Am-sln-01(e)

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Am-sln-01(e) as PDF for free.

More details

  • Words: 14,357
  • Pages: 23
Chapter 1 Quadratic Equations & Quadratic Functions

CHAPTER 1

5 89 5 89 − )( x − + )=0 4 4 4 4 5 + 89 5 − 89 or x= 4 4

(x −

bñÉêÅáëÉ=N^=EéKUF 1. (a) x 2 − 2 x + 1 = 0 ( x − 1)2 = 0 x =1

x − 4x − 5 = 0 ( x − 5)( x + 1) = 0 x = 5 or −1 2 (c) 3 x − 7 x + 4 = 0 (3 x − 4)( x − 1) = 0 4 x = or 1 3

(b)

(d)

2

8x 2 = 6 x − 1 8x 2 − 6 x + 1 = 0 ( 4 x − 1)(2 x − 1) = 0 1 1 x = or 4 2

(e) 56 − 10 x − 6 x = 0 2

6 x 2 + 10 x − 56 = 0 3 x 2 + 5 x − 28 = 0 (3 x − 7)( x + 4) = 0 7 or −4 x= 3

(f)

2(5 x 2 − 1) − x = 0 10 x 2 − 2 − x = 0 10 x 2 − x − 2 = 0 (5 x + 2)(2 x − 1) = 0 x=−

2. (a)

2 1 or 5 2

x2 + 6x + 5 = 0 6 6 x 2 + 6 x + ( )2 − ( )2 + 5 = 0 2 2 ( x + 3)2 − 9 + 5 = 0 ( x + 3)2 = 4 x + 3 = ±2 x = −5 or −1

(b)

2 x 2 − 5x − 8 = 0 5 x2 − x − 4 = 0 2 5 2 5 2 2 5 x − x +( ) −( ) −4 = 0 2 4 4 5 2 25 (x − ) − −4=0 4 16 5 89 ( x − )2 − =0 4 16 5 89 2 ( x − )2 − ( ) =0 4 4

3. (a) 2 x 2 − 5 x − 6 = 0 Let a = 2, b = −5, c = −6. Using the formula,

−( −5) ± ( −5)2 − 4(2)( −6) 2( 2 ) 5 ± 25 + 48 = 4 5 ± 73 = 4

x=

(b) 35 − 100 x + x 2 = 0

x 2 − 100 x + 35 = 0 Let a = 1, b = −100, c = 35. Using the formula, −( −100) ± ( −100)2 − 4(1)(35) 2(1) 100 ± 10 000 − 140 = 2 100 ± 9 860 = 2 = 50 ± 2 465

x=

(c) 2 x 2 + 4 x = 5 + 5 x

2x2 − x − 5 = 0 Let a = 2, b = −1, c = −5. Using the formula, −( −1) ± ( −1)2 − 4(2)( −5) 2( 2 ) 1 ± 1 + 40 = 2( 2 ) 1 ± 41 = 4

x=

(d) 2 x 2 + 4 x = −3

2x2 + 4x + 3 = 0 Let a = 2, b = 4, c = 3. Using the formula, −4 ± 4 2 − 4(2)(3) −4 ± −8 = 2( 2 ) 4 ∴ The equation has no real solution. x=

17

18

Chapter 1 Quadratic Equations & Quadratic Functions

x2 x −1 = 3 6 2x2 − 6 = x

(e)

x −2 − x −1 − 56 = 0

8.

( x −1 − 8)( x −1 + 7) = 0

x −1 = 8 or −7 1 1 x= or − 8 7

2x − x − 6 = 0 2

Let a = 2, b = −1, c = −6. Using the formula, −( −1) ± ( −1) − 4(2)( −6) 2( 2 ) 1 ± 49 = 4 1± 7 = 4 −3 or 2 = 2 2

x=

1

2x − 9x 2 + 4 = 0

9.

1

1

(2 x 2 − 1)( x 2 − 4) = 0 1 1 x2 = or 4 2 1 or 16 x= 4 2y = 5 +

10.

(f) 3 x 2 + 5 x − 1 = x ( x + 2)

2 y 2 = 5y + 3

3x 2 + 5x − 1 = x 2 + 2 x

2 y − 5y − 3 = 0 (2 y + 1)( y − 3) = 0 2

2 x 2 + 3x − 1 = 0

Let a = 2, b = 3, c = −1. Using the formula,

y=−

−3 ± 32 − 4(2)( −1) 2( 2 ) −3 ± 17 = 4

x=

4.

11.

(3 x + 7)( x − 1) = 4( x − 1) (3 x + 7)( x − 1) − 4( x − 1) = 0 ( x − 1)(3 x + 7 − 4) = 0 ( x − 1)(3 x + 3) = 0 x = 1 or −1

2

1 or −2 5

x 2 − 2 x − 35 = 0 ( x − 7)( x + 5) = 0 x = 7 or −5 8p 2 8p 2 ) − ( ) +1 2 2 = ( x + 4 p)2 − 16 p 2 + 1

12. (a) x 2 + 8 px + 1 = x 2 + 8 px + (

1

or 4 x3 = 9 x = 729 or 64

5 is a root of 2 x 2 − 3 x − a = 0 , 2 5 5 2( )2 − 3( ) − a = 0 2 2 a=5

13. Since

1

( x 3 − 9)( x 3 − 4) = 0

l = 4 p , m = 1 − 16 p 2

p p (b) x 2 − px + 2 p = x 2 − px + ( )2 − ( )2 + 2 p 2 2 p 2 p2 = (x − ) − + 2p 2 4 p p2 = ( x − ) 2 + (2 p − ) 2 4 p p2 ∴ l = − , m = 2p − 2 4

1

x 3 − 13 x 3 + 36 = 0 1

3 x 2 − 11x − 40 = x−5 2x + 1 3 x 2 − 11x − 40 = 2 x 2 − 9 x − 5



6. ( x 2 + 5 x )2 − 8( x 2 + 5 x ) − 84 = 0 ( x 2 + 5 x + 6)( x 2 + 5 x − 14) = 0 ( x + 2)( x + 3)( x − 2)( x + 7) = 9 x = −3, −2, 2, −7 7.

1 or 3 2

= ( x + 4 p)2 + (1 − 16 p 2 )

5. 5(2 x + 1)2 + 12(2 x + 1) − 9 = 0 [5(2 x + 1) − 3][(2 x + 1) + 3] = 0 (10 x + 5 − 3)(2 x + 1 + 3) = 0 (10 x + 2)(2 x + 4) = 0 x=−

3 y



Chapter 1 Quadratic Equations & Quadratic Functions

14. Since −2 is a root of 2 x 2 + 6 x + k = 0 , 2( −2) + 6( −2) + k = 0 k=4 2

Substitute k = 4 into the given equation, 2x2 + 6x + 4 = 0 x 2 + 3x + 2 = 0 ( x + 1)( x + 2) = 0 ∴ x = −1 or − 2 ∴ The other root of the equation is −1 . 5 3 x+ ) 2 2 5 5 5 3 = 2[ x 2 − x + ( )2 − ( )2 + ] 2 4 4 2 1 5 = 2( x − ) 2 + 2( − ) 4 16 5 1 = 2( x − ) 2 − 4 8

15. 2 x 2 − 5 x + 3 = 2( x 2 −

3 is a root of (*), 4 ( − 43 )2 + 3( − 43 ) + 1 =l 2( − 43 )2 − 5( − 43 ) + 2 1 l=− 10 1 (c) Substitute l = − into the equation obtain 10 in (a), 1 1 [2( − ) − 1]x 2 − [5( − ) + 3]x 10 10 1 +[2( − ) − 1] = 0 10 12 25 12 − x2 − =0 x− 10 10 10 (b) Since −

12 x 2 + 25 x + 12 = 0 (3 x + 4)( 4 x + 3) = 0 x=−

4 3

or



3 4

4 ∴ The other root of equation is − . 3

16. (a) Since 2 is a root of

m 2 x 2 + 2(2 m − 5) x + 8 = 0 . m 2 (2)2 + 2(2 m − 5)(2) + 8 = 0

bñÉêÅáëÉ=N_=EéKNPF

4 m + 8m − 20 + 8 = 0 2

1. kx 2 − (3k − 5) x + 14 = 0

4 m + 8m − 12 = 0 2

m2 + 2m − 3 = 0 ( m − 1)( m + 3) = 0 m = 1 or −3

Let a = k , b = −(3k − 5) , c = 14 D = [ −(3k − 5)]2 − 4( k )(14) = 9k 2 − 30 k + 25 − 56k

(b) When m = 1,

= 9k 2 − 86k + 25

x 2 + 2(2 − 5) x + 8 = 0

2. (2 k + 1) x 2 − 2 k = ( k + 4) x

x2 − 6x + 8 = 0 ( x − 2)( x − 4) = 0 x = 2 or 4

(2 k + 1) x 2 − ( k + 4) x − 2 k = 0 Let a = 2 k + 1 , b = −( k + 4) , c = −2 k

∴ When m = 1, the other root = 4 When m = −3 ,

D = [ −( k + 4)]2 − 4(2 k + 1)( −2 k ) = k 2 + 8k + 16 + 16k 2 + 8k

9 x 2 + 2( −6 − 5) x + 8 = 0

= 17k 2 + 16k + 16

9 x 2 − 22 x + 8 = 0 (9 x − 4)( x − 2) = 0 x = 2 or

3. x 2 − kx + 16 = 0

4 9

4 ∴ When m = −3 , the other root = 9

D = k 2 − 4(16) = 0 k 2 = 64 k = ±8

4. x 2 − k ( x − 1) = 0 x + 3x + 1 =l 2 x 2 − 5x + 2 x 2 + 3 x + 1 = 2lx 2 − 5lx + 2l 2

17. (a)

(2l − 1) x 2 − (5l + 3) x + (2l − 1) = 0

19

x 2 − kx + k = 0 ∴

D = k 2 − 4k = 0 k ( k − 4) = 0 k = 0 or 4

20

Chapter 1 Quadratic Equations & Quadratic Functions

If m ≠ n , D < 0 . ∴ The equation has unreal roots.

