin 11 11

=

a b

2y = 1 1 y= 2 ∴ cos

π 11

π ) 11

π 3π 5π 7π 9π 1 + cos + cos + cos + cos = 11 11 11 11 11 2

Chapter 7 Sums and Products of Trigonometric Functions

π 2π 4π cos cos 7 7 7 π 2π π 2π 1 4π ) + cos( − )]cos = [cos( + 2 7 7 7 7 7 3π 4π 1 −π ) cos = (cos + cos 2 7 7 7 π 1 3π 4π 1 4π cos = cos + cos cos 2 7 7 2 7 7 1 1 3π + 4 π 3π − 4 π )] = [ (cos + cos 2 2 7 7 π + 4π π − 4π 1 1 )] + [ (cos + cos 2 2 7 7 1 −π 1 5π −3π = (cos π + cos ) + (cos + cos ) 4 7 4 7 7 π 1 3π 5π = (cos π + cos + cos + cos ) 4 7 7 7 1 1 = ( −1 + ) (by example 3, p.164) 4 2 1 =− 8

20. cos

sin 2 A + sin 2 B 21. cos 2 A + cos 2 B 2 sin( 2 A +2 2 B ) cos( 2 A −2 2 B ) = 2 cos( 2 A +2 2 B ) cos( 2 A −2 2 B ) =

22.

25. cos( x + y + z ) + cos( x + y − z ) + cos( x − y + z ) + cos( − x + y + z ) = 2 cos( x + y) cos z + 2 cos z cos( x − y) = 2 cos z[cos( x + y) + cos( x − y)] = 2 cos z[2 cos x cos y] = 4 cos x cos y cos z 26. tan( A + B) + tan( A − B) sin( A + B) sin( A − B) = + cos( A + B) cos( A − B) sin( A + B) cos( A − B) + cos( A + B)sin( A − B) = cos( A + B) cos( A − B) 1 (sin 2 A + sin 2 B) + 1 (sin 2 A − sin 2 B) 2 = 2 cos( A + B) cos( A − B) sin 2 A = 1 (cos A + cos 2 B) 2 2 2 sin A = cos 2 A + cos 2 B 27.

sin( 2 A +2 2 B )

cos( 2 A +2 2 B ) = tan( A + B) sin(θ + 30°) + sin(θ + 60°) cos(θ + 30°) + cos(θ + 60°) 2 sin(θ + 45°) cos 15° = 2 cos(θ + 45°) cos 15° = tan(θ + 45°) tan θ + tan 45° = 1 − tan θ tan 45° 1 + tan θ = 1 − tan θ

23. 2 sin( 45° + A)sin( 45° − B) 1 = 2 ⋅ − [cos(90° + A − B) − cos( A + B)] 2 = cos( A + B) − cos[90° − ( B − A)] = cos( A + B) − sin( B − A) = cos( A + B) + sin( A − B) 24. sin 2( x + y) − sin 2 x − sin 2 y = 2 sin( x + y) cos( x + y) − 2 sin( x + y) cos( x − y) = 2 sin( x + y)[cos( x + y) − cos( x − y)] = 2 sin( x + y)[ −2 sin x sin y] = −4 sin( x + y)sin x sin y

109

sin A + sin 3 A + sin 5 A cos A + cos 3 A + cos 5 A 2 sin 3 A cos 2 A + sin 3 A = 2 cos 3 A cos 2 A + cos 3 A sin 3 A(2 cos 2 A + 1) = cos 3 A(2 cos 2 A + 1) = tan 3 A

28. sin(3 A + B) + sin( A + 3 B) = 2 sin 2( A + B) cos( A − B) = 2[2 sin( A + B) cos( A + B)]cos( A − B) = 2 sin( A + B)[2 cos( A + B) cos( A − B)] = 2 sin( A + B)(cos 2 A + cos 2 B) 29.

sin( x − 40°) + sin( x + 80°) = 1 x − 40° + x + 80° x − 40° − x − 80° ) cos( ) =1 2 sin( 2 2 2 sin( x + 20°) cos( −60°) = 1 1 2 sin( x + 20°)( ) = 1 2 sin( x + 20°) = 1 x + 20° = 90° x = 70°

30. cos(2 x + 10°) + cos(2 x − 10°) = 0 2 x + 10° + 2 x − 10° 2 x + 10° − 2 x + 10° 2 cos( )cos( ) 2 2 =0 cos 2 x cos 10° = 0 cos 2 x = 0 (Q cos10° ≠ 0 ) 2 x = 90°, 270°, 450°, 630° x = 45°, 135°, 225°, 315°

110

Chapter 7 Sums and Products of Trigonometric Functions

31. 2 sin( x + 15°) cos( x − 15°) = 1 1 2 ⋅ (sin 2 x + sin 30°) = 1 2 1 sin 2 x + = 1 2 1 sin 2 x = 2 2 x = 30°, 150°, 390°, 510° x = 15°, 75°, 195°, 255° 32. sin 2 x + sin 3 x = 0 −x 5x =0 2 sin cos 2 2 x 5x sin cos = 0 2 2 5x x sin = 0 or cos = 0 2 2 5x x = 0°, 180°, 360°, 540°, 720° or = 90° 2 2 x = 0°, 72°, 144°, 180°, 216°, 288° 33.

