Am-sln-04(e)

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Am-sln-04(e) as PDF for free.

More details

  • Words: 7,885
  • Pages: 11
64

Chapter 4 The Binomial Theorem

CHAPTER 4 Exercise 4A (p.84) 1. 3!= 3 × 2 × 1 =6

11. (n − 1)! − (n − 2)! = (n − 1) × (n − 2)! − (n − 2)! = (n − 2)!(n − 1 − 1) = (n − 2)[(n − 2)!] n +1 C3

=

13.

n +1 Cn

=

2. 6!= 6 × 5 × 4 × 3 × 2 × 1 = 720 3.

4.

7! 7 × 6 × 5 × 4! = 4! 4! = 7×6×5 = 210 10! 10 × 9 × 8! = 8! 8! = 90

5. 7! − 6! = 7 × 6! − 6! = 6! (7 − 1) = 6! × 6 = 6 × 6 × 5 × 4 × 3 × 2 ×1 = 4 320 6. 4! + 5! = 4! + 5 × 4! = 4! (1 + 5) = 6 × 4 × 3 × 2 ×1 = 144 7.

8.

9.

10.

5 C3

6 C5

5! 3!(5 − 3)! 5! = 3! 2! 5 × 4 × 3! = 3! 2! = 10 =

6! 5!(6 − 5)! 6 × 5! = 5!1! =6 =

12! 9!(12 − 9)! 12 × 11 × 10 × 9! = 9! 3! = 220

12 C9 =

(n + 1)! (n + 1) × n × (n − 1) × (n − 2)! = (n − 2)! (n − 2)! = n(n + 1)(n − 1)

(n + 1)! 3!(n + 1 − 3)! (n + 1)! = 3!(n − 2)! (n + 1)n(n − 1)(n − 2)! = 3!(n − 2)! 1 = n(n + 1)(n − 1) 6

12.

(n + 1)! n!(n + 1 − n)! (n + 1) × n! = n!1! = n +1

n! (n − 2)![n − (n − 2)!] n! = (n − 2)! 2! n(n − 1)(n − 2)! = 2(n − 2)! 1 = n(n − 1) 2

14. n Cn − 2 =

Exercise 4B (p.90) 1. ( a + b)3 = ( a)3 + 3C1 ( a)2 (b) + 3C2 ( a)(b)2 + b 3 = a 3 + 3a 2 b + 3ab 2 + b 3

2. ( x + 2 y)5

= ( x )5 + 5C1 ( x ) 4 (2 y) + 5C2 ( x )3 (2 y)2 + 5C3 ( x )2 (2 y)3 + 5C4 ( x )(2 y) 4 + (2 y)5 = ( x )5 + 5( x ) 4 (2 y) + 10( x )3 (2 y)2 + 10( x )2 (2 y)3 + 5( x )(2 y) 4 + (2 y)5 = x 5 + 10 x 4 y + 40 x 3 y 2 + 80 x 2 y 3 + 80 xy 4 + 32 y 5 3. (2 x − 3) 4 = (2 x ) 4 + 4 C1 (2 x )3 ( −3) + 4 C2 (2 x )2 ( −3)2 + 4 C3 (2 x )( −3)3 + ( −3) 4 = 16 x 4 − 96 x 3 + 216 x 2 − 216 x + 81

Chapter 4 The Binomial Theorem

65

9. (2 x + y)10

4. (3 x − 2 y)6 = (3 x )6 + 6 C1 (3 x )5 ( −2 y) + 6 C2 (3 x ) 4 ( −2 y)2

The general term in the expansion

+ 6 C3 (3 x )3 ( −2 y)3 + 6 C4 (3 x )2 ( −2 y) 4

= 10 Cr (2 x )10 − r ( y)r

+ 6 C5 (3 x )( −2 y)5 + ( −2 y)6

∴ The term in x 3 y 7 = 10 C7 (2 x )3 y 7

= 729 x 6 − 2 916 x 5 y + 4 860 x 4 y 2 − 4 320 x 3 y 3 + 2 160 x y − 576 xy + 64 y 2 4

5

6

1 5. ( x − )5 x 1 1 = ( x )5 + 5C1 ( x ) 4 ( − ) + 5C2 ( x )3 ( − )2 x x 1 3 1 4 1 2 + 5C3 ( x ) ( − ) + 5C4 ( x )( − ) + ( − )5 x x x 5 4 1 3 1 2 2 1 3 = x − 5 x ( ) + 10 x ( ) − 10 x ( ) x x x 1 4 1 + 5x(− ) − 5 x x 5 = x − 5 x 3 + 10 x − 10 x −1 + 5 x −3 − x −5