5. kx 2 − 2 x + 1 = 0

D = ( −2)2 − 4 k = 0

4 − 4k = 0 4k = 4 k =1

11. x 2 + 2 ax + a 2 − b 2 − c 2 = 0 D = ( 2 a ) 2 − 4( a 2 − b 2 − c 2 )

6. x 2 − kx + k + 3 = 0 D = ( − k )2 − 4( k + 3) = 0

= 4 a 2 − 4 a 2 + 4 b 2 + 4c 2 = 4( b 2 + c 2 )

k − 4 k − 12 = 0 ( k − 6)( k + 2) = 0 k = 6 or −2 2

If b ≠ 0 and c ≠ 0 , D > 0 . ∴ The equation has unequal real roots.

7. x 2 − 2 ax + a 2 − b 2 − 2 bc − c 2 = 0 D = ( −2 a)2 − 4( a 2 − b 2 − 2 bc − c 2 ) = 4 a 2 − 4 a 2 + 4b 2 + 8bc + 4c 2

12. ( x − a)( x − b) = c x 2 − ( a + b) x + ab − c = 0

D = ( a + b)2 − 4( ab − c)

= 4b 2 + 8bc + 4c 2

= a 2 + 2 ab + b 2 − 4 ab + 4c

= 4(b 2 + 2 bc + c 2 )

= a 2 − 2 ab + b 2 + 4c

= 4( b + c ) 2 = [2(b + c)]2 which is a perfect square for any integers b and c. ∴ Roots are rational.

8. px 2 + 2 qx − p + 2 q = 0

= ( a − b ) 2 + 4c Q

( a − b)2 ≥ 0 and c > 0

∴ ( a − b ) 2 + 4c > 0 ∴ The roots of the equation are real.

D = (2 q )2 − 4 p( − p + 2 q ) = 4 q 2 + 4 p 2 − 8 pq

13. x 2 − 2( a + 3) x + (11a + 3) = 0

= 4( p 2 − 2 pq + q 2 )

D = [ −2( a + 3)]2 − 4(11a + 3) =0

= 4( p − q )

2

= [2( p − q )]2 which is the square of a rational number as p and q are rational. ∴ Roots are rational.

9. x 2 − ( a + b + c) x + a(b + c) = 0 D = ( a + b + c ) 2 − 4 a( b + c ) 2

10. ( m + n ) x − 2( m + n) x + 2 = 0 2

D = [ −2( m + n)] − 4( m + n )(2) 2

2

2

= 4( m + 2 mn + n ) − 8m − 8n 2

2

= 4 m 2 + 8mn + 4n 2 − 8m 2 − 8n 2 = −4 m 2 + 8mn − 4n 2 = −4( m 2 − 2 mn + n 2 ) = −4( m − n)2

∴ When a = 2 , x = 5

x 2 − 12 x + 36 = 0

= 4( m + n)2 − 8( m 2 + n 2 ) 2

( x − 5)2 = 0 x=5

When a = 3 , the equation is

2

2

a 2 − 5a + 6 = 0 ( a − 2)( a − 3) = 0 a = 2 or 3 x 2 − 10 x + 25 = 0

= 4a − 4a =0 ∴ The equation has equal roots. 2

4( a 2 − 5a + 6 ) = 0

When a = 2 , the equation is

= ( a + a)2 − 4 a ⋅ a 2

4( a 2 + 6 a + 9) − 4(11a + 3) = 0

( x − 6) 2 = 0 x=6

∴ When a = 3 , x = 6

Chapter 1 Quadratic Equations & Quadratic Functions

D = 16 − 4(c − 1)(3 − c)

14. x 2 + 2( a + 2) x + (5a + 24) = 0

= 16 − 4(3c − c 2 − 3 + c)

D = [2( a + 2)]2 − 4(5a + 24) = 0

= 4[ 4 − ( − c 2 + 4c − 3)]

4( a 2 + 4 a + 4) − 4(5a + 24) = 0

= 4( 4 + c 2 − 4c + 3)

4( a − a − 20) = 0 2

Q 4(c 2 − 4c + 7)

a 2 − a − 20 = 0 ( a − 5)( a + 4) = 0 a = 5 or

= 4[(c 2 − 4c + 4) + 3]

−4

When a = 5 , the equation is

= 4[(c − 2)2 + 3] > 0 Hence, if (*) has unequal real roots, c can be any real numbers. But for (*) to be a quadratic equation, a ≠ c . ∴ c can be any real number other than 1.

x 2 + 14 x + 49 = 0 ( x + 7)2 = 0 x = −7 ∴ When a = 5 , x = −7

bñÉêÅáëÉ=N`=EéKNVF

When a = −4 , the equation is

1. (a) x 2 − 4 x + 1 = 0

x2 − 4x + 4 = 0

−4 =4 1 1 Product of the roots = = 1 1 2 (b) 48 x = 22 x + 15 Sum of the roots = −

( x − 2)2 = 0 x=2 ∴ When a = −4 , x = 2 15. x 2 + ( m + n) x + ( m 2 − n 2 ) = 0

48 x 2 − 22 x − 15 = 0

D = ( m + n ) − 4( m − n ) = 0

Sum of the roots =

2

2

22 11 = 48 24 15 5 Product of the roots = − =− 48 16

2

m 2 + 2 mn + n 2 − 4( m 2 − n 2 ) = 0 −3m 2 + 2 mn + 5n 2 = 0 ( −3m + 5n)( m + n) = 0 5n m= 3

or − n

16. (a) (c − a) x 2 − 2( a − b) x + (b − c) = 0 D = [ −2( a − b)] − 4(c − a)(b − c) 2

= 4( a − b)2 − 4(c − a)(b − c) = 4[( a − b)2 − (c − a)(b − c)] = 4[a 2 − 2 ab + b 2 − (bc − c 2 − ab + ac)] = 4( a 2 + b 2 + c 2 − ab − bc − ac) = 2(2 a 2 + 2 b 2 + 2c 2 − 2 ab − 2 bc − 2ca) = 2( a 2 − 2 ab + b 2 + b 2 − 2 bc + c 2 + c 2 − 2ca + a 2 ) = 2[( a − b)2 + (b − c)2 + (c − a)2 ] Q a, b and c are not all equal.

∴ 2[( a − b)2 + (b − c)2 + (c − a)2 ] > 0 ∴ The equation has unequal real roots. (b) If a = 1 , b = 3 , the equation becomes

(c − 1) x 2 − 2( −2) x + (3 − c) = 0 (c − 1) x 2 + 4 x + (3 − c) = 0

21

(c) ( 4 x + 7)2 = 4 x 2 16 x 2 + 56 x + 49 − 4 x 2 = 0 12 x 2 + 56 x + 49 = 0

56 14 =− 12 3 49 Product of the roots = 12 Sum of the roots = −

(d) 6 − 5 x − 25 x 2 = 0 25 x 2 + 5 x − 6 = 0 5 1 =− Sum of the roots = − 25 5 6 Product of the roots = − 25

2. 3 x 2 − 5 x − 1 = 0 5 1 α + β = and αβ = − 3 3 2 2 2 (a) α + β = (α + β) − 2αβ 25 2 = + 9 3 31 = 9

22

Chapter 1 Quadratic Equations & Quadratic Functions

(b)

(d) α 4 + β 4 = α 4 + 2α 2β 2 + β 4 − 2α 2β 2

α β α 2 + β2 + = β α αβ 31 = 9 1 − 3 31 =− 3

= (α 2 + β 2 )2 − 2(αβ)2 = [(α + β)2 − 2αβ]2 − 2(αβ)2 = [( − p)2 − 2 q]2 − 2 q 2 = ( p 2 − 2 q)2 − 2 q 2 = p 4 − 4 p2 q + 4q 2 − 2q 2 = p 4 − 4 p2 q + 2q 2

(c) (1 − α )(1 − β) = 1 − (α + β) + αβ 5 1 = 1− − 3 3 = −1

3 2 5 + =− 2 3 6 3 2 Product of the roots = ( − )( ) = −1 2 3 5 One required equation is x 2 + x − 1 = 0 , 6 i.e. 6 x 2 + 5 x − 6 = 0 .