34.

3x x = cos 2 2 3x x cos − cos = 0 2 2 x −2 sin x sin = 0 2 x sin x = 0 or sin = 0 2 x x = 0°, 180° or = 0°, 180° 2 x = 0°, 180°

36. sin x + sin 2 x + sin 3 x + sin 4 x = 0 3x x 7x x 2 sin cos + 2 sin cos = 0 2 2 2 2 x 3x 7x cos (sin + sin ) = 0 2 2 2 x 3x 7x cos = 0 or sin + sin =0 2 2 2 5x x cos x = 0 = 90° or 2 sin 2 2 5x = 0 or cos x = 0 x = 180° or sin 2 5x = 0°, 180°, 360°, 540°, 720° or x = 90°, 270° 2 ∴ x = 0°, 72°, 90°, 144°, 180°, 216°, 270°, 288° 37. sin 2 A + sin 2 B + sin 2C = 2 sin( A + B) cos( A − B) + 2 sin C cos C = 2 sin C cos( A − B) + 2 sin C[ − cos( A + B)] = 2 sin C[cos( A − B) − cos( A + B)] = 4 sin A sin B sin C

cos

sin 3 x + cos 3 x = sin x + cos x sin 3 x − sin x = cos x − cos 3 x 2 cos 2 x sin x = 2 sin 2 x sin x sin x (cos 2 x − sin 2 x ) = 0 or cos 2 x − sin 2 x = 0 sin x = 0 x = 0°, 180° or tan 2 x = 1 2 x = 45°, 225°, 405°, 585° x = 22.5°, 112.5°, 202.5°, 292.5° x = 0°, 22.5°, 112.5°, 180°, 202.5°, 292.5°

35. cos x + cos 2 x + cos 3 x = 0 2 cos 2 x cos x + cos 2 x = 0 cos 2 x (2 cos x + 1) = 0 cos 2 x = 0

or 2 cos x + 1 = 0 1 2 x = 90°, 270°, 450°, 630° or cos x = − 2 x = 45°, 135°, 225°, 315° or x = 120°, 240°



x = 45°, 120°, 135°, 225°, 240°, 315°

38. sin A + sin B + sin C 1 1 1 1 = 2 sin ( A + B) cos ( A − B) + 2 sin C cos C 2 2 2 2 1 1 1 1 = 2 cos C cos ( A − B) + 2 cos ( A + B) cos C 2 2 2 2 1 1 1 = 2 cos C[cos ( A − B) + cos ( A + B)] 2 2 2 A B C = 4 cos cos cos 2 2 2 39. cos 2 A + cos 2 B − cos 2C − 1

= 2 cos( A + B) cos( A − B) − 2 cos 2 C = −2 cos C cos( A − B) + 2 cos C cos( A + B) = 2 cos C[cos( A + B) − cos( A − B)] = −4 sin A sin B cos C 40. cos 2 A + cos 2 B + cos 2 C − 1 1 = (cos 2 A + cos 2 B) + cos 2 C 2 = cos( A + B) cos( A − B) + cos 2 C = − cos C cos( A − B) − cos C cos( A + B) = − cos C[cos( A − B) + cos( A + B)] = −2 cos A cos B cos C π π ) cos( x − ) 8 24 1 π π = [sin(2 x + ) + sin ] 2 12 6 1 π 1 = sin(2 x + ) + 2 12 4

41. (a) y = sin( x +

Chapter 7 Sums and Products of Trigonometric Functions

(b) y =

1 π 1 sin(2 x + ) + 2 12 4

π ) ≤1 12 π When sin(2 x + ) = 1 , y is maximum. 12 3 ∴ Maximum of y is . 4 As −1 ≤ sin(2 x +