∴ The coefficient of x 3 y 7 = 10 C7 ⋅ 2 3 = 960 1 10. ( − 3 x )8 2 The general term in the expansion 1 = 8Cr ( )8 − r ( −3 x )r 2 1 ∴ The term in x 3 = 8C3 ( )5 ( −3 x )3 2 1 ∴ The coefficient of x 3 = 8C3 ( )5 ( −3)3 2 189 =− 4 11. The general term in the expansion

x 2 6. ( + )6 2 x x x 2 x 2 = ( )6 + 6 C1 ( )5 ( ) + 6 C2 ( ) 4 ( )2 2 2 x 2 x x 3 2 3 x 2 2 4 + 6 C3 ( ) ( ) + 6 C4 ( ) ( ) 2 x 2 x x 2 5 2 6 + 6 C5 ( )( ) + ( ) x 2 x x 2 x 6 x 5 2 x 2 = ( ) + 6( ) ( ) + 15( ) 4 ( )2 + 20( )3 ( )3 2 2 x 2 x 2 x x 2 2 4 x 2 5 2 6 + 15( ) ( ) + 6( )( ) + ( ) 2 x x 2 x 1 6 3 4 15 2 60 96 64 = x + x + x + 20 + 2 + 4 + 6 64 8 4 x x x

7. ( x + 2)8 The general term in the expansion = 8Cr ( x )8 − r (2)r ∴ The term in x 4 = 8C4 x 4 (2) 4 ∴ The coefficient of x 4 = 8C4 2 4 = 1 120 8. (3 x − 2) 7 The general term in the expansion = 7Cr (3 x ) 7 − r ( −2)r ∴ The term in x 5 = 7C2 (3 x )5 ( −2)2 ∴ The coefficient of x 5 = 7C2 ⋅ 35 ( −2)2 = 20 412

(2 − x )6 = 6 Cr (2)6 − r ( − x )r ∴ The term in x 4 = 6 C4 (2)2 ( − x ) 4 ∴ The coefficient of x 4 = 6 C4 (2)2 ( −1) 4 = 60 The general term in the expansion (2 x − 1)9 = 9 Cr (2 x )9 − r ( −1)r ∴ The term in x 4 = 9 C5 (2 x ) 4 ( −1)5 ∴ The coefficient of x 4 = − 2 016 ∴ The coefficient of x 4 in the expansion of (2 − x )6 − (2 x − 1)9 = 60 + 2 016 = 2 076

12. The general term in the expansion 1 1 ( − 6 x )6 = 6 Cr ( )6 − r ( −6 x )r 3x 3x 1 = 6 Cr ( )6 − r ( −6)r x 2 r − 6 3 It is the constant term when 2 r − 6 = 0 , i.e r = 3 . 1 ∴ The constant term = 6 C3 ( )3 ( −6)3 = −160 3 13. The general term in the expansion 1 1 ( 4 x 2 − )9 = 9 Cr ( 4 x 2 )9 − r ( − )r 2x 2x 1 = 9 Cr ( 4)9 − r ( − )r x18 − 3r 2 It is the constant term when 18 − 3r = 0 , i.e r = 6 . 1 ∴ The constant term = 9 C6 ( 4)3 ( − )6 = 84 2

66

Chapter 4 The Binomial Theorem

14. The general term in the expansion (1 + x )

24

=

24 Cr x

r

∴ The coefficient of x i.e. Br = 24 Cr Br + 2 = Br

24 Cr + 2 24 Cr

24! ( r + 2 )![ 24 − ( r + 2 )!] 24! r!( 24 − r )!

=

r

24 Cr

=

57 7

=

57 7

57 (24 − r )! = 7 (r + 2)(r + 1)(22 − r )! (24 − r )(23 − r ) 57 = 7 (r + 2)(r + 1)

The coefficient of the third term = 4 ⋅ n C2 4 ⋅ n C2 = 60 n! = 15 2!(n − 2)! n(n − 1) = 30 n 2 − n − 30 = 0 (n − 6)(n + 5) = 0 n = 6 or −5 (rejected)

The general term in the expansion (1 + 2 x 2 )6 = 6 Cr (2 x 2 )r ∴ The term in x 8 = 6 C4 (2 x 2 ) 4 ∴ The coefficient of x 8 = 240

57(r 2 + 3r + 2) = 7(552 − 47r + r 2 ) 50 r 2 + 500 r − 3 750 = 0 r + 10 r − 75 = 0 (r + 15)(r − 5) = 0 2

Q ∴

r > 0 , r = −15 (rejected) r=5

1 15. (1 − 2 x )9 (1 + )3 x = [1 + 9( −2 x ) + 36( −2 x )2 + 84( −2 x )3 + L] 1 1 1 [1 + 3( ) + 3( )2 + ( )3 ] x x x 2 = (1 − 18 x + 144 x − 672 x 3 + L) 3 3 1 (1 + + 2 + 3 ) x x x ∴ The constant term = 1 + ( −18)(3) + 144(3) + ( −672) = −293

18. (1 + mx 2 ) n = 1 + n C1 ( mx 2 ) + n C2 ( mx 2 )2 + L Comparing coefficients of x 2 and x 4 respectively,

m ⋅ n C1 = 14 mn = 14 .............................(1) m 2 ⋅ n C2 = 21m 2 n(n − 1) m2 ⋅ = 21m 2 2 n 2 − n − 42 = 0 (n + 6)(n − 7) = 0 n = 7 or Put n = 7 into (1), 7m = 14 m=2 ∴ m= 2

−6 (rejected)

19. The general term in the expansion (1 + x ) n = n Cr x r ∴ The coefficient of x 4 =

n C4

= [1 + 3( −5 x ) + 3( −5 x )2 + L]