(b) Sum of the roots = −

3. x 2 + px + q = 0 α + β = − p and αβ = q

(a) α − αβ + β = α + 2αβ + β − 3αβ 2

2

Product of the roots = 4( −5) = −20 One required equation is x 2 + x − 20 = 0 .

(d) αβ 2 + α 2β = αβ(α + β) 1 5 =− ( ) 3 3 5 =− 9

2

4. (a) Sum of the roots = 4 + ( −5) = −1

2

= (α + β)2 − 3αβ

(c) Sum of the roots = −1 + 5 + ( −1 − 5 ) = −2 Product of the roots = ( −1 + 5 )( −1 − 5 ) = ( −1)2 − ( 5 )2 = −4

= ( − p)2 − 3q = p 2 − 3q

(b) α 3β + αβ3 = αβ(α 2 + β 2 ) = αβ[(α + β)2 − 2αβ] = q[( − p)2 − 2 q] = p2 q − 2q 2

(c)

1 1 + 2α + β α + 2β α + 2β + 2α + β = (2α + β)(α + 2β) 3(α + β) = 2 2α + 4αβ + αβ + 2β 2 3(α + β) = 2 2(α + 2αβ + β 2 ) + αβ 3(α + β) = 2(α + β)2 + αβ 3( − p) = 2( − p ) 2 + q −3 p = 2 p2 + q

One required equation is x 2 + 2 x − 4 = 0 . −5 + 3 2 −5 − 3 2 + 2 2 −10 = 2 = −5

(d) Sum of the roots =

−5 + 3 2 −5 − 3 2 )( ) 2 2 ( −5)2 − (3 2 )2 = 4 7 = 4 7 One required equation is x 2 + 5 x + = 0 , 4 i.e. 4 x 2 + 20 x + 7 = 0 . Product of the roots = (

5. x 2 − 4 x + 1 = 0 α + β = 4 , αβ = 1 (a) Sum of the roots = 2α + 1 + 2β + 1 = 2(α + β) + 2 = 10

Chapter 1 Quadratic Equations & Quadratic Functions

Product of the roots = (2α + 1)(2β + 1) = 4αβ + 2(α + β) + 1 = 13 One required equation is x 2 − 10 x + 13 = 0 . 3 3 α+β + = 3( ) = 12 α β αβ 3 3 1 Product of the roots = ( )( ) = 9( ) = 9 α β αβ One required equation is x 2 − 12 x + 9 = 0 .

(b) Sum of the roots =

(c) Sum of the roots 1 1 = α 2 + + β2 + α β = (α + β)2 − 2αβ +

α+β αβ

= 18 Product of the roots 1 1 = (α 2 + )(β 2 + ) α β

= α 2β 2 + =2+

7. 8 x 2 − ax + 9 = 0 Let α, 2α be the roots. a ............(1) 8 9 Product of the roots = α(2α ) = 2α 2 = ......(2) 8 3 Solving (2), α = ± , 4 3 When α = , a = 18 , 4 3 When α = − , a = −18 4 3 3 ∴ When a = 18 , the roots are , . 4 2 3 3 When a = −18 , the roots are − , − . 4 2 Sum of the roots = α + 2α = 3α =

8. 12 x 2 + mx − 5 = 0 m 12 −5 Product of the roots = 12 m 5 11 − − (− ) = 12 12 6 m 5 11 − + = 12 12 6 m = −17

Sum of the roots = −

α 2 β2 1 + + β α αβ

α 3 + β3 αβ

= 2 + (α + β)(α 2 − αβ + β 2 ) = 2 + 4[(α + β)2 − 3αβ] = 2 + 4(16 − 3) = 54 One required equation is x 2 − 18 x + 54 = 0 .

The equation becomes 12 x 2 − 17 x − 5 = 0 ( 4 x + 1)(3 x − 5) = 0 x=−

(d) Sum of the roots

= α −β+β−α = 0

1 or 5 4 3

9. kx 2 + 4 x + k 2 − 21 = 0

Product of the roots

k 2 − 21 k =4

Product of the roots =

= (α − β)(β − α ) = αβ − α 2 − β 2 + αβ

k 2 − 4 k − 21 = 0 ( k − 7)( k + 3) = 0 k = 7 or −3

= −(α 2 − 2αβ + β 2 ) = −[(α + β)2 − 4αβ] = −12 One required equation is x 2 − 12 = 0 .

10. ( kx − 1)2 = k k 2 x 2 − 2 kx + 1 − k = 0

6. Let the other root be α. Sum of the roots = 2 − 5 + α = 4 α =2+ 5 ∴ The other root of the equation is 2 + 5 . Product of the roots = l = (2 − 5 )(2 + 5 ) = (2) 2 − ( 5 ) 2 = −1

23

1− k −3 = 16 k2 16 − 16k = −3k 2

Product of the roots =

3k 2 − 16k + 16 = 0 (3k − 4)( k − 4) = 0 4 k= or 4 3

24

Chapter 1 Quadratic Equations & Quadratic Functions

11. (a)

x 2 + a(3a − 5) x = 2( x + 4 a) x 2 + a(3a − 5) x − 2( x + 4 a) = 0 x 2 + a(3a − 5) x − 2 x − 8a = 0 x 2 + [a(3a − 5) − 2]x − 8a = 0...........(*) Let α, −α be the roots of (*). Sum of the roots = −[a(3a − 5) − 2] = α − α = 0 3a 2 − 5a − 2 = 0 ( a − 2)(3a + 1) = 0 1 a = 2 or − 3

Product of the roots 1 1 1 .....................(4) =( )( )= 2α + 1 2β + 1 35 By (4),

By (1) and (2),

(b) If a > 0 , by (a), a = 2 . The equation becomes x 2 + 2 x = 2( x + 8)

x 2 + 2 x = 2 x + 16 x 2 = 16 x = ±4 12. α and β are the roots of x 2 + px − 5 = 0 , Sum of the roots = α + β = − p .............(1) Product of the roots = αβ = −5 ............(2) α 2 and β 2 are the roots of x 2 − 19 x + q = 0 ,

1 1 )( )= 2α + 1 2β + 1 1 = (2α + 1)(2β + 1) 1 = 4αβ + 2(α + β) + 1 (

By (3),

1 35 1 35 1 35

1 1 = 4 k + 2(5) + 1 35 1 1 = 4 k + 11 35 4 k + 11 = 35 k=6

n 1 1 + =− 2α + 1 2β + 1 35 n 2β + 1 + 2α + 1 =− (2α + 1)(2β + 1) 35 n 2(α + β ) + 2 =− (2α + 1)(2β + 1) 35

By (1) and (4),

2(5) + 2 n =− 35 35 n = −12

Sum of the roots = α 2 + β 2 = 19 ..........(3)

14. Let α and α + 1 be the roots of x 2 − px + q = 0 .

Product of the roots = α 2β 2 = q ..........(4)

Sum of the roots = α + α + 1 = 2α + 1 = p .....(1)

By (3), α 2 + β 2 = 19 (α + β)2 − 2αβ = 19 By (1) and (2), ( − p)2 − 2( −5) = 19

p 2 + 10 = 19 p2 = 9 p = ±3 By (2) and (4), ( −5)2 = q q = 25 13. α and β are roots of x 2 − 5 x + k = 0 , Sum of the roots = α + β = 5 .............(1) Product of the roots = αβ = k ...........(2) 1 1 are roots of 35 x 2 + nx + 1 = 0 , and 2β + 1 2α + 1 Sum of the roots 1 1 n = + =− ...................(3) 2α + 1 2β + 1 35

Product of the roots = α(α + 1) = q ..............(2) 1 By (1), α = ( p − 1) 2 1 Put α = ( p − 1) into (2), 2 1 1 ( p − 1)[ ( p − 1) + 1] = q 2 2 1 1 ( p − 1) ( p + 1) = q 2 2 p 2 − 1 = 4q

p2 − 4q − 1 = 0 15. Let α and α − 2 be the roots of x 2 + px + q = 0 . Sum of the roots = α + α − 2 = 2α − 2 = − p .................(1) Product of the roots = α(α − 2) = q ..................................(2) 1 By (1), α = (2 − p) 2 1 Put α = (2 − p) into (2), 2

Chapter 1 Quadratic Equations & Quadratic Functions

18. (a) Given α and β are roots of ax 2 + bx + c = 0 . b Sum of the roots = α + β = − a c Product of the roots = αβ = a ∴ α 2 + β 2 = (α + β)2 − 2αβ

