Marking Scheme 1.
A man buys a new car at its pre-launch price. After t months, its value $V is given by V = 85988e − pt , where p is a constant.
(i)
What is the value of the new car at its pre-launch price?
[1]
The value of the car after 1 year is expected to be $74011. Calculate (ii)
the expected value, to the nearest dollar, of the car after 4 years,
(iii) the age of the car, to the nearest month, when its expected value will be less than $30000.
(i)
$85988 – A1
(ii)
85988e −12 p = 74011 - M1 p = 0.0125(3sf ) Expected value = 85988e −48×0.0125 - M1 (using t = 48) =$47191 – A1 (nearest dollar)
(iii)
85988e −0.0125t < 30000 ⎛ 30000 ⎞ −0.0125t < ln ⎜ ⎟ - M1;M1 (V<30000; t > 84.2 ) ⎝ 85988 ⎠ t > 84.2
85 months – A1
1
[3] [3]
2.
The roots of the quadratic equation −3 x 2 + 6 x − 7 = 0 are α and β . Find the quadratic equation [7]
whose roots are α 2 + 3 and β 2 + 3 . −3 x 2 + 6 x − 7 = 0
x2 − 2x +
7 =0 3
α +β =2 αβ =
- A1 (both answers are correct for sum and product of roots)
7 3
α2 +3+ β 2 +3 =α2 + β2 +6 = (α + β ) − 2αβ + 6 - M1 2
=
16 - A1 (sum of roots) 3
(α
2
+ 3)( β 2 + 3)
= (αβ ) + 3 (α 2 + β 2 ) + 9 2
(
)
= (αβ ) + 3 (α + β ) − 2αβ + 9 - M1 2
=
2
112 - A1 (product of roots) 9
New Equation: x 2 −
16 112 x+ = 0 - A1 3 9
9 x 2 − 48 x + 112 = 0 - A1
2
3
(i)
Prove the identity
sin x sin x + ≡ 2 cot x . sec x − 1 sec x + 1
[5]
Find all the angles between 0° and 360° which satisfy the equation (ii)
sin x sin x + = 3. sec x − 1 sec x + 1
(i)
sin x sin x + sec x − 1 sec x + 1
[5]
=
sin x(sec x + 1) + sin x(sec x − 1) -M1 (common denominator) (sec x − 1)(sec x + 1)
=
2 sin x sec x - M1 (simplifying after common denominator) sec 2 x − 1
=
2 tan x - M1;M1 ( sin x sec x = tan x;sec 2 x − 1 = tan 2 x ) 2 tan x
=
2 1 - M1 ( = cot x ) tan x tan x
= 2cot x (shown)
(ii)
sin x sin x + =3 sec x − 1 sec x + 1
2 cot x = 3 3 - M1; M1 (using (i) 2cotx = 3;getting tan x = 2/3) 2 2 tan x = 3
cot x =
basic angle = 33.69° - M1 (correct basic angle) x = 33.7°, 213.7° - A2 (1 mark for each answer)
3
4.