∴ The coefficient of x 5 =

n C5

[1 + 6(2 x ) + 15(2 x )2 + L]

∴ The coefficient of x 6 =

n C6

16. (1 − 5 x )3 (1 + 2 x )6

= (1 − 15 x + 75 x + L) 2

(1 + 12 x + 60 x 2 + L) = 1 + ( −15 + 12) x + (75 − 15 × 12 + 60) x 2 + L = 1 − 3 x − 45 x 2 + L



a = −3 , b = −45

17. (2 x + 1) = (1 + 2 x ) 2

n

2 n

= 1 + n C1 (2 x 2 ) + n C2 (2 x 2 )2 + L

n C4 + n C6 = 2 n C5 n! n! 2(n!) + = 4!(n − 4)! 6!(n − 6)! 5!(n − 5)! 30 (n − 4)(n − 5) 12(n − 4) + = (n − 4)! (n − 4)! (n − 4)! 30 + (n − 4)(n − 5) = 12(n − 4)

n 2 − 21n + 98 = 0 (n − 14)(n − 7) = 0 n = 7 or 14

Chapter 4 The Binomial Theorem

4. (3 − x + x 2 )8

20. (1 + px )(1 + qx )5

= [3 − x (1 − x )]8

= (1 + px )[1 + 5(qx ) + 10(qx )2 + L]

= 38 − 8 ⋅ 37 x (1 − x ) + 28 ⋅ 36 x 2 (1 − x )2

= (1 + px )(1 + 5qx + 10 q 2 x 2 + L)

−56 ⋅ 35 x 3 (1 − x )3 + L

Comparing the coefficients of x,

= 6 561 − 17 496 x + 17 496 x 2

5q + p = −6 ...........(1)

+20 412 x 2 (1 − 2 x + L) − 13 608 x 3 (1 + L)

Comparing the coefficients of x 2 ,

= 6 561 − 17 496 x + 37 908 x 2 − 54 432 x 3 + L

10 q + 5 pq = 0 ......(2) 2

Put p = −6 − 5q into (2),

5. (1 − 4 x + x 2 )9

10 q 2 + 5( −6 − 5q )q = 0

= [1 − x ( 4 − x )]9

10 q 2 − 30 q − 25q 2 = 0

= 1 − 9 x ( 4 − x ) + 36 x 2 ( 4 − x )2 − L = 1 − 36 x + 9 x 2 + 36 x 2 (16 + L) + L

15q 2 + 30 q = 0 q( q + 2 ) = 0 q = −2 or 0 (rejected)

= 1 − 36 x + 9 x 2 + 576 x 2 + L = 1 − 36 x + 585 x 2 + L

Put q = −2 into p = −6 − 5q ,

Coefficient of x 2 = 585

p = −6 − 5( −2) =4

6. (2 − x + x 2 )10

21 − 22. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons.

= [2 − x (1 − x )]10 = 210 − 10 ⋅ 2 9 x (1 − x ) + 45 ⋅ 2 8 x 2 (1 − x )2 − 120 ⋅ 2 7 x 3 (1 − x )3 + L = 1 024 − 5 120 x (1 − x ) + 11 520 x 2

Exercise 4C (p.93)

(1 − 2 x + L) − 15 360 x 3 (1 + L) + L

1. (1 + x + 3 x 2 )3

= 1 024 − 5 120 x + 5 120 x 2 + 11 520 x 2

= [1 + x (1 + 3 x )]

3

= 1 + 3 x (1 + 3 x ) + 3 x (1 + 3 x ) + x (1 + 3 x ) 2

2

3

= 1 + 3 x + 9 x 2 + 3 x 2 (1 + 6 x + L) + x 3 (1 + L) = 1 + 3 x + 12 x + 19 x + L 2

3

− 23 040 x 3 − 15 360 x 3 + L 3

= 1 024 − 5 120 x + 16 640 x 2 − 38 400 x 3 + L Coefficient of x 3 = −38 400 1 + 6 x )3 3x 1 1 = [1 − ( − 6 x 2 )]3 x 3 1 1 1 1 = 1 − 3 ⋅ ( − 6 x 2 ) + 3 ⋅ 2 ( − 6 x 2 )2 x 3 x 3 1 1 2 3 − 3 ( − 6x ) x 3 3 1 3 1 = 1 − ( − 6 x 2 ) + 2 ( − 4 x 2 + 36 x 4 ) + L x 3 x 9

7. (1 −

2. (1 + x − 2 x 2 )6

= [1 + x (1 − 2 x )]6 = 1 + 6 x (1 − 2 x ) + 15 x 2 (1 − 2 x )2 +20 x 3 (1 − 2 x )3 + L = 1 + 6 x − 12 x 2 + 15 x 2 (1 − 4 x + L) +20 x 3 (1 + L) = 1 + 6 x + 3 x 2 − 40 x 3 + L

Constant term = 1 + 3( −4) = −11

3. (1 − x − x 2 )5

= [1 − x (1 + x )]