π ) = −1 , y is minimum. 12 1 ∴ Minimum of y is − . 4 When sin(2 x +

42. (a) 1 + cos( A − B) cos( A + B) 1 = 1 + (cos 2 A + cos 2 B) 2 1 = 1 + (2 cos 2 A + 2 cos 2 B − 2) 2 = cos 2 A + cos 2 B (b) 3 + cos( P − Q) cos( P + Q) + cos(Q − R) cos(Q + R) + cos( R − P) cos( R + P) = [1 + cos( P − Q) cos( P + Q)] + [1 + cos(Q − R) cos(Q + R)] + [1 + cos( R − P) cos( R + P)] = cos 2 P + cos 2 Q + cos 2 Q + cos 2 R + cos 2 R + cos 2 P = 2(cos 2 P + cos 2 Q + cos 2 R) 43. (a) cos 3 A + cos 3 B + cos 3C = cos 3 A + cos 3 B + cos 3( π − A − B) 3 3 = 2 cos ( A + B) cos ( A − B) 2 2 − cos 3( A + B) 3 3 = 2 cos ( A + B) cos ( A − B) 2 2 2 3 ( A + B) + 1 − 2 cos 2 3 3 = 2 cos ( A + B)[cos ( A − B) 2 2 3 − cos ( A + B)] + 1 2 3 3 3 = 4 cos ( A + B)sin A sin B + 1 2 2 2 3 3 3 = 1 − 4 sin A sin B sin C 2 2 2 (b) If cos 3 A + cos 3 B + cos 3C = 1 , then by (a), 4 sin

3 3 3 A sin B sin C = 0 2 2 2

111

3 3 3 A = 0 or sin B = 0 or sin C = 0 2 2 2 3 Let sin A = 0 , 2 ∴ A = 0° or 120° Since A is an interior angle of a triangle, ∴

sin

∴ one of the angles = 120° 44. (a) Let a be the length of ladder. x = a cos β − a cos α 1 1 = a[( −2)sin (β + α )sin (β − α )] 2 2 1 1 = 2 a sin (α + β)sin (α − β) 2 2 y = a sin α − a sin β 1 1 = 2 a cos (α + β)sin (α − β) 2 2

x 1 = tan (α + β) y 2 1 x = y tan (α + β) 2 (c) From (b), 1 π 15 = 20 tan ( + β) 2 3 1 π 3 tan ( + β) = 2 3 4 1 π ( + β) = 0.643 5 2 3 β = 0.240 (corr. to 3 sig. fig.)

(b) ∴

45. (a) (i) Let P(n) be the proposition °ßsin x + sin 2 x + L + sin nx

=

sin

( n +1) x sin nx 2 2 °®. sin 2x

When n = 1 , L.H.S. = sin x R.H.S. =

sin x sin 2x sin 2x

= sin x = L.H.S.

∴ P(1) is true. Assume P(k) is true for any positive integer k. i.e. sin x + sin 2 x + L + sin kx =

sin

( k +1) x sin kx 2 2 sin 2x

112

Chapter 7 Sums and Products of Trigonometric Functions

then

= {12 [sin 12 (2 k + 1) x − sin 12 x ]

sin x + sin 2 x + L + sin kx + sin(k + 1) x sin 12 ( k + 1) x sin 12 kx = + sin(k + 1) x sin 2x =

+ 12 [sin(k + 23 ) x − sin(k + 12 ) x ]} ÷ sin 2x =

sin 12 ( k + 1) x sin 12 kx + sin(k + 1) x sin 12 x

=

sin 2x 1 1 1 = { [cos x − cos (2 k + 1) x ] 2 2 2 1 1 3 + [cos(k + ) x − cos( k + ) x ]} 2 2 2 x ÷ sin 2 1 [cos 1 x − cos 1 (2 k + 3) x ] 2 2 = 2 sin 2x = =

sin 12 ( k + 2) x sin 12 ( k + 1) x sin 2x

[( k +1) +1] x 2

sin

sin

( k +1) x 2

sin 2x Thus assuming P(k) is true for any positive integer k, P( k + 1) is also true. By the principle of mathematical induction, P(n) is true for all positive integer n. (ii) Let Q(n) be the proposition

=

1 [sin 1 (2 k 2 2

+ 3) x − sin 12 x ]

sin 2x cos 12 ( k + 2) x sin 12 ( k + 1) x sin 2x

cos

[( k +1) +1] x ( k +1) x sin 2 2 sin 2x

Thus assuming Q(k) is true for any positive integer k, Q( k + 1) is also true. By the principle of mathematical induction, Q(n) is true for all positive integer n. (b)

sin π6 + sin 2( π6 ) + sin 3( π6 ) + L + sin 11( π6 )

cos π6 + cos 2( π6 ) + cos 3( π6 ) + L + cos 11( π6 ) sin

=

(11+1)( π ) 6 2

sin

11( π ) 6 2

sin 12π (11+1)( π ) 11( π ) cos 2 6 sin 26 sin 12π

π = tan 6( ) 6 = tan π =0

°ß cos x + cos 2 x + L + cos nx cos

=

( n +1) x sin nx 2 2 °®. sin 2x

( a − 1)2 + (b + 1)2 = 1

cos x cos 2x cos 2x

= cos x = L.H.S.