1 p (2 − p)(1 − − 2) = q 2 2 1 p (2 − p)( − − 1) = q 2 2 1 1 [ −( p − 2)][− ( p + 2)] = q 2 2 1 ( p − 2)( p + 2) = q 4 p 2 − 4 = 4q

16. Let α and β be the roots of ax 2 + bx + c = 0 . b ....................(1) a c Product of the roots = αβ = ....................(2) a α m m = , ∴ α = β ..............................(3) Q β n n Sum of the roots = α + β = −

m b β+β = − n a m+n b ( )β = − n a β=−

Put (3) into (2), (

b 2 2c − a a2 1 2 = 2 (b − 2 ac) a c2 α 2β 2 = 2 a A quadratic equation with roots α 2 and β 2 is =

p 2 = 4 + 4q

Put (3) into (1),

25

bn a( m + n )

m c β)β = n a cn β2 = am b2n2 cn = 2 a ( m + n)2 am ab 2 mn 2 = a 2 cn( m + n)2 a 2 cn( m + n)2 an = ( m + n)2 ac

mnb 2 =

17. Let α and β be the roots of ax 2 + bx + c = 0 . b ....................(1) a c Product of the roots = αβ = ....................(2) a

Sum of the roots = α + β = −

α 2 + β 2 = 4 .................................................(3) By (3), α 2 + 2αβ + β 2 − 2αβ = 4

(α + β)2 − 2αβ = 4 b2 c − 2( ) = 4 2 a a b 2 − 2 ac = 4 a 2 b 2 = 2 ac + 4 a 2

c2 1 x 2 − 2 (b 2 − 2 ac) x + 2 = 0 a a a 2 x 2 − (b 2 − 2 ac) x + c 2 = 0

(b) α and β are roots of 2 x 2 − 4 x − 1 = 0 . By (a), take a = 2 , b = −4 , c = −1 . A quadratic equation with roots α 2 and β 2 is

4 x 2 − [16 − 2(2)( −1)]x + ( −1)2 = 0 4 x 2 − 20 x + 1 = 0 By (a), take a = 4 , b = −20 , c = 1. A quadratic equation with roots α 4 and β 4 is

16 x 2 − [20 2 − 2( 4)(1)]x + 1 = 0 16 x 2 − 392 x + 1 = 0 19. (a) α and β are the roots of 2 x 2 + ax + b = 0 . a Sum of the roots = α + β = − 2 b Product of the roots = αβ = 2 (b) (α − 1) and (β − 1) are the roots of 2 x 2 + mx + n = 0 . Sum of the roots m = (α − 1) + (β − 1) = − ...............(1) 2 Product of the roots n = (α − 1)(β − 1) = ......................(2) 2 m By (1), α + β − 2 = − 2 a m By (a), − − 2 = − 2 2 a m +2= 2 2 m=a+4

26

Chapter 1 Quadratic Equations & Quadratic Functions

n 2 n αβ − (α + β) + 1 = 2 b a n By (a), − ( − ) + 1 = 2 2 2 b+a+2=n n=a+b+2 By (2),

(α − 1)(β − 1) =

By (2),

(c) (i) α and β are the roots of 4 x 2 + 3 x − 5 = 0 . 3 4 5 Product of the roots = αβ = − 4 (α − 1) and (β − 1) are the roots of Sum of the roots = α + β = −

bñÉêÅáëÉ=Na=EéKOUF 1. (a)

(α − 1) + (β − 1) = −



(b) For all real values of x,

( x − 1)2 ≥ 0 4( x − 1)2 ≥ 0 4( x − 1)2 + 3 ≥ 0 + 3 4 x 2 − 8x + 7 ≥ 3

d (α − 1)(β − 1) = 4 d αβ − (α + β) + 1 = 4 5 3 d − − (− ) + 1 = 4 4 4 d=2

∴ The minimum value of 4 x 2 − 8 x + 7 is 3 . 2. (a)

(ii) α and β are the roots of 2 x 2 − 3 x − 1 = 0 . Sum of the roots = α + β =

4 x 2 − 8x + 7 7 = 4( x 2 − 2 x + ) 4 2 7 2 2 = 4[ x − 2 x + ( )2 − ( )2 + ] 2 2 4 = 4( x − 1)2 + 3 ∴ a = −1 , b = 3

4 x 2 + cx + d = 0 .

c 4 c (α + β ) − 2 = − 4 3 c − −2= − 4 4 c = 11

f 2 f αβ − 2(α + β) + 4 = 2 1 3 f − − 2( ) + 4 = 2 2 2 f =1 (α − 2)(β − 2) =

3 2

1 2 (α − 2) and (β − 2) are the roots of

Product of the roots = αβ = −

2 x 2 + ex + f = 0 . Sum of the roots = (α − 2) + (β − 2) e = − ...................(1) 2 Product of the roots = (α − 2)(β − 2) f = ................(2) 2 e By (1), α + β − 4 = − 2 3 e −4=− 2 2 e=5

3 x 2 − 12 x + 14 14 = 3( x 2 − 4 x + ) 3 4 4 14 2 = 3[ x − 4 x + ( )2 − ( )2 + ] 2 2 3 = 3( x − 2)2 + 2 ∴ p = −2 , q = 2

(b) For all real values of x, ( x − 2)2 ≥ 0 3( x − 2)2 ≥ 0 3( x − 2)2 + 2 ≥ 0 + 2 3 x 2 − 12 x + 14 ≥ 2 1 1 ≤ 3 x 2 − 12 x + 14 2 8 8 ≤ 2 2 3 x − 12 x + 14 8 ≤4 2 3 x − 12 x + 14 ∴ The maximum value of is 4 .

8 3 x 2 − 12 x + 14

Chapter 1 Quadratic Equations & Quadratic Functions

3. (a)

3 x 2 − 6 x + 10 10 = 3( x 2 − 2 x + ) 3 2 2 10 2 = 3[ x − 2 x + ( )2 − ( )2 + ] 2 2 3 2 = 3( x − 1) + 7

(b) For all real values of x, ( x − 1)2 ≥ 0 3( x − 1)2 ≥ 0 3( x − 1)2 + 7 ≥ 7 1 1 ≤ 2 3( x − 1) + 7 7 5 5 ≤ 2 3 x − 6 x + 10 7 5 5 − 2 ≥− 7 3 x − 6 x + 10 5 5 ≥1− 1− 2 7 3 x − 6 x + 10 2 = 7 ∴ The given expression is always greater 2 than or equal to . 7 2 7 x+ ) 3 3 2 2 2 7 = −3[ x 2 − x + ( )2 − ( )2 + ] 3 6 6 3 1 20 = −3( x − )2 − 3 3 For all real values of x, 1 ( x − )2 ≥ 0 3 1 2 −3( x − ) ≤ 0 3 1 2 20 −20 −3( x − ) − ≤ 3 3 3 20 2 −3 x + 2 x − 7 ≤ − 3 ∴ −3 x 2 + 2 x − 7 is always negative for all real values of x.

4. −3 x 2 + 2 x − 7 = −3( x 2 −

5. The graph of y = ax 2 − 8 x − 4 lies below the x-axis for all values of x, i.e. a < 0 and D < 0 . D = ( −8)2 − 4 a( −4 ) < 0 64 + 16 a < 0 a < −4 6. Consider 2 x 2 + 2 ax − (b + 1) = 0 .............. (∗1 ) Let α and β be the roots of (∗1 ) . 2a Sum of the roots = α + β = − = −a 2

Product of the roots = αβ = −

27

(b + 1) 2

b−a x − (b − 1) = 0 .......... (∗2 ) 2 Since (∗1 ) and (∗2 ) cut the same points on the points on the x-axis, α and β are also the roots of (∗2 ) . b−a ) Sum of the roots = α + β = −( 2 Product of the roots = αβ = −(b − 1) (b + 1) − = −(b − 1) 2 b + 1 = 2b − 2 b=3 b−a − a = −( ) 2 2a = b − a 3a = b = 3 a =1 Consider x 2 +

7. (a) f ( x ) = − x 2 + qx + r = −( x 2 − qx − r ) q q = −[ x 2 − qx + ( )2 − ( )2 − r ] 2 2 q q2 = −( x − ) 2 + ( + r) 2 4 (b) The maximum value of f ( x ) occurs when x = 3. q ∴ 3− = 0 2 q=6 (c) f ( x ) ≤ 0 q q2 −( x − ) 2 + ( + r) ≤ 0 2 4 Form (b),

q2 +r =0 4 62 +r =0 4 r = −9

8. (a) y-intercept = k x-intercept = 1, 3 k f ( x ) = ( x − 1)( x − 3) 3 k ( x − 1)( x − 3) 3 k = ( x 2 − 4 x + 3) 3 k 2 4 4 = [ x − 4 x + ( )2 − ( )2 + 3] 3 2 2 k k = ( x − 2)2 − 3 3