5

= 1 − 5 x (1 + x ) + 10 x 2 (1 + x )2 −10 x (1 + x ) + L 3

3

= 1 − 5 x − 5 x 2 + 10 x 2 (1 + 2 x + L) −10 x (1 + L) 3

= 1 − 5 x + 5 x 2 + 10 x 3 + L

8. (1 − x + 2 x 2 ) n = [1 − x (1 − 2 x )]n

= 1 − n C1 x (1 − 2 x ) + n C2 x 2 (1 − 2 x )2 + L = 1 − n C1 x (1 − 2 x ) + n C2 x 2 (1 − 4 x + 4 x 2 ) + L = 1 − n C1 x + (2 n C1 + n C2 ) x 2 + L

67

68

Chapter 4 The Binomial Theorem

n(n − 1) 4 x (1 + 2 x 2 n(n − 1)(n − 2) 6 +x2 ) + x (1 + 3 x 6 + L) + L n(n − 1) 4 = 1 + nx 2 + nx 3 + x 2 n(n − 1) 6 + n(n − 1) x 5 + x 2 n(n − 1)(n − 2) 6 + x 6 n(n − 1)(n − 2) 7 + x +L 2 5 Coefficient of x = n(n − 1)

2 n C1 + n C2 = 44 1 2 n + n(n − 1) = 44 2 n 2 + 3n − 88 = 0 (n − 8)(n + 11) = 0 n = 8 or −11 (rejected)

= 1 + nx 2 + nx 3 +

9. (a) (1 − x + 2 x 2 )6

= [1 − x (1 − 2 x )]6 = 1 − 6 x (1 − 2 x ) + 15 x 2 (1 − 2 x )2 − 20 x 3 (1 − 2 x )3 + L = 1 − 6 x + 12 x 2 + 15 x 2 (1 − 4 x + L) − 20 x 3 (1 + L)

Coefficient of x 7 =

= 1 − 6 x + 27 x 2 − 80 3 + L (b) (1 − x + 2 x 2 )6 (1 + x )6

(b)

= (1 − 6 x + 27 x 2 − 80 3 x 3 + L) (1 + 6 x + 15 x 2 + 20 x 3 + L) = 1 + x (27 − 6 × 6 + 15) + x 3 ( −80 + 27 × 6 − 6 × 15 + 20) + L

10. (a) (1 + x − 2 ax 2 ) n

Coefficient of x 5 1 n( n − 1)( n − 2 ) 2

=5

=5 n(n − 1) n−2 =5 2 n = 12

2

= 1 + 6 x 2 + 12 x 3 + L a = 0 , b = 6 , c = 12

Coefficient of x 7

1 n(n − 1)(n − 2) 2

12. (1 + px + qx 2 ) 4 = [1 + x ( p + qx )]4

= [1 + x (1 − 2 ax )]n = 1 + n C1 x (1 − 2 ax )

= 1 + 4 x ( p + qx ) + 6 x 2 ( p + qx )2

+ n C2 x 2 (1 − 2 ax )2 + L = 1 + nx (1 − 2 ax ) 1 + n(n − 1) x 2 (1 + L) + L 2 n(n − 1) 2 = 1 + nx − [2 an − ]x + L 2

= 1 + 4 px + 4 qx 2 + 6 x 2 ( p 2 + 2 pqx + L)

+ 4 x 3 ( p + qx )3 + L + 4 x 3 ( p3 + L) + L = 1 + 4 px + 4 qx 2 + 6 p 2 x 2 + 12 pqx 3 + 4 p3 x 3 + L = 1 + 4 px + 2(3 p 2 + 2 q ) x 2 + 4 p( p 2 + 3q ) x 3 + L

(b) Coefficient of x = n = 7 Comparing the coefficients of x 2 , n(n − 1) −[2 an − ]= 0 2 7×6 =0 2 a(7) − 2 3 a= 2

2(3 p 2 + 2 q ) = 0 ..............(1)  4 p( p 2 + 3q ) = −112 ......(2) By (1), 2 q = −3 p 2 3 q = − p2 2

11. (a) (1 + x 2 + x 3 ) n = [1 + x 2 (1 + x )]n

n(n − 1) 4 x (1 + x )2 2 n(n − 1)(n − 2) 6 + x (1 + x )3 + L 6

−3 2 p )(3)] = −112 2 7 4 p( − p 2 ) = −112 2 −14 p3 = −112

Substitute into (2), 4 p[ p 2 + (

p3 = 8 p=2

= 1 + nx 2 (1 + x ) +



3 q = − ( 4) = −6 2

Chapter 4 The Binomial Theorem

69

4. (1 + 2 x )3 (1 − x )2

13. (a) (1 − tx − x 2 ) 7

= [1 + 3(2 x ) + 3(2 x )2 + (2 x )3 ](1 − 2 x + x 2 )

= [1 − x (t + x )]7 = 1 − 7 x (t + x ) + 21x (t + x ) 2

2

= (1 + 6 x + 12 x 2 + 8 x 3 )(1 − 2 x + x 2 ) = 1 + ( −2 + 6) x + (1 − 12 + 12) x 2 + (8 − 24 + 6) x 3