Solve the equation (i)
3log x 2 + log x 18 = 2
[3]
(ii)
log 7 y − 15log y 7 = −2
[5]
(i)
3log x 2 + log x 18 = 2
log x (144 ) = 2 - M1 (apply laws of log) 144 = x 2 - M1 (index form) x = 12 or − 12( NA) - A1
(ii)
log 7 y − 15log y 7 = −2
⎛ 1 log 7 y − 15 ⎜ ⎝ log 7
⎞ ⎟ = −2 - M1 (apply laws of log) y⎠
Let x = log 7 y ⎛1⎞ x − 15 ⎜ ⎟ = −2 - M1 ⎝ x⎠
x 2 + 2 x − 15 = 0 - M1 x = 3 or − 5 3 = log 7 y or − 5 = log 7 y - M1 y = 343 or
1 - A1 75
5
3x 2 + 12 x − 27 3x 2 + 12 x − 27 = x( x − 3)( x + 3) x 3 − 9x A B C = + + x x−3 x+3
M1
3 x 2 + 12 x − 27 = A( x − 3)( x + 3) + B( x)( x + 3) + C ( x)( x − 3) Let x = 0, − 27 = −9 A ⇒ A = 3
4
let x = 3, 36 = 18B ⇒ B = 2
M1
let x = –3, –36 = 18C ⇒ C = −2 3x 2 + 12 x − 27 3 2 2 = + − There fore, 3 x x−3 x+3 x − 9x
A1
d ⎛ 3 x 2 + 12 x − 27 ⎞ d ⎛ 3 2 2 ⎞ ⎜⎜ ⎟⎟ = − ⎜ + ⎟ 3 dx ⎝ x − 9x ⎠ dx ⎝ x x − 3 x + 3 ⎠ ⎛ 3 2 2 + = ⎜⎜ − 2 − 2 (x − 3) (x + 3)2 ⎝ x
⎞ ⎟ ⎟ ⎠
M2
⎛ 3 2 2 + Gradient of the curve when x = 1 is ⎜⎜ − 2 − 2 (1 + 3)2 ⎝ 1 (1 − 3)
6(a)
(b)
f ( x) = ( x − 1)( x − (1 + k ))( x − k 2 ) − 12 = (0 − 1)(0 − (1 + k ))(− k 2 ) k 3 + k − 12 = 0
M2 M1
5
(c)
⎞ 3 ⎟ = −3 . ⎟ 8 ⎠
A1
Let k = e y 2 = ey ln 2 = y ln e y = 0.693
A1
Total
9m
M1
Trial error :
g(2) = k 3 + k 2 − 12 =0 k − 2 is a factor of g By synthetic division g(k) = (k-2)( k 2 + 3k + 6 ) Consider k 2 + 3k + 6 = 0 − 3 ± 9 − 24 k= 2 Since D < 0, there are no other real roots i.e k = 2
M1
M1 M1
A1
5
7(a)
∠ABE = ∠DBE (given, BE ∠bisector) BE common side ∠BED =∠BEA = 90° (∠ in semicircle) ΔABE≡ΔDBE (ASA) ∴AE = DE
(b)
8(ai)
∠ADE = ∠CDE common angle ∠CED = ∠ABD (or ∠DCE = ∠DAB) (ext ∠ of cyclic quad) ΔABD is similar ΔCED AAAtest
∠OSP = 90 0 − θ ∠RST = θ
both M1 M1
M2
AD BD = CD ED
but AE = DE, AD = 2AE 2 AE BD = CD AE Proven AE2 = 12 BD×CD
M1
M1
M1 M1 M1
Total
(bi) M1 M1 A1
1.5 sin θ + 0.8 cos θ = R sin(θ + α )
(bii)
R = 1.5 2 + 0.8 2 = 1.7
M1
0 .8 α = 28.07 0 1 .5 OT = 1.7 sin(θ + 28.10 )
M1
tan α =
(c)
Proven
OS = 1.5 sin θ ST = 0.8 cosθ OT = 1.5 sin θ + 0.8 cosθ (aii)
7
9m
OT is max when sin(θ + 28.10 ) = 1 0 0 < θ < 90 0 (θ + 28.10 ) = 90 0 28.07 0 < θ + 28.07 < 118.07 0 θ = 61.9 0 1.7 sin(θ + 28.10 ) = 1.2 1 .2 sin(θ + 28.10 ) = 1 .7 0 Since 28.07 < θ + 28.07 < 118.07 0 (θ + 28.10 ) = 44.90 0 θ = 16.8 0
A1
Total
6
M1
A1
M1
A1 10m
Evaluate
9
∫
1 0
⎛ ⎜3 x − ⎝
integers.