(b) f ( x ) =

28

Chapter 1 Quadratic Equations & Quadratic Functions

For all real values ( x − 2)2 k ( x − 2)2 3 k k ( x − 2)2 − 3 3 k ∴ f ( x) ≥ − 3

of x, ≥0

(α + β)2 − 2αβ = 9 4a + 1 ( −4)2 − 2( )=9 a 8a + 2 16 − =9 a −a − 2 = 0 a = −2

≥0 ≥0−

α 2 + β2 = 9

If

k 3

k ∴ The least value of f ( x ) is − . 3 (c) If f ( x ) ≥ −2 , k from (b), − = −2 3 k=6 k f ( x ) = ( x − 1)( x − 3) 3 6 = ( x − 1)( x − 3) 3 = 2( x − 1)( x − 3)

y

(c) y = −2(x + 2)2 + 1 −4 − 2 2

1 −2 −1 −4 + 2 2

x

O

−2

−4

= 2 x − 8x + 6 2

 y = x + m........................(1) 9. (a)  2  y = x + 4 x − 3m...........(2) P( x1, y1 ) a n d Q( x2 , y2 ) a r e p o i n t s o f intersection, By (1) and (2), x + m = x 2 + 4 x − 3m x 2 + 3x − 4m = 0

(b) If P and Q coincide, x 2 + 3 x − 4 m = 0 has two equal real roots, i.e. D = 0 . 32 − 4( −4 m) = 0 9 m=− 16 10. (a) Consider y = a( x + 2) + 1 . 2

y = a( x 2 + 4 x + 4 ) + 1 y = ax 2 + 4 ax + 4 a + 1 D = ( 4 a)2 − 4( a)( 4 a + 1)

= 16 a 2 − 16 a 2 − 4 a = −4 a If a < 0 , D > 0 ∴ The graph of y = a( x + 2)2 + 1 cuts the x-axis at two distinct points if a < 0 . (b) From (a), y = ax 2 + 4 ax + 4 a + 1......(∗) α and β are roots of ax 2 + 4 ax + 4 a + 1 = 0 . 4a Sum of the roots = α + β = − = −4 a 4a + 1 Product of the roots = αβ = a

−6

bñÉêÅáëÉ=Nb=EéKPQF 1. − 2 + 7 − 9 − 15 − − 3 = 5 − −6 − −3 = 5−6−3 = −4 2. 4 − 9 + 7 − 16 − 12 − 5 = −5 + −9 − 7 = 5+9−7 =7 3. f ( x ) = 2 x − 5 + x f ( 0 ) = 2( 0 ) − 5 + 0 = − 5 = 5 f (1) = 2(1) − 5 + 1 = − 3 + 1 = 3 + 1 = 4 f ( −3) = 2( −3) − 5 + − 3 = − 11 + − 3 = 11 + 3 = 14

4. g( x ) = g( −6) =

x x −6 −6 = = −1 −6 6

Chapter 1 Quadratic Equations & Quadratic Functions

−3 −3 = = −1 −3 3 7 7 g(7) = = =1 7 7 g( −3) =

12. x 2 − 5 x + 5 = 1

5. 3 x + 7 = 5 3x + 7 = 5

or 2 x=− or 3

3 x + 7 = −5 x = −4

x + 1 = 3x − 2 x + 1 = 3 x − 2 or x + 1 = −(3 x − 2) 3 = 2x or x + 1 = −3 x + 2 3 or x= 4x = 1 2 3 1 or x= x= 2 4

or x + 1 = −3 x + 2 x + 1 = 3x − 2 3 1 or x= x= 2 4 But 3 x − 2 should be non-negative, 1 1 Q 3( ) − 2 < 0 , ∴ x = is not a solution. 4 4 3 3 Q 3( ) − 3 > 0 , ∴ x = 2 2

10.

x 2 − 5 x + 5 = −1

x 2 − 5x + 4 = 0 ( x − 1)( x − 4) = 0 x = 1, 4 ∴ x = 1, 2, 3, 4

or or or

x 2 − 5x + 6 = 0 ( x − 2)( x − 3) = 0 x = 2, 3

x 2 − x − 4 = −2 or or x2 − x − 2 = 0 x2 − x − 6 = 0 or ( x − 2)( x + 1) = 0 ( x − 3)( x + 2) = 0 x = 2, − 1 x = 3, − 2 or ∴ x = −1, − 2, 2, 3 14. (2 x − 1)2 + 2 x − 1 − 12 = 0 2

2 x − 1 + 2 x − 1 − 12 = 0 ( 2 x − 1 − 3)( 2 x − 1 + 4) = 0

2x − 1 = 3 2x − 1 = 3 x=2

8. x + 1 = 3 x − 2

2x − 1 =9 5 2 x − 1 = 45 2 x − 1 = 45 2 x = 46 x = 23

or

x2 − x − 4 = 2

Since any absolute value should be non-negative, ∴ The equation has no solution.

9.

x 2 − 5x + 5 = 1

13. x 2 − x − 4 = 2

6. − 3 x = −6

7.

29

2 x − 1 = −4 (rejected) 2 x − 1 = −3 x = −1

or or or

15. 2( x + 3)2 − 3 x + 3 − 14 = 0 2

2 x + 3 − 3 x + 3 − 14 = 0 (2 x + 3 − 7)( x + 3 + 2) = 0 2 x + 3 = 7 or x + 3 = −2 (rejected) 2( x + 3) = 7 or 2( x + 3) = −7 1 13 or x= x=− 2 2 16 − 17. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons.

2 x − 1 = −45 2 x = −44 x = −22

or or or

6−x 1 = 3+ x 2 6−x 1 = 3+ x 2 12 − 2 x = 3 + x 9 = 3x x=3

y

18.

y = x −1 2 1

or or or or

6−x 1 =− 3+ x 2 12 − 2 x = −3 − x 15 = x x = 15

3( x + 4) = −4 x + 6 3 x + 12 = −4 x + 6 6 or x = 18 x=− 7 For the same reason as question 8, x = 18 .

1

3

y

19.

11. 3 x + 4 = 4 x − 6 3( x + 4) = 4 x − 6 or 3 x + 12 = 4 x − 6 or

x

O

1 −2

−1 O −1

y = − x +1 x 1

2

3

30

Chapter 1 Quadratic Equations & Quadratic Functions

y

20.

Product of the roots = αβ = − (a) α 2β + αβ 2 = αβ(α + β) 5 = −2( ) 2 = −5

6 5 4

(b) (α − 3β)(3α − β) = 3α 2 − αβ − 9αβ + 3β 2

2

y= x +x −6

3

= 3(α 2 + β 2 ) − 10αβ = 3[(α + β)2 − 2αβ] − 10αβ 5 = 3[( )2 − 2( −2)] − 10( −2) 2 3 = 50 4

2 1

−3

−2

−1

O

4 = −2 2

x 1

2

3

6. α and β are roots of x 2 − 2 x − 1 = 0 . Sum of the roots = α + β = 2 Product of the roots = αβ = −1 (a) α + 2β + β + 2α = 3α + 3β = 3(α + β) = 3(2) =6 (α + 2β)(β + 2α ) = 2α 2 + 5αβ + 2β 2

oÉîáëáçå=bñÉêÅáëÉ=N=EéKPSF 2(3 x 2 + 5) = 19 x

1.

6 x − 19 x + 10 = 0 (3 x − 2)(2 x − 5) = 0 5 2 x= or 3 2 2

2.

4( x − 1)2 + 5( x − 1) − 6 = 0 [ 4( x − 1) − 3][( x − 1) + 2] = 0 ( 4 x − 7)( x + 1) = 0 7 x= 4

= 2(α 2 + β 2 ) + 5αβ = 2[(α + β)2 − 2αβ] + 5αβ

or −1

3. The equation x 2 − 2 kx + 36 = 0 has equal roots. D = ( −2 k )2 − 4(1)(36) = 0

4 k 2 − 144 = 0 k 2 = 36 k = ±6 4. The equation (6k + 1) x 2 − 2(2 k − 3) x + 1 = 0 has equal roots.

D = [ −2(2 k − 3)]2 − 4(6k + 1) = 0 4( 4 k 2 − 12 k + 9) − 4(6k + 1) = 0

= 2[(2)2 − 2( −1)] + 5( −1) =7 One required equation is x 2 − 6 x + 7 = 0 . (b) α 2β + αβ 2 = αβ(α + β) = −1(2) = −2 (α 2β)(αβ 2 ) = α 3β3 = (αβ)3 = ( −1)3 = −1 One required equation is x 2 + 2 x − 1 = 0 .