∴ Q(1) is true. Assume Q(k) is true for any positive integer k. i.e. cos x + cos 2 x + L + cos kx =

cos

( k +1) x sin kx 2 2 sin 2x

then cos x + cos 2 x + L + cos kx + cos( k + 1) x = =

( k +1) x sin 2 x sin 2 ( k +1) x cos 2 sin

cos

1. sin θ = a − 1 , cos θ = b + 1 sin 2 θ + cos 2 θ = ( a − 1)2 + (b + 1)2

When n = 1 , L.H.S. = cos x R.H.S. =

Exercise 7B (p.170)

kx 2 kx 2

+ cos( k + 1) x + cos( k + 1) x sin 2x

sin 2x

2. x = a sec θ , y = b tan θ x y = sec θ , = tan θ a b x 2 y2 − = sec 2 θ − tan 2 θ = 1 a2 b2 b2 x 2 − a2 y2 = a2b2

3. x = cos θ + sin θ + 1, y = cos θ − sin θ + 1 cos θ + sin θ = x − 1, cos θ − sin θ = y − 1

( x − 1)2 + ( y − 1)2 = (cos θ + sin θ)2 + (cos θ − sin θ)2 = (cos 2 θ + 2 sin θ cos θ + sin 2 θ) + (cos 2 θ − 2 sin θ cos θ + sin 2 θ) =2 ∴ ( x − 1)2 + ( y − 1)2 = 2

Chapter 7 Sums and Products of Trigonometric Functions

(b) mn = (tan A + sin A)(tan A − sin A)

4. sin θ − cos θ = x , cos 2θ = y 2

= tan 2 A − sin 2 A

(sin θ − cos θ)2 = x 2

= tan 2 A − tan 2 A cos 2 A

sin 2 θ − 2 sin θ cos θ + cos 2 θ = x 2 1 − sin 2θ = x 2 sin 2θ = 1 − x 2 (1 − x 2 )2 + ( y 2 )2 = sin 2 2θ + cos 2 2θ (1 − x 2 )2 + ( y 2 )2 = 1

x 4 + y4 = 2x2 5. tan θ − sec θ = m , tan θ + sec θ = n

= tan 2 A(1 − cos 2 A) = tan 2 A sin 2 A m+n 2 m−n 2 =( ) ( ) (by (a)) 2 2 ∴ 16 mn = ( m 2 − n 2 )2 2 m − n 2 = 4 mn (as m ≥ n > 0 )

tan 2 θ − sec 2 θ = mn mn + 1 = 0



6. x = a(csc θ − cot θ) , y = b(csc θ + cot θ) xy = a(csc θ − cot θ) ⋅ b(csc θ + cot θ) = ab(csc 2 θ − cot 2 θ) = ab

sin θ cos θ = x y x tan θ = y x sin θ = and 2 x + y2 y cos θ = 2 x + y2

9. (a) From (1),

(tan θ − sec θ)(tan θ + sec θ) = mn



113

x2+y2

x

θ

y

(b) From (a), y2 x2 2 , cos θ = x 2 + y2 x 2 + y2 Substitute into (2), sin 2 θ =

xy = ab

7. sin θ + cos θ = m (

1 1 2 x2 y2 + )( ) ( )( )= 2 2 2 2 2 2 2 y x +y x x +y x + y2

1 sin θ cos θ = ( m 2 − 1) ....................(1) 2

(

x 2 y2 1 2 + 2) 2 = 2 2 2 y x x +y x + y2

tan θ + cot θ = n sin θ cos θ + =n cos θ sin θ sin 2 θ + cos 2 θ = n sin θ cos θ



sin θ + 2 sin θ cos θ + cos θ = m 2

2

2

1 + 2 sin θ cos θ = m 2

1 .................................(2) n From (1) and (2), sin θ cos θ =

1 2 1 ( m − 1) = n 2 2 n( m − 1) = 2 8. (a) tan A + sin A = m .........(1) tan A − sin A = n .........(2) m+n 2 m−n (1) − (2), sin A = 2 (1) + (2), tan A =