− 35 x 3 (t + x )3 + L

+ (12 − 16) x 4 + 8 x 5

= 1 − 7tx − 7 x 2 + 21x 2 (t 2 + 2tx + L) − 35 x 3 (t 3 + L) + L

= 1 + 4 x + x 2 − 10 x 3 − 4 x 4 + 8 x 5

= 1 − 7tx − 7 x 2 + 21t 2 x 2 + 42tx 3 − 35t 3 x 3 + L = 1 − 7tx + 7(3t − 1) x 2

2

12 − r ( − x −1 )r 12 Cr (2 x )

−7t (5t 2 − 6) x 3 + L (b) By (a), comparing the coefficients of x 3 , −91t = −7t (5t − 6) 2

2

13t = 5t 2 − 6 5t 2 − 13t − 6 = 0 (5t + 2)(t − 3) = 0 t = 3, −

1 5. (2 x − )12 x The general term is = 12 Cr (2)12 − r ( −1)r x12 − 2 r

It is the constant term when 12 − 2 r = 0 . ∴ r = 6 ∴ The constant term =

12 C6

⋅ 2 6 ( −1)6 = 59 136

x2 2 8 − ) x 2 The general term is

6. ( 2 (rejected) 5

Coefficient of x 2 = 7(27 − 1) = 182 14 − 15. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons.

x2 8− r 2 r ) ( − ) = 8Cr ( −1)r 2 2 r − 8 x16 − 3r 2 x Term in x 4 when 16 − 3r = 4 , ∴ r = 4 8 Cr (

Coefficient of x 4 = 8 C4 ( −1) 4 2 8 − 8 = 70 7. (1 + x )16 = 1 + 16 C1 x + 16 C2 x 2 + L Coefficient of the 3rd term =

16 C2

= 120

Revision Exercise 4 (p.95) 1 1. (2 x − )5 x 1 1 = (2 x )5 − 5(2 x ) 4 ( ) + 10(2 x )3 ( )2 x x 1 4 1 2 1 3 −10(2 x ) ( ) + 5(2 x )( ) − ( )5 x x x = 32 x 5 − 80 x 3 + 80 x − 40 x −1+ 10 x −3 − x −5

2. ( a − b)3 ( a + b)3

= ( a 2 − b 2 )3 = a 6 − 3a 4 b 2 + 3a 2 b 4 − b 6

8. (2 − x )15 = 215 − 15C1 214 x + L + 15C12 2 3 ( − x )12 + L Coefficient of the 13th term =

15 C12

9. (2 + x + x 3 ) 7

= [2 + x (1 + x 2 )]7 = 2 7 + 7 C1 ⋅ 2 6 x (1 + x 2 ) + 7C2 ⋅ 2 5 x 2 (1 + x 2 )2 + 7C3 ⋅ 2 4 x 3 (1 + x 2 )3 + L = 128 + 448 x (1 + x 2 ) + 672 x 2 (1 + L) + 560 x 3 (1 + L) + L = 128 + 448 x + 672 x 2 + 1 008 x 3 + L 10. (3 + 2 x − x 2 ) 4

1 3. ( x 2 − ) 4 x 1 1 = x 8 − 4( x 2 )3 ( ) + 6( x 2 )2 ( )2 x x 1 4 2 1 3 − 4( x )( ) + ( − ) x x 8 5 2 = x − 4 x + 6 x − 4 x −1 + x −4

= [3 + x (2 − x )]4 = 34 + 4 ⋅ 33 x (2 − x ) + 6 ⋅ 32 x 2 (2 − x )2 + 4 ⋅ 3 x 3 ( 2 − x )3 + L = 81 + 108 x (2 − x ) + 54 x 2 ( 4 − 4 x + L) + 12 x 3 (8 − L) + L = 81 + 216 x + 108 x 2 − 120 x 3 + L

2 3 = 3 640

70

Chapter 4 The Binomial Theorem

It is the constant term when

11. (1 + 2 x ) 4 (1 − x )6 = (1 + 8 x + 24 x 2 + 32 x 3 + L) (1 − 6 x + 15 x 2 − 20 x 3 + L) = 1 + 2 x − 9 x 2 − 12 x 3 + L

12. (1 − 2 x ) 4 (1 + x ) 7 = (1 − 8 x + 24 x 2 + L)(1 + 7 x + 21x 2 + L)

Coefficient of x 2 = 21 − 56 + 24 = −11

1 + 4 x 2 )4 2x 1 = [1 − (1 − 8 x 3 )]4 2x 1 1 = 1 − 4( )(1 − 8 x 3 ) + 6( )2 (1 − 8 x 3 )2 2x 2x 1 3 1 3 3 − 4( ) (1 − 8 x ) + ( ) 4 (1 − 8 x 3 ) 4 2x 2x Constant term = 1 + 12 = 13

13. (1 −

14. (1 + x − 2 x 2 )9 (1 + x ) 4

= [1 + x (1 − 2 x )]9 (1 + x ) 4 = [1 + 9 x (1 − 2 x ) + 36 x 2 (1 − 2 x )2 + 84 x 3 (1 − 2 x )3 + L](1 + 4 x + 6 x 2 + 4 x 3 + L) = [1 + 9 x − 18 x 2 + 36 x 2 (1 − 4 x + L) + 84 x 3 (1 + L) + L](1 + 4 x + 6 x 2 + 4 x 3 + L) = (1 + 9 x + 18 x 2 − 60 x 3 )(1 + 4 x + 6 x 2 + 4 x 3 + L) Coefficient of x 3 = 4 + 9 × 6 + 18 × 4 − 60 = 70 15. (1 + 2 x ) n = 1 + 2 nx +