7. y = 3 x 2 + 12 x + 7 + k ( x 2 − 1) = 3 x 2 + 12 x + 7 + kx 2 − k

4 k − 12 k + 9 − 6k − 1 = 0

= (3 + k ) x 2 + 12 x + 7 − k D = 12 2 − 4(7 − k )(3 + k )

4 k 2 − 18k + 8 = 0

= 144 − 4(21 + 4 k − k 2 )

2

2 k 2 − 9k + 4 = 0 (2 k − 1)( k − 4) = 0 1 or 4 k= 2 5. α and β are roots of 2 x 2 − 5 x − 4 = 0 . 5 Sum of the roots = α + β = 2

= 144 − 84 − 16k + 4 k 2 = 4 k 2 − 16k + 60 = 4( k 2 − 4 k + 15) 4 4 = 4[k 2 − 4 k + ( )2 − ( )2 + 15] 2 2 = 4( k − 2)2 + 44

Chapter 1 Quadratic Equations & Quadratic Functions

Q ( k − 2)2 ≥ 0 , ∴ D > 0 ∴ The graph of y = 3 x 2 + 12 x + 7 + k ( x 2 − 1) cuts the x-axis for any value of k. 8. α and β are roots of 2 x − 3 x − 5 = 0 . 3 Sum of the roots = α + β = 2 5 Product of the roots = αβ = − 2 α + 2 and β + 2 are roots of 2 x 2 + px + q = 0 . p Sum of the roots = (α + 2) + (β + 2) = − .......(1) 2 q Product of the roots = (α + 2)(β + 2) = ........(2) 2 p By (1), α + β + 4 = − 2 3 p +4=− 2 2 p = −11 q By (2), (α + 2)(β + 2) = 2 q αβ + 2(α + β) + 4 = 2 5 3 q − + 2( ) + 4 = 2 2 2 q=9

(b) When k = −5 , the equation becomes x 2 + [( −5)2 + 14( −5) + 45]x + 2( −5) − 5 = 0 x 2 − 15 = 0 x = ± 15

2

When k = −9 , the equation becomes x 2 + [( −9)2 + 14( −9) + 45]x + 2( −9) − 5 = 0 x 2 − 23 = 0 x = ± 23 11. (a) x 2 − ( k + 3) x + ( k 2 − 3k + 6) = 0

D = [ −( k + 3)]2 − 4( k 2 − 3k + 6) = 0 k 2 + 6k + 9 − 4 k 2 + 12 k − 24 = 0 −3k 2 + 18k − 15 = 0 k 2 − 6k + 5 = 0 ( k − 5)( k − 1) = 0 k = 1 or 5 (b) 2 kx 2 + 4( 4 k − 5) x + (2 k + 5) = 0 D = [ 4( 4 k − 5)]2 − 4(2 k )(2 k + 5) = 0

16(16k 2 − 40 k + 25) − (16k 2 + 40 k ) = 0 256k 2 − 640 k + 400 − 16k 2 − 40 k = 0 240 k 2 − 680 k + 400 = 0 6k 2 − 17k + 10 = 0 (6k − 5)( k − 2) = 0 5 k = or 2 6

9. (a) α 3 + β3 = (α + β)(α 2 − αβ + β 2 ) = 335 5(α 2 − αβ + β 2 ) = 335 α 2 + β 2 − αβ = 67......(∗) (α + β)2 − 2αβ − αβ = 67 52 − 3αβ = 67 αβ = −14

By (∗) , α 2 + β 2 = 67 + αβ = 67 − 14 = 53 (b) α 2 and β 2 are roots of equation Sum of the roots = α 2 + β 2 = 53 Product of the roots = α 2β 2 = (αβ)2 = ( −14)2 = 196 One required equation is x 2 − 53 x + 196 = 0 .

10. (a) Let α, −α be the roots of x 2 + ( k 2 + 14 k + 45) x + 2 k − 5 = 0 . Sum of the roots = α + ( −α ) =0

= −( k 2 + 14 k + 45) k + 14 k + 45 = 0 ( k + 5)( k + 9) = 0 k = −5 2

12 − 16. No solutions are provided for the H.K.C.E.E. questions because of the copyright reasons. 17. α and β are roots of ax 2 + bx + c = 0 . b Sum of the roots = α + β = − a c Product of the roots = αβ = a (a) α 3 + β3 = (α + β)(α 2 − αβ + β 2 ) = (α + β)[(α + β)2 − 2αβ − αβ] = (α + β)[(α + β)2 − 3αβ] b −b c = − [( )2 − 3( )] a a a b b 2 − 3ac ) =− ( a a2 − b(b 2 − 3ac) = a3 α 3β3 = (αβ)3 =

or −9

31

c3 a3

32

Chapter 1 Quadratic Equations & Quadratic Functions

If x = β , f [ f (β)] − β = f (β) − β =β−β =0 ∴ α, β are also the roots of f [ f ( x )] − x = 0 .

A quadratic equation with roots α 3 and β3 is b(b 2 − 3ac) c3 x + 3 = 0, 3 a a 3 2 2 i.e. a x + b(b − 3ac) x + c 3 = 0 x2 +

(b) By (a), take a = 1 , b = −3 , c = −2 . One required equation is (1) x 2 + ( −3)[( −3)2 − 3(1)( −2)]x + ( −2)3 = 0 , i.e. x 2 − 45 x − 8 = 0

(b) For f ( x ) = x 2 − 3 x + 2 , We set f ( x ) − x = 0 , i.e. x 2 − 4 x + 2 = 0 −( −4) ± ( −4)2 − 4(2) 2 4± 8 = 2 =2± 2

x=

18. α and β are roots of x 2 + ax + b = 0 . Sum of the roots = α + β = − a Product of the roots = αβ = b

By (a), f [ f ( x )] − x = 0 has roots 2 ± 2 . f [ f ( x )] − x = 0

(a) (i) α 3 + β3 = (α + β)(α 2 − αβ + β 2 ) = (α + β)[(α + β)2 − 2αβ − αβ]

( x 2 − 3 x + 2)2 − 3( x 2 − 3 x + 2) + 2 − x = 0

= − a[( − a)2 − 3b]

x 4 − 6 x 3 + 13 x 2 − 12 x + 4 − 3 x 2 + 9 x − 6+2−x =0

= − a( a 2 − 3b) (ii) (α − β 2 + 1)(β − α 2 + 1) = αβ − α + α − β + α β − β 3

3

2 2

x 4 − 6 x 3 + 10 x 2 − 4 x = 0 2

x ( x 3 − 6 x 2 + 10 x − 4) = 0

+ β − α2 + 1 = αβ − (α 3 + β3 ) + (α + β)



x ( x − 2)( x 2 − 4 x + 2) = 0 x = 0, 2 or 2 ± 2

− (α 2 + β 2 ) + (αβ)2 + 1

20. (a) Let α be the common root of the two equations

= αβ − (α 3 + β3 ) + (α + β)

3α 2 + aα + b = 0 ..........(1)  2 3α + bα + a = 0 .........(2)

− [(α + β) − 2αβ] + (αβ) + 1 2

2

= b + a( a 2 − 3b) − a − ( a 2 − 2 b) + b 2 + 1 = b + a 3 − 3ab − a − a 2 + 2 b + b 2 + 1

(1) − (2), ( a − b)α = a − b α = 1 (Q a ≠ b)

= b 2 + 3b − 3ab + a 3 − a 2 − a + 1 = b 2 − 3( a − 1)b + a 3 + 1 − ( a 2 + a) = b − 3( a − 1)b + ( a + 1)( a − a + 1) − a( a + 1) 2

2

= b 2 − 3( a − 1)b + ( a + 1)( a 2 − 2 a + 1) = b 2 − 3( a − 1)b + ( a − 1)2 ( a + 1)

(b) If one root of the equation plus 1 is equal to the square of the other, i.e. α + 1 = β 2 or β + 1 = α 2 , then (α + 1 − β 2 )(β + 1 − α 2 ) = 0 . From (a)(ii), b 2 − 3( a − 1)b + ( a − 1)2 ( a + 1) = 0 19. f ( x ) = ax 2 + bx + c (a) α and β are roots of f ( x ) − x = 0 . f (α ) = α ∴ f (α ) − α = 0 f (β) − β = 0 f (β) = β For the equation, f [ f ( x )] − x = 0 If x = α , f [ f (α )] − α = f (α ) − α =α−α =0

(b) As α = 1, 3 + a + b = 0 a + b = −3 a and b are roots of x 2 + hx + k = 0 Sum of the roots = a + b = − h −3 = − h h =3 Product of the roots = ab = k Since h, k are positive integers and a + b = −3 , k = ab = ( −1)( −2) = 2 is the only solution. ∴ k=2 21. No solution is provided for the H.K.C.E.E. question because of the copyright reasons.

båêáÅÜãÉåí=N=EéKPUF 1. (a)

x 2 − 6 acx + a 2 (9c 2 − 4b 2 ) = 0 x 2 − 6 acx + [a(3c + 2 b) ⋅ a(3c − 2 b)] = 0 [ x − a(3c + 2 b)][ x − a(3c − 2 b)] = 0 x = a(3c ± 2 b)

33

Chapter 1 Quadratic Equations & Quadratic Functions

Since kf ( x ) = g( x ) has equal roots, D = [ −(6k + 3)]2 − 4 k[ −(3 + 3k )] = 0

(1 − l 2 ) x 2 − 2 mx + m 2 = 0

(b)

(1 + l )(1 − l ) x − 2 mx + m = 0 [(1 + l ) x − m][(1 − l ) x − m] = 0 2

2

x= 4

36k 2 + 36k + 9 + 12 k + 12 k 2 = 0

m m or 1− l 1+ l

48k 2 + 48k + 9 = 0 16k 2 + 16k + 3 = 0 ( 4 k + 3)( 4 k + 1) = 0

2

x 3 − 5x 3 + 4 = 0

2. 2

k =−

2

( x 3 − 4)( x 3 − 1) = 0 2

x3 = 4 x = ±8

or or

2

x3 =1 x = ±1

22 x +2 = 9 ⋅ 2 x − 2

3.