x 2 y2 + =2 y2 x 2

x Let t = ( )2 = tan 2 θ , y 1 t+ =2 ∴ t t 2 − 2t + 1 = 0 ∴ t =1 x 2 ∴ ( ) =1 y

tan θ =

x = ±1 y

π , 2 tan θ = 1 π θ= 4

As 0 < θ <



114

Chapter 7 Sums and Products of Trigonometric Functions

Revision Exercise 7 (p.172) 1. sin( A + C )sin( A + D) = sin[360° − ( B + D)]sin[360° − ( B + C )] = [ − sin( B + D)][− sin( B + C )] = sin( B + C )sin( B + D) 2. sin A = 2 cos B sin C sin[180° − ( B + C )] = sin( B + C ) = 2 cos B sin C sin B cos C + cos B sin C = 2 cos B sin C sin B cos C = cos B sin C tan B = tan C ∴ B=C 3. cos 2 ( x − y) − sin 2 ( x + y) 1 1 = [1 + cos 2( x − y)] − [1 − cos 2( x + y)] 2 2 1 = [cos 2( x + y) + cos 2( x − y)] 2 = cos 2 x cos 2 y 4. (a) 2 sin A cos 3 A 1 = 2 ⋅ [sin( A + 3 A) + sin( A − 3 A)] 2 = sin 4 A + sin( −2 A) = sin 4 A − sin 2 A (b) 2 sin A[cos A + cos 3 A + cos 5 A + cos 7 A + cos 9 A] = 2 sin A cos A + 2 sin A cos 3 A + 2 sin A cos 5 A + 2 sin A cos 7 A + 2 sin A cos 9 A = sin 2 A + (sin 4 A − sin 2 A) + (sin 6 A − sin 4 A) + (sin 8 A − sin 6 A) + (sin 10 A − sin 8 A) = sin 10 A ∴ cos A + cos 3 A + cos 5 A + cos 7 A + cos 9 A sin 10 A = 2 sin A 5. cos 2 A + cos 2 B − cos 2 C − 1 1 1 = (cos 2 A + 1) + (cos 2 B + 1) − cos 2 C − 1 2 2 1 = (cos 2 A + cos 2 B) − cos 2 C 2 = cos( A + B) cos( A − B) − cos 2 C = cos(180° − C ) cos( A − B) − cos C cos[180° − ( A + B)] = − cos C cos( A − B) + cos C cos( A + B) = cos C[cos( A + B) − cos( A − B)] = −2 sin A sin B cos C

6. (a) (b + c) cos A + (c + a) cos B + ( a + b) cos C = 2 R(sin B cos A + sin C cos A + sin C cos B + sin A cos B + sin A cos C + sin B cos C ) = 2 R[sin( A + B) + sin( B + C ) + sin(C + A)] = 2 R(sin A + sin B + sin C ) = a+b+c (b) (b + c) cos A + (c + a) cos B + ( a + b) cos C = a+b+c ( a + b + c) cos A + ( a + b + c) cos B + ( a + b + c) cos C = a + b + c + a cos A + b cos B + c cos C ( a + b + c)(cos A + cos B + cos C − 1) = a cos A + b cos B + c cos C A+ B A− B ) cos( ) + cos C − 1] ( a + b + c)[2 cos( 2 2 = a cos A + b cos B + c cos C A+ B A− B C ( a + b + c)[2 cos( ) cos( ) − 2 sin 2 ] 2 2 2 = a cos A + b cos B + c cos C C A− B C ( a + b + c)(2 sin )[cos( ) − sin ] 2 2 2 = a cos A + b cos B + c cos C A− B A+ B C ( a + b + c)(2 sin )[cos( ) − cos( )] 2 2 2 = a cos A + b cos B + c cos C A B C 4( a + b + c)sin sin sin 2 2 2 = a cos A + b cos B + c cos C 7. cos 2 nθ − cos 2 mθ = (cos nθ + cos mθ)(cos nθ − cos mθ) n+m n−m θ cos θ) = (2 cos 2 2 n+m n−m θ sin θ] ⋅ [( −2)sin 2 2 n+m n+m θ sin θ) = (2 cos 2 2 n−m n−m θ cos θ) ⋅ ( −2 sin 2 2 n+m n+m = (2 cos θ sin θ) 2 2 m−n m−n θ sin θ) ⋅ (2 sin 2 2 = sin(n + m)θ sin( m − n)θ Substitute n = 2 , m = 3 into the above result,

sin 5θ sin θ = cos 2 2θ − cos 2 3θ ∴ sin 5θ sin θ − sin 5θ = 0 sin 5θ(sin θ − 1) = 0 sin 5θ = 0 or sin θ = 1 π ∴ 5θ = 0, π, 2 π, 3π, 4 π, 5π or θ = 2 π 2 π π 3π 4 π θ = 0, , , , , , π 5 5 2 5 5

Chapter 7 Sums and Products of Trigonometric Functions

8. cos 2θ + cos 4θ + cos 6θ 2 θ + 4θ 2θ − 4θ = 2 cos( ) cos( ) + cos 6θ 2 2 = 2 cos 3θ cos θ + cos 6θ = 2 cos 3θ cos θ + 2 cos 2 3θ − 1 = 2 cos 3θ(cos θ + cos 3θ) − 1 θ + 3θ θ − 3θ = 2 cos 3θ[2 cos( ) cos( )] − 1 2 2 = 4 cos θ cos 2θ cos 3θ − 1

π into the above result, 12 π π π π π π cos + cos + cos = 4 cos cos cos − 1 6 3 2 12 6 4