1 n(n − 1)(2 x )2 2

1 + n(n − 1)(n − 2)(2 x )3 6 1 + n(n − 1)(n − 2)(n − 3)(2 x ) 4 + L 24 Q Coefficient of x 3 = Coefficient of x 4 ∴

2 3 ⋅ n(n − 1)(n − 2) 2 4 ⋅ n(n − 1)(n − 2)(n − 3) = 6 24 4 2 = (n − 3) 3 3 2 = n−3 n=5

16. The general term in the expansion 1 1 (2 x 2 + ) n = n Cr (2 x 2 ) n − r ( )r 2x 2x = n Cr ⋅ 2 x n − 2 r x 2 n − 3r ∴ The 7th term = n C6 ⋅ 2 n −12 x 2 n −18

2 n − 18 = 0 . ∴ n = 9

∴ The value of the 7th term 21 = 9 C6 ⋅ 2 −3 = 2 17. The general term in the expansion a a ( x 2 + ) 7 = 7Cr ( x 2 ) 7 − r ( )r 2x 2x a = 7Cr ( )r x14 − 3r 2 a 21 2 ∴ A8 = 7C2 ( )2 = a 2 4 a 7 A11 = 7C1 ( ) = a 2 2 A8 = 6 A11 21 2 7 a = 6( )a 4 2 a( a − 4 ) = 0 a = 4 or 0 (rejected) 2 n 2 ) = ( ax ) n + n( ax ) n −1 ( 2 ) x2 x n(n − 1) 2 + ( ax ) n − 2 ( 2 )2 + L 2 x n(n − 1) 4 The third term = ( ax ) n − 2 ( 4 ) 2 x = 2 n(n − 1)a n − 2 x n − 6

18. ( ax +

Q The third term is independent of x. ∴

n − 6 = 0 , i.e. n = 6

The coefficient of the third term: 15 4 4 15 2(6)(5)a = 4 1 4 a = 16 1 1 (rejected) a = − or 2 2

2 n(n − 1)a n − 2 =

19. (1 + 2 x )5 (1 − x ) n = [1 + 5(2 x ) + 10(2 x )2 + L] n(n − 1) 2 [1 − nx + x + L] 2 = (1 + 10 x + 40 x 2 + L) n2 − n 2 x + L) 2 (a) Coefficient of x = − n + 10 = 1 n =9 (1 − nx +

Chapter 4 The Binomial Theorem

n2 − n − 10 n + 40 2 92 − 9 = − 90 + 40 2 = −14

(b) Coefficient of x 2 =

20 − 22. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons. x x n(n − 1) x 2 23. (1 + ) n = 1 + n( ) + ( ) 2n 2n 2 2n x 3 1 + n(n − 1)(n − 2)( ) L 6 2n Coefficient of x 2 = n(n − 1) ( 1 )2 2 2n n −1 8n 2n n

1 10 1 = 10 = 10 =5 =

1 1 n(n − 1)(n − 2)( )3 6 2n 1 1 3 = ×5× 4×3×( ) 6 10 1 = 100

Coefficient of x 3 =

24. (a) (1 + x + px 2 ) q = [1 + x (1 + px )]q = 1 + qx (1 + px ) +

1 q(q − 1) x 2 (1 + px )2 2

1 q(q − 1)(q − 2) x 3 (1 + px )3 + L 6 1 = 1 + qx + pqx 2 + q(q − 1) x 2 (1 + 2 px 2 1 + L) + q(q − 1)(q − 2) x 3 (1 + L) + L 6 q(q − 1) 2 x = 1 + qx + pqx 2 + 2 q(q − 1)(q − 2) 3 + pq(q − 1) x 3 + x +L 6 q(q − 1) 2 = 1 + qx + [ pq + ]x 2 q(q − 1)(q − 2) 3 +[ pq(q − 1) + ]x + L 6 1 = 1 + qx + q(2 p + q − 1) x 2 2 1 + q(q − 1)(6 p + q − 2) x 3 + L 6 +

71

q = 6 ...............................(1) (b)  1  2 q(2 p + q − 1) = 27 .......(2) Substitute q = 6 into (2). 1 (6)(2 p + 6 − 1) = 27 2 2p + 5 = 9 p=2 1 (6)(5)(12 + 6 − 2) 6 = (5)(16) = 80

Coefficient of x 3 =

25. (a) (1 − px )6 − (1 + x ) n = (1 − 6 px + 15 p 2 x 2 + L) 1 − [1 + nx + n(n − 1) x 2 + L] 2 1 = ( −6 p − n) x + [15 p 2 − n(n − 1)]x 2 + L 2 1 2 = −(6 p + n) x + (30 p − n 2 + n) x 2 + L 2 (b) −(6 p + n) = −17 .................(1) 1 (30 p 2 − n 2 + n) = 50 .......(2) 2 17 − n By (1), p = ..............(3) 6 Put (3) into (2), 1 17 − n 2 [30( ) − n 2 + n] = 50 2 6 5(289 − 34n + n 2 ) − 6n 2 + 6n = 600 n 2 + 164n − 845 = 0 n=5

or

−169 (rejected)