22 x ⋅ 22 = 9 ⋅ 2 x − 2 4⋅2

2x

− 9 ⋅ 2x + 2 = 0

7. ax 2 + bx + c = 0 and px 2 + qx + r = 0 have one root in common. Let the common root be α. aα 2 + bα + c = 0 .......(1)  2  pα + qα + r = 0 ......(2) (1) × p − (2) × a, bpα + cp − aqα − ar = 0 α(bp − aq ) = ar − cp ar − cp α= bp − aq (1) × q − (2) × b,

(2 x − 2)( 4 ⋅ 2 x − 1) = 0 1 2 x = 2 or 2 x = 4 x = 1 or x = −2

x + 9 + 11 = x x + 9 = x − 11

4.

aqα 2 + cq − bpα 2 − br = 0

x + 9 = x 2 − 22 x + 121 x 2 − 23 x + 112 = 0 ( x − 16)( x − 7) = 0 x = 16 or 7 Check: When x = 16 ,



L.H.S. = 16 + 9 + 11 = 16 = R.H.S. When x = 7 ,

∴ 5.

L.H.S. = 7 + 9 + 11 = 15 ≠ R.H.S. x = 16

1 3 or − 4 4

α 2 ( aq − bp) = br − cq br − cq α2 = aq − bp ar − cp 2 br − cq ( ) = bp − aq aq − bp 2 ( ar − cp) = br − cq aq − bp (br − cq )( aq − bp) = ( ar − cp)2 y

8.

y= x ⋅ x 8 6

(1 − x ) + (1 − x ) − 6 = 0 [(1 − x ) − 2][(1 − x ) + 3] = 0 or 1 − x = −3 1− x = 2 x =4 x = −1 (rejected) or 2



x = 16

3(1 + k ) 6. f ( x ) = x − 6 x − , g( x ) = 3 x k kf ( x ) = g( x )

4 2

−3

−2

−1

O −2

2

kx 2 − 6kx − 3(1 + k ) = 3 x kx 2 − 6kx − 3 − 3k − 3 x = 0 kx 2 − (6k + 3) x − (3 + 3k ) = 0

−4 −6 −8

x 1

2

3

34

Chapter 1 Quadratic Equations & Quadratic Functions

`ä~ëëïçêâ=N=EéKPF

4 ( x − )2 − ( 3 4 13 4 (x − + )( x − − 3 3 3

1. 3 x − 14 x + 8 = 0 ( x − 4)(3 x − 2) = 0 2 x = 4 or 3 2

2.

6 x 2 − 13 x − 5 = 0 (2 x − 5)(3 x + 1) = 0 5 x= 2

1 3

or −

1

1 4

( x + 1)2 − ( 1 + m )2 = 0 ( x + 1 − 1 + m )( x + 1 + 1 + m ) = 0 x = −1 ± 1 + m

1

y 2 − 3y 4 + 2 = 0

4.

x2 + 2x − m = 0 2 2 x 2 + 2 x + ( )2 − ( )2 − m = 0 2 2 ( x + 1)2 − (1 + m) = 0

4.

3. ( y − 3)2 − 10( y − 3) − 56 = 0 [( y − 3) + 4][( y − 3) − 14] = 0 y − 3 = −4 or y − 3 = 14 y = −1 or y = 17

13 2 ) =0 3 13 )=0 3 4 ± 13 x= 3

( y − 2)( y − 1) = 0 1

4n 2 4n ) − ( )2 + 1 2 2 = ( x − 2 n) 2 − 4 n 2 + 1

5. x 2 − 4n + 1 = x 2 − 4n + (

1 4

1

y 4 = 2 or y 4 = 1 y = 16 or y = 1

= ( x − 2 n) 2 + 1 − 4 n 2 ∴

a = −2 n , b = 1 − 4n 2

`ä~ëëïçêâ=O=EéKSF 1.

x2 + 4x + 2 = 0 4 4 x 2 + 4 x + ( )2 − ( )2 + 2 = 0 2 2 ( x + 2)2 − 2 = 0

`ä~ëëïçêâ=P=EéKUF 1. Let a = 2 , b = −7 , c = 4 . Using the formula,

( x + 2)2 − ( 2 )2 = 0 ( x + 2 − 2 )( x + 2 + 2 ) = 0 x = −2 ± 2 2.

3.

x 2 − 3x + 1 = 0 3 3 x 2 − 3 x + ( )2 − ( )2 + 1 = 0 2 2 3 2 5 (x − ) − = 0 2 4 3 2 5 2 (x − ) − ( ) = 0 2 2 3 5 3 5 (x − + )( x − − )=0 2 2 2 2 3± 5 x= 2

3x 2 − 8 x + 1 = 0 8 1 x2 − x + = 0 3 3 8 2 8 2 1 2 8 x − x +( ) −( ) + = 0 3 6 6 3 4 2 13 (x − ) − =0 3 9

x=

2.

−( −7) ± ( −7)2 − 4(2)( 4) 7 ± 17 = 2( 2 ) 4

9 + 3x − 4 x 2 = 0 −4 x 2 + 3 x + 9 = 0 Let a = −4 , b = 3 , c = 9 . Using the formula, x=

−3 ± 32 − 4( −4)(9) −3 ± 153 3 ± 3 17 = = 2( −4) −8 8

5 x + 12 = 3 x 2

3.

3 x 2 − 5 x − 12 = 0 Let a = 3 , b = −5 , c = −12 . Using the formula, −( −5) ± ( −5)2 − 4(3)( −12) 2(3) 5 ± 169 x= 6 4 x = 3 or x = − 3 x=

Chapter 1 Quadratic Equations & Quadratic Functions

4. Let a = 3 , b = 4 , c = 5 . Using the formula,

−4 ± 4 − 4(3)(5) −4 ± −44 = 2(3) 6 The equation has no real solution. x=

2

5. Since 4 is a root of 3 x 2 + ax + 8 = 0 . ∴ 3( 4)2 + a( 4) + 8 = 0 4 a = −56 a = −14 Substitute a = −14 into the given equation, 3 x 2 − 14 x + 8 = 0 ( x − 4)(3 x − 2) = 0 2 3 2 ∴ The other root of the equation is . 3 ∴

x = 4 or

`ä~ëëïçêâ=Q=EéKVF 5x 2 + 9 x − 2 = 0

D = 9 2 − 4(5)( −2) = 121 = 112 D is a perfect square.

35

`ä~ëëïçêâ=R=EéKNNF 1. 2 x 2 − x − 21 = 0 D = ( −1)2 − 4(2)( −21) = 169

= 132 Q D > 0 and D is a perfect square. ∴ The equation has two rational roots. 2. 9 − 5 x + x 2 = 0 x 2 − 5x + 9 = 0

D = ( −5)2 − 4(1)(9) = −11 Q D<0 ∴ The equation has unreal roots. 3. x 2 − 2 x = 5

x2 − 2x − 5 = 0 D = ( −2)2 − 4( −5) = 24 Q D > 0 and D is not a perfect square. ∴ The equation has two real roots. 4. 4 x 2 − 28 x + 49 = 0 D = ( −28)2 − 4( 4)( 49) =0 Q D=0 ∴ The equation has two equal rational roots.

x 2 + 8 x + 16 = 0

D = 82 − 4(16) =0

D is a perfect square. 2 x − 7x + 3 = 0 2

D = ( −7)2 − 4(2)(3) = 25 = 52 D is a perfect square. 2 x 2 − 5x + 4 = 0

D = ( −5)2 − 4(2)( 4) = −7 D is not a perfect square.

9 x 2 − 30 x + 25 = 0 D = ( −30)2 − 4(9)(25) =0 D is a perfect square.

`ä~ëëïçêâ=S=EéKNNF 1. x 2 + 8 x + 5k = 0

D = 82 − 4(1)(5k ) = 64 − 20 k 2. 2 x 2 − kx − ( k − 3) = 0

D = ( − k )2 − 4(2)[ −( k − 3)] = k 2 + 8( k − 3) = k 2 + 8k − 24

`ä~ëëïçêâ=T=EéKNPF 1. x 2 − (2 m − 1) x − 2 m = 0 D = [ −(2 m − 1)]2 − 4( −2 m) = 4 m 2 − 4 m + 1 + 8m = 4m 2 + 4m + 1 = (2 m + 1)2 which is the square of a rational number. Therefore the roots of the given equation are rational.