Substitute θ =



cos

3 + 1 +1 π 3 +3 = 2 2 = = 12 4 ⋅ 3 ⋅ 2 2 6 2 2

6+ 2 4

9. (a) Since α, β are the roots of the equation,

a cos α + b sin α + c = 0 .........(1)



a cos β + b sin β + c = 0 ..........(2)

(1) − (2),

(b) sin A + sin B + sin C A+ B A− B cos = 2 sin + sin[π − ( A + B)] 2 2 A+ B A− B cos = 2 sin + sin( A + B) 2 2 A+ B A− B cos = 2 sin 2 2 A+ B A+ B cos + 2 sin 2 2 A+ B A− B A+ B (cos ) = 2 sin + cos 2 2 2 A+ B A B cos cos = 4 sin 2 2 2 A B C = 4 cos cos cos 2 2 2 (c) From (a),

a+b+c ⋅ sin A sin A + sin B + sin C 2m A A = ⋅ 2 sin cos 2 2 4 cos A2 cos B2 cos C2 A B C = m sin sec sec 2 2 2

a=

a(cos α − cos β) + b(sin α − sin β) = 0

(b) −2 a sin

=0 2 sin

10. (a)

α +β α −β α +β α −β sin + 2 b cos sin 2 2 2 2

cos β cos(2α + β) cos(2α + β) + cos β = cos(2α + β) 2 cos(α + β) cos α = cos(2α + β)

11. (a) 1 + k = 1 +

α−β α+β α+β (b cos − a sin )=0 2 2 2

Q

α ≠ β , and α, β lie within 0 and π,



sin



a sin

Q

a ≠ 0 , cos



tan

α −β ≠0 2 α+β α+β = b cos 2 2 α+β ≠ 0, 2

α+β b = 2 a

a b c = = =k sin A sin B sin C a+b+c ∴ sin A + sin B + sin C k sin A + k sin B + k sin C = sin A + sin B + sin C =k a = sin A

115

(b) ( k + 1) tan(α + β) tan α 2 cos α cos(α + β) = tan(α + β) tan α cos(2α + β) 2 sin(α + β)sin α = cos(2α + β) 2( − 12 )[cos(2α + β) − cos β] = cos(2α + β) cos β − cos(2α + β) = cos(2α + β) cos β = −1 cos(2α + β) = k −1 (c) Put α = k=

π π , β= 4 6 π cos 6

cos(2 ⋅ π4 + π6 )

=− 3

116

Chapter 7 Sums and Products of Trigonometric Functions

From (b), k − 1 = ( k + 1) tan(α + β) tan α π π π − 3 − 1 = ( − 3 + 1) tan( + ) tan 4 6 4 5π − 3 − 1 = tan 12 − 3 + 1 3 +1 = 3 −1 =2+ 3

Enrichment 7 (p.173) 1. (a) (i) a − b = k sin A − k sin B = k (sin A − sin B) cos C2 (ii) cot C = 2 sin C2 = =



cos

cos( π2 − sin( π2 −

A+ B ) 2 A+ B ) 2

sin( A +2 B )

cos( A +2 B )

A+ B C A+ B cot = sin 2 2 2

(b) (i) ( a − b) cot

C 2

C 2 A+ B A+ B A − B sin 2 = 2 k cos sin ⋅ 2 2 cos A +2 B A+ B A− B sin = 2 k sin 2 2 = − k (cos A − cos B) = k (sin A − sin B) ⋅ cot

(ii) Similarly,

A = − k (cos B − cos C ) 2 B (c − a) cot = − k (cos C − cos A) 2 C A ∴ ( a − b) cot + (b − c) cot 2 2 B + (c − a) cot 2 = − k (cos A − cos B) −k (cos B − cos C ) − k (cos C − cos A) =0 (b − c) cot

2. (a) cos A + cos C = 2(1 − cos B) A C ∴ (1 − 2 sin 2 ) + (1 − 2 sin 2 ) 2 2 2 B = 2(1 − 1 + 2 sin ) 2

A C B − 2 sin 2 = 4 sin 2 2 2 2 2 A 2 C 2 B 1 − sin − sin = 2 sin 2 2 2 2 A 2 B 2 C ∴ sin + sin + sin 2 2 2 2 B 2 B = 1 − sin = cos 2 2 (b) cos A + cos C = 2(1 − cos B) A+C A−C B 2 cos cos = 2(1 − 1 + 2 sin 2 ) 2 2 2 2 B = 4 sin 2 A+C 2 π ) = 4 sin ( − 2 2 A+C ) = 4 cos 2 ( 2 A−C A+C ∴ cos = 2 cos 2 2 A C A C A C cos cos + sin sin = 2 cos cos 2 2 2 2 2 2 A C − 2 sin sin 2 2 A C A C 3 sin sin = cos cos 2 2 2 2 A C 1 ∴ tan tan = 2 2 3 C A A C tan 2 + tan 2 (c) (i) cot + cot = 2 2 tan A2 tan C2 2 − 2 sin 2