Put n = 5 into (3), p=

17 − 5 =2 6

Enrichment 4 (p.97) b 1. (a) ( ax + ) n x b b = ( ax ) n + n C1 ( ax ) n −1 ( ) + n C2 ( ax ) n − 2 ( )2 x x n −3 b 3 n−4 b 4 + n C3 ( ax ) ( ) + n C4 ( ax ) ( ) +L x x = a n x n + n C1a n −1bx n − 2 + n C2 a n − 2 b 2 x n − 4 + n C3 a n − 3b 3 x n − 6 + n C4 a n − 4 b 4 x n − 8 + L

72

Chapter 4 The Binomial Theorem

(b) The fifth term is the constant term. n−8 = 0 n=8 2. (a) (1 + 3 x ) m + (1 + 5 x ) n m( m − 1) = [1 + m(3 x ) + (3 x )2 + L] + 2 n(n − 1) [1 + n(5 x ) + (5 x )2 + L] 2 = 2 + (3m + 5n) x 9m( m − 1) 25n(n − 1) 2 +[ + ]x + L 2 2 Comparing coefficients of x, 3m + 5n = 19 Q m and n are positive integers.



n(n − 1)(n − 2) 7n(n − 1) + + 7n − 49 6 2 (3)(2) 7(3)(2) = + + 7(3) − 49 6 2 = −6

b=

4. Let the three consecutive coefficients be the coefficients of the (r − 1) th, rth and (r + 1) th terms, then n Cr − 2

= 3a ................................(1)

n Cr −1

= 12 a ..............................(2)

n Cr

= 28a .............................. (3)

(1) , (2)

m = 3, n = 2

9m( m − 1) 25n(n − 1) + 2 2 9(3)(2) 25(2) = + 2 2 = 52

(b) a =

3. (a) (1 + x − 2 x 2 ) 7 = [1 + x (1 − 2 x )]

7

= 1 + 7 x (1 − 2 x ) + 21x 2 (1 − 2 x )2 + 35 x 3 (1 − 2 x )3 + L = 1 + 7 x − 14 x + 21x (1 − 4 x + L) 2

2

+ 35 x 3 (1 + L) + L = 1 + 7 x + 7 x − 49 x + L 2

(b) (1 + x − 2 x ) (1 + x ) 2 7

3

7 + n = 10 n=3

n(n − 1) + 7n + 7 2 (3)(2) = + 7(3) + 7 2 = 31

3a 12 a n Cr −1 3 r −1 = n − r + 2 12 15r − 3n = 18 ..................(4) =

n Cr −1

12 a = 28a C n r 3 r = n − r +1 7 10 r − 3n = 3 .....................(5)

(4) − (5) : 5r = 15 r=3 Put r = 3 into (4),

15(3) − 3n = 18 n=9 Put n = 9 and r = 3 into (3), = 28a a=3

9 C3

n

= (1 + 7 x + 7 x 2 − 49 x 3 + L)[1 + nx + n(n − 1) 2 n(n − 1)(n − 2) 3 x + x + L] 2 6 n(n − 1) = 1 + ( 7 + n) x + [ + 7n + 7]x 2 2 n(n − 1)(n − 2) 7n(n − 1) +[ + + 7n − 49]x 3 6 2 +L By comparing coefficients,

a=

(2) , (3)

n Cr − 2

Classwork 1 (p.84) 1. (a) 5!= 5 × 4 × 3 × 2 × 1 = 120 (b)

(c)

9! 9 × 8 × 7! = 7! 7! = 72 7 C3

7! 3!(7 − 3)! 7! = 3! 4! 7 × 6 × 5 × 4! = 3! 4! = 35 =

Chapter 4 The Binomial Theorem

2. (a)

(b)

n Cn − 3

= = = =

(c)

∴ The coefficient of x 3 = 7C3 ( −2)3 = −280

n! 3!(n − 3)! n(n − 1)(n − 2)n − 3! = 6(n − 3)! 1 = n(n − 1)(n − 2) 6 =

n C3

n + 2 C2

(b) The general term in the expansion = 6 Cr ( x 2 )6 − r (2)r ∴ The term in x 6 = 6 C3 ( x 2 )3 (2)3

n! (n − 3)![n − (n − 3)]! n! (n − 3)! 3! n(n − 1)(n − 2)(n − 3)! (n − 3)! 3! 1 n(n − 1)(n − 2) 6

(n + 2)! 2!(n + 2 − 2)! (n + 2)! = 2! n! (n + 2)(n + 1)n! = 2! n! 1 = (n + 1)(n + 2) 2

∴ The coefficient of x 6 = 160 (c) The general term in the expansion 1 = 6 Cr (3 x )6 − r ( )r x = 6 Cr ⋅ 36 − r x 6 − 2 r It is the constant term when

6 − 2r = 0 . ∴ r = 3 ∴ The constant term = 6 C3 ⋅ 33 = 540 (d) The general term in the expansion

=

2 = 9 Cr ( x 2 )9 − r ( − )r x 2 18 − 2 r = 9 Cr ( x )( − )r x = 9 Cr ( −2)r x18 − 3r