36

Chapter 1 Quadratic Equations & Quadratic Functions

`ä~ëëïçêâ=V=EéKNSF

2. qx 2 + ( p + 3q ) x + 2 p = 0

1. 2 x 2 + 3 x − 7 = 0

D = ( p + 3q )2 − 4(q )(2 p) = p + 6 pq + 9q − 8 pq 2

2

= p 2 − 2 pq + 9q 2 = p 2 − 2 pq + q 2 + 8q 2 = ( p − q ) 2 + 8q 2 Q ( p − q )2 ≥ 0 and q 2 > 0 ∴ D>0 ∴ The equation has real roots.

3. (a) x 2 − kx + ( k + 3) = 0 ............(*) D = ( − k )2 − 4( k + 3)

3 2 7 Product of the roots = αβ = − 2 (a) α 2 + β 2 = (α + β)2 − 2αβ 3 7 = ( − ) 2 − 2( − ) 2 2 37 = 4

Sum of the roots = α + β = −

(b)

37

= k 2 − 4 k − 12 (b) If (*) has equal roots, D = 0. From (a), ( k + 2)( k − 6) = 0 k = −2 or 6 (c) For k = −2 , (*) becomes

x2 + 2x + 1 = 0

(c)

= 47 −2 37 =− 14 (α + 2β + 1)(β + 2α + 1) = αβ + 2α 2 + α + 2β 2 + 4αβ + 2β + β + 2α + 1 = 5αβ + 2(α 2 + β 2 ) + 3(α + β) + 1 7 37 3 = 5( − ) + 2( ) + 3( − ) + 1 2 4 2 5 =− 2

( x + 1)2 = 0 x = −1

`ä~ëëïçêâ=U=EéKNQF 1. x 2 − 3 x + 1 = 0 Sum of the roots = 3

2. α and β are the roots of x 2 + px + q = 0 . Sum of the roots = α + β = − p Product of the roots = αβ = q

Product of the roots = 1

( pα − q )2 + ( pβ − q )2 = p 2 α 2 − 2 pqα + q 2 + p 2β 2 − 2 pqβ + q 2

2. x 2 + 5 x − 3 = 0 Sum of the roots = −5

= p 2 (α 2 + β 2 ) − 2 pq(α + β) + 2 q 2

Product of the roots = −3

= p 2 [(α + β)2 − 2αβ] − 2 pq(α + β) + 2 q 2 = p 2 ( p 2 − 2 q ) − 2 pq( − p) + 2 q 2 = p 4 − 2 p2 q + 2 p2 q + 2q 2

3. 2 x 2 − 4 x − 7 = 0 Sum of the roots = 2

= p 4 + 2q 2

Product of the roots = −

7 2

`ä~ëëïçêâ=NM=EéKNUF 1. α and β are the roots of x 2 − x − 7 = 0 . Sum of the roots = α + β = 1

4. 5 x + (3k − 1) x + 2 k = 0 2

3k − 1 5 1 − 3k = 5

Sum of the roots = −

Product of the roots =

α β α 2 + β2 + = β α αβ

2k 5

Product of the roots = αβ = −7 1 1 β+α α+ +β+ = α+β+ α β αβ 1 = 1+ −7 6 = 7

37

Chapter 1 Quadratic Equations & Quadratic Functions

(b) For all real values of x,

1 1 )(β + ) α β 1 α β = αβ + + + β α αβ

(α +

1 ( x − )2 3 1 2 3( x − ) 3 1 2 4 3( x − ) − 3 3 1 2 4 3( x − ) − 3 3

1 α 2 + β2 = αβ + + αβ αβ (α + β)2 − 2αβ 1 + αβ αβ 1 − 2( −7) 1 = −7 + + −7 −7 65 =− 7 One required equation is 6 65 x2 − x − = 0 , i.e. 7 7 7 x 2 − 6 x − 65 = 0 = αβ +

2. Let α and α 2 be the two roots. Product of the roots = α(α 2 ) = 27

α 3 = 27 α =3

2 1 x− ) 3 3 2 2 1 2 2 = 3[ x − x + ( )2 − ( )2 − ] 3 6 6 3 1 2 4 = 3( x − ) − 3 3

≥−

4 3

4 3

(b) For all real values of x,

1 ( x − )2 ≥ 0 4 1 2 −4( x − ) ≤ 0 4 1 2 3 3 −4( x − ) − ≤ 0 − 4 4 4 3 −4 x 2 + 2 x − 1 ≤ − 4 3 4x2 − 2x + 1 ≥ 4

3 + 32 = − q q = −12

1. (a) 3 x 2 − 2 x − 1 = 3( x 2 −

≥0−

2. (a) −4 x 2 + 2 x − 1 1 1 = −4( x 2 − x + ) 2 4 1 1 1 2 1 = −4[ x − x + ( )2 − ( )2 + ] 2 4 4 4 1 2 3 = −4( x − ) − 4 4

Sum of the roots = α + α = − q

`ä~ëëïçêâ=NN=EéKOQF

≥0

4 ∴ The least value of 3 x 2 − 2 x − 1 is − . 3

2

3. Let α and 2α be the two roots. Product of the roots = α(2α ) = r Sum of the roots = α + 2α = −2q 2α 2 = r ............(1)  3α = −2 q .........(2) −2 q (2) : α = 3 −2 q Put α = into (1), 3 2q 2( − ) 2 = r 3 8q 2 =r 9 8q 2 = 9 r

≥0

`ä~ëëïçêâ=NO=EéKOUF y

1. (a)

−1

O

x 1

2

3

−1 −2 −3 −4

y = x 2 − 2x − 3

38

Chapter 1 Quadratic Equations & Quadratic Functions

y

(b)

y

(d)

y = x 2 + 2x + 4 4

1

x

O

1

2

3

4

5

3

6

−1

2

−2

1

−3

−2

−4

−1

x

O

1

2

−5

2. Since y = x 2 + (2 a + 1) x + a 2 intersects the x-axis at two distinct points, D > 0 .

y = −x 2 + 6x − 8

−6 −7

D = (2 a + 1)2 − 4 a 2 > 0

−8

4a 2 + 4a + 1 − 4a 2 > 0 a>−

1 4

y

(c)

3. Consider the discriminant of x 2 − 2 mx + m( m + 3) . O

x 1

2

3

4

5

6

D = ( −2 m)2 − 4 m( m + 3) = 4 m 2 − 4 m 2 − 12 m = −12 m

−1

m > 0 , −12 m < 0 Q D < 0 and the graph opens upwards

−2 −3



−4 −5

`ä~ëëïçêâ=NP=EéKPOF

−6

1. (a)

−9

y = 6x − 9 − x

5 + 2x = 3 5 + 2x = 3 x = −1

−7 −8

x 2 − 2 mx + m( m + 3) is always positive for any real values of x if m > 0 .

2

(b)

or or

5 + 2 x = −3 x = −4

2 + 3x = 6 − 2 x 2 + 3 x = 6 − 2 x or 2 + 3 x = −(6 − 2 x ) or 2 + 3 x = −6 + 2 x 5x = 4 4 or x= x = −8 5

39

Chapter 1 Quadratic Equations & Quadratic Functions

2. (a)

`ä~ëëïçêâ=NR=EéKPQF

2x + 1 1 = 3− x 4

y

2x + 1 1 = 3− x 4 4(2 x + 1) = 3 − x 8x + 4 = 3 − x 1 x=− 9 (b)

2x + 1 1 =− 3− x 4 or 4(2 x + 1) = x − 3 or 8x + 4 = x − 3 or

x = −1

2 x + 1 = 9 + 3x

2

2 x + 1 = −9 − 3 x x = −2

2 x + 1 = 9 + 3 x or or x = −8 But 9 + 3 x ≥ 0 x = −2 ∴

1

`ä~ëëïçêâ=NQ=EéKPOF

−1

1. x 2 + 3 x − 4 = 6 x 2 + 3x − 4 = 6

or

x 2 + 3 x − 10 = 0 ( x + 5)( x − 2) = 0

or or

x 2 + 3 x − 4 = −6 x 2 + 3x + 2 = 0 ( x + 1)( x + 2) = 0

or x = −1, − 2 x = −5, 2 ∴ x = −5, −2, −1 or 2 2. 3( x + 1)2 − 7 x + 1 + 2 = 0 Let

a = x +1 ≥ 0 a = x +1 2

2

= ( x + 1)2 ∴ The equation becomes 3a 2 − 7a + 2 = 0 ( a − 2)(3a − 1) = 0 a = 2 or a =

Q

Q

x +1 = 2 x +1 = 2 x =1

1 3 1 x +1 = 3

y = 2 + 3x − 2x 2

3

1 3

or x + 1 = −2 or x = −3

x +1 =

1 3 2 4 or x=− x=− 3 3 2 4 ∴ x = −3, − , − or 1 3 3 or x + 1 = −

O

x 1

2