=

tan

A 2

= 3(tan

(ii) 2 cot

+ tan C2 1 3

A C + tan ) 2 2

B A+C = 2 tan 2 2 2(tan A2 + tan C2 ) = 1 − tan A2 tan C2 =

2(tan A2 + tan C2 )

1 − 13 A C = 3(tan + tan ) 2 2 C A tan 2 + tan 2 = tan A2 tan C2 A C = cot + cot 2 2

3. (a) cos(θ − φ) = cos θ cos φ + sin θ sin φ ............(1) a 2 = (cos θ + cos φ)2 = cos 2 θ + 2 cos θ cos φ + cos 2 φ ............(2)

Chapter 7 Sums and Products of Trigonometric Functions

b 2 = (sin θ + sin φ)2 = sin 2 θ + 2 sin θ sin φ + sin 2 φ ...............(3)

− (sin C + cos C )2 − (sin 2 B + 2 sin B cos B + cos 2 B)

a2 + b2 = cos 2 θ + sin 2 θ + 2(cos θ cos φ + sin θ sin φ) + cos 2 φ + sin 2 φ = 2 + 2(cos θ cos φ + sin θ sin φ) ..................(4) Substitute (1) into (4), a + b = 2 + 2 cos(θ − φ) 1 ∴ cos(θ − φ) = ( a 2 + b 2 − 2) 2 b sin θ + sin φ = a cos θ + cos φ 2

2

θ+φ θ−φ cos 2 2 θ+φ θ−φ 2 cos 2 cos 2

2 sin

= tan

4. (a) (sin A + cos A)2 − (sin B + cos B)2 = (sin 2 A + 2 sin A cos A + cos 2 A)

(2) + (3),

=

117

θ+φ 2

cos θ + cos φ = 2 ..........................(1) (b)  sin θ + sin φ = 2 ...........................(2) ∴ a=b= 2 θ+φ From (a), cos(θ − φ) = 1 and tan =1 2 θ + φ π 5π ∴ θ − φ = 0 and = , 2 4 4 π 5π θ = φ and θ + φ = , 2 2 5π When θ + φ = , 2 5π 2θ = 2 5π θ= 4 5π Substitute θ = into (1), 4 5π 2 cos =− 2 ≠ 2 4 5π ∴ is not a solution. 4 π When θ + φ = , 2 π θ= 4 π Substitute θ = into (1) and (2), 4 π π 2 cos = 2 , 2 sin = 2 4 4 π ∴ θ=φ= 4

− (sin 2 C + 2 sin C cos C + cos 2 C ) = (1 + sin 2 A) − (1 + sin 2 B) − (1 + sin 2C ) = (sin 2 A − sin 2 B − sin 2C ) − 1 (b) From (a), (sin A + cos A)2 − (sin B + cos B)2 − (sin C + cos C )2 = (sin 2 A − sin 2 B − sin 2C ) − 1 = 2 sin A cos A − [2 sin( B + C ) cos( B − C )] − 1 = 2 sin A cos A − [2 sin(180° − A) cos( B − C )] − 1 = 2 sin A[cos A − cos( B − C )] − 1 A+ B−C ) = 2 sin A[ −2 sin( 2 A− B+C sin( )] − 1 2 180° − 2C 180° − 2 B = −4 sin A[sin( )sin( )] − 1 2 2 = −4 sin A[sin(90° − C )sin(90° − B)] − 1 = −4 sin A cos B cos C − 1 From (a) and (b), we have (sin 2 A − sin 2 B − sin 2C ) − 1 = −4 sin A cos B cos C − 1 sin 2 A − sin 2 B − sin 2C = −4 sin A cos B cos C .............................(1) Substitute A = 90° into (1),

B + C = 90° 2 B + 2C = 180° sin 2 B + sin 2C = sin(180° − 2C ) + sin 2C = 2 sin 2C π Q 0
5. (a) sin 4 x = 2 sin 2 x cos 2 x = 2(2 sin x cos x ) cos 2 x = 4 sin x cos x cos 2 x

118

Chapter 7 Sums and Products of Trigonometric Functions

(b) Put x = 36° , then

sin 4(36°) = 4 sin 36° cos 36° cos 72°

A+ B A− B sin 2 2 1 A+ B A− B ) = − [cos( + 2 2 2 A+ B A− B − cos( − )] 2 2 1 = − (cos A − cos B) 2 1 = (cos B − cos A) 2