It is the constant term when 18 − 3r = 0 . ∴ r = 6 ∴ The constant term = 9 C6 ( −2)6 = 5 376

Classwork 2 (p.89) 1. (a) (1 + 2 a) 4 = 1+ +

4 C1 (2 a) + 4 C2 (2 a) 3 4 4 C3 (2 a) + (2 a) 2 3

Classwork 3 (p.90)

2

= 1 + 8a + 24 a + 32 a + 16 a

1. (a) ( x 2 − 1)9

4

= ( −1 + x 2 )9 = ( −1)9 + 9( −1)8 ( x 2 ) + 36( −1) 7 ( x 2 )2 + L

(b) (3 − b) 4 = (3) 4 + +

3 2 2 4 C1 (3) ( − b ) + 4 C2 (3) ( − b ) 3 4

4 C3 (3)( − b )

+ ( − b)

= 81 − 108b + 54b − 12 b + b 2

(c) ( x + 2 y)

73

3

4

3

= ( x )3 + 3C1 ( x )2 (2 y) + 3C2 ( x )(2 y)2 + (2 y)3 = x 3 + 6 x 2 y + 12 xy 2 + 8 y 3

(d) ( y − 3 x )3 = ( y)3 + 3C1 ( y)2 ( −3 x ) + 3C2 ( y)( −3 x )2 + ( −3 x )3

= y 3 − 9 y 2 x + 27 yx 2 − 27 x 3 2. (a) The general term in the expansion = 7Cr ( −2 x )r ∴ The term in x 3 = 7C3 ( −2 x )3

= −1 + 9 x 2 − 36 x 4 + L 1 (b) (2 + ) 4 x 1 1 = (2) 4 + 4(2)3 ( ) + 6(2)2 ( )2 x x 1 3 1 4 + 4(2)( ) + ( ) x x 32 24 8 1 = 16 + + + + x x2 x3 x 4 1 (c) ( x 2 − 1)9 (2 + ) 4 x = ( −1 + 9 x 2 − 36 x 4 + L) 32 24 8 1 + 2 + 3 + 4) (16 + x x x x ∴ The constant term in the expansion = ( −1)(16) + 9(24) + ( −36)(1) = 164

74

Chapter 4 The Binomial Theorem

2. (3 x 2 + 1) n = (1 + 3 x 2 ) n = 1 + n C1 (3 x 2 ) + n C2 (3 x 2 )2 + n C3 (3 x 2 )3 + L

Compare coefficient to a + bx 2 + cx 4 + dx 6 + L b = 3 ⋅ n C1 , d = 27 ⋅ n C3 Q

d = 108b

27 ⋅ n C3 = 108(3 ⋅ n C1 ) n! n! 27 ⋅ = 324 ⋅ 3!(n − 3)! (n − 1)! 9 (n − 1)(n − 2) = 324 2 n 2 − 3n + 2 = 72 n 2 − 3n − 70 = 0 (n + 7)(n − 10) = 0 n = 10

∴ Comparing the coefficients of x, n C1 p = −7 np = −7 −7 p= ......................(1) n Comparing the coefficients of x 2 , 2 ⋅ n C1 + p 2 ⋅ n C2 = 35 1 2 n + p 2 ⋅ n(n − 1) = 35 ..........(2) 2 Put (1) into (2), 2n + (

or −7 (rejected)

Classwork 4 (p.92) 1. (1 + x − 3 x 2 )6 = [1 + x (1 − 3 x )]6 = 1 + 6 x (1 − 3 x ) + 15 x 2 (1 − 3 x )2 + 20 x 3 (1 − 3 x )3 + L = 1 + 6 x − 18 x 2 + 15 x 2 (1 − 6 x + L) + 20 x 3 (1 + L) + L = 1 + 6 x − 18 x 2 + 15 x 2 − 90 x 3 + 20 x 3 + L = 1 + 6 x − 3 x 2 − 70 x 3 + L 1 2. (1 + x − 3 x 2 )6 (1 − )3 x = (1 + 6 x − 3 x 2 − 70 x 3 + L) 1 1 1 [1 + 3( − ) + 3( − )2 + ( − )3 ] x x x = (1 + 6 x − 3 x 2 − 70 x 3 + L) 3 3 1 (1 − + 2 − 3 ) x x x

∴ The constant term = 1 + 6( −3) − 3(3) − 70( −1) = 44

Classwork 5 (p.93) (1 + px + 2 x 2 ) n = [1 + x ( p + 2 x )]n = 1 + n C1 x ( p + 2 x ) + n C2 x 2 ( p + 2 x )2 + L = 1 + n C1 px + 2 n C1 x 2 + n C2 x 2 ( p 2 + L) + L = 1 + n C1 px + (2 ⋅ n C1 + p 2 ⋅ n C2 ) x 2 + L

−7 2 1 ) n(n − 1) = 35 n 2 49 n − 1 2n + ⋅ = 35 2 n 4n 2 + 49n − 49 = 70 n 4n 2 − 21n − 49 = 0 (n − 7)( 4n + 7) = 0 n=7

Put n = 7 into (1), p = −

or 7 = −1 7



7 (rejected) 4