(d) sin

sin 144° 4 sin 36° 1 = 4

cos 36° cos 72° =

(c) From (b), 1 (cos 108° + cos 36°) 2 1 = 4 cos(180° − 72°) + cos 36° = cos 36° − cos 72° 1 = 2

cos 36° cos 72° =

2 A + 3A 2 A − 3A ) cos( ) 2 2 −A 5A = 2 sin cos 2 2 A 5A = 2 sin cos 2 2

2. (a) sin 2 A + sin 3 A = 2 sin(

(d) (cos 36° + cos 72°)2 = (cos 36° − cos 72°)2 + 4 cos 36° cos 72° 1 1 = ( ) 2 + 4( ) 2 4 5 = 4 5 (Q It is positive.) cos 36° + cos 72° = 2 (e) Solve (c) and (d), cos 36° =

5 +1 4

cos 72° =

5 −1 4

Classwork 1 (p.165) A+ B A− B cos 2 2 A+ B A− B A+ B A− B 1 ) + sin( )] = [sin( + − 2 2 2 2 2 1 = (sin A + sin B) 2

1. (a) sin

A+ B A− B sin 2 2 1 A+ B A− B ) = [sin( + 2 2 2 A+ B A− B − sin( − )] 2 2 1 = (sin A − sin B) 2 A+ B A− B (c) cos cos 2 2 1 A+ B A− B ) = [cos( + 2 2 2 A+ B A− B + cos( − )] 2 2 1 = (cos A + cos B) 2 (b) cos

(b) cos(2 A + B) + cos(2 A − B) 2A + B + 2A − B ) = 2 cos( 2 2A + B − 2A + B ) ⋅ cos( 2 = 2 cos 2 A cos B (c)

1 (sin 6 A − sin 2 A) 2 1 6A + 2A 6A − 2A )sin( )] = [2 cos( 2 2 2 = cos 4 A sin 2 A

(d) cos( A − B) − cos( A + B) A− B+ A+ B A− B− A− B = −2 sin( )sin( ) 2 2 = −2 sin A sin( − B) = 2 sin A sin B

Classwork 2 (p.166) 1. (a) 2 sin( 45° + A)sin( 45° − A) 1 = 2{− [cos( 45° + A + 45° − A) 2 − cos( 45° + A − 45° + A)]} = −(cos 90° − cos 2 A) = cos 2 A (b) cos 2 ( A − B) − cos 2 ( A + B) = [cos( A − B) + cos( A + B)] ⋅ [cos( A − B) − cos( A + B)] A− B+ A+ B A− B− A− B = (2 cos cos ) 2 2 A− B+ A+ B A− B− A− B ⋅ ( −2 sin sin ) 2 2 = [2 cos A cos( − B)][−2 sin A sin( − B)] = 4 cos A cos B sin A sin B = sin 2 A sin 2 B

Chapter 7 Sums and Products of Trigonometric Functions

(c) 2 sin 3 A cos A + 2 cos 4 A sin 2 A 1 1 = 2[ (sin 4 A + sin 2 A)] + 2[ (sin 6 A − sin 2 A)] 2 2 = sin 4 A + sin 2 A + sin 6 A − sin 2 A = sin 4 A + sin 6 A = 2 sin 5 A cos( − A) = 2 sin 5 A cos A 2. cos 2 x + cos 3 x = 0 , 0° ≤ x < 360° 5x −x 2 cos cos =0 2 2 5x x 2 cos cos = 0 2 2 5x x cos cos = 0 2 2 5x cos =0 2 5x = 90°, 270°, 450°, 630°, 810° 2 x = 36°, 108°, 180°, 252°, 324° or cos



x = 0 ( 0° ≤ x < 180° ) 2 x = 90° 2 x = 180°

x = 36°, 108°, 180°, 252°, 324°

Classwork 3 (p.170) 1. sin θ + cos θ = m (sin θ + cos θ)2 = m 2 sin 2 θ + 2 sin θ cos θ + cos 2 θ = m 2

1 + sin 2θ = m 2 sin 2θ = m 2 − 1 ........(1) cos 2θ = n ...............(2) (1)2 + (2)2 ,

sin 2 2θ + cos 2 2θ = ( m 2 − 1)2 + n 2 1 = ( m 2 − 1)2 + n 2 n2 = 2m2 − m 4

2. x = cot θ + cos θ ......................(1) y = cot θ − cos θ ......................(2) x+y (1) + (2), = cot θ 2 ( x + y)2 = cot 2 θ 4 4 = tan 2 θ ....................(3) 2 ( x + y)

x−y = cos θ 2 ( x − y)2 = cos 2 θ 4 4 = sec 2 θ ......(4) 2 ( x − y) By (3) and (4), (1) − (2),

sec 2 θ = tan 2 θ + 1 4 4 = +1 2 ( x − y) ( x + y)2 4 ( x + y ) 2 = 4( x − y ) 2 + ( x 2 − y 2 ) 2 16 xy = ( x 2 − y 2 )2

119