⎞ ⎟ dx , giving your answer in the form a + b 3 , where a and b are x+3⎠ [5] 1
⎛ 1 ⎞ ∫0 ⎜⎝ 3 x − x + 3 ⎟⎠ dx 1
1
=
⎡ 3 1 ⎢ 3 x 2 ( x + 3) 2 ⎢ 3 − 1 ⎢ ⎣ 2 2
⎤ ⎥ ⎥ ⎥ ⎦0
=
1 ⎤ ⎡ 32 2 − + 2 x 2 x 3 ( ) ⎢ ⎥ ⎣ ⎦0
3
1
( x + 3) 2 3x 2 B1 for , B1 for 3 1 2 2 1
= = =
3 1 ⎤ 1 ⎡ ⎡ 2 2 − + − − + 2(1) 2 1 3 2(0) 2 0 3 ( ) ⎥ ⎢ ( ) 2 ⎤⎥ ⎢ ⎦ ⎣ ⎦ ⎣ [ 2 − 2(2)] − ⎡⎣ −2 3 ⎤⎦
−2 + 2 3
M2
A1
10 A curve has the equation y = 2 cos 2 x − sin 2 x , where 0 ≤ x ≤ π .
d2 y dy (i) Obtain expressions for and . dx dx 2 function.
Express each answer as a single trigonometric [4]
(ii) Find the x-coordinate of the stationary point of the curve, and determine the nature of this stationary point. [4] 10 (i)
dy dx
B1 for 4 cos x ( − sin x ) , B1 for −2cos 2x
= 4 cos x ( − sin x ) − 2 cos 2 x
= −4sin x cos x − 2cos2x = −2sin 2x − 2cos2x = −2 2 sin ( 2 x + 0.7854 ) or equivalent
d2 y = −4cos 2x + 4sin2x dx 2
B1 for −4cos 2x , B1 for 4sin2x
= −4 2 cos ( 2 x + 0.7854 ) or equivalent dy = 0. dx −2sin 2x − 2cos2x = 0 tan2x = −1
(ii) For stationary point,
M1
7
2 x = π − 0.7854, 2π − 0.7854, , 3π − 0.7854 A1 - arrive at both answers x = 1.1781, 2.7489
d2 y When x = 1.1781, = −4 2 cos ( 2(1.1781) + 0.7854 ) = 5.657 > 0 dx 2 The stationary point at x = 1.1781 is a minimum point.
M1 for method of determining nature of stationary pt
d2 y When x = 2.7489, = −4 2 cos ( 2(2.7489) + 0.7854 ) = −5.657 < 0 dx 2 The stationary point at x = 2.7489 is a maximum point.
A1 for determining nature of both stationary pts
11 (a)(i)
(a)(ii)
dy dx
=
x(−1)e− x + e − x (1)
=
(1 − x ) e− x
(shown)
∫ (1 − x ) e dx = xe + c ∫ e − x e d x = xe + c ∫ e dx − ∫ xe dx = xe + c − e − ∫ xe dx = xe + c ∫ xe dx = − e − xe + C −x −x
−x
−x
−x
−x
−x
−x
−x
−x
(a)(iii)
B1 for x(−1)e − x , B1 for e− x (1)
M1
−x
−x
−x
−x
A1
dy >0 dx (1 − x ) e− x > 0
1 − x > 0, since e− x is always positive x<1 B1
11 (b) A circle passes through the points A (0, 8) and B (7, 1). The centre of the circle lies on the 4 line y = x . Find the equation of the circle. [6] 3
8
11 (b) Let the equation by ( x − p ) + ( y − q ) = r 2 ----- (1) 2
Since centre (p, q) lies on the line y =
2
4 x, 3
4 p 3 Subst into (1): q=
M1 2
4p ( x − p ) + ⎛⎜ y − ⎞⎟ = r 2 ----- (2) 3 ⎠ ⎝ Subst (0, 8) into (2): 2
2
4p 2 ( 0 − p ) + ⎛⎜ 8 − ⎞⎟ = r 2 3 ⎠ ⎝ 64 p 16 p 2 p 2 + 64 − + = r2 3 9 2 25 p 64 p − + 64 = r 2 ----- (3) 9 3 Subst (7, 1) into (2):
M1
2
4p ( 7 − p ) + ⎛⎜1 − ⎞⎟ = r 2 3 ⎠ ⎝ 8 p 16 p 2 49 − 14 p + p 2 + 1 − + = r2 3 9 2 25 p 50 p − + 50 = r 2 ----- (4) 9 3 (3) – (4): 14 p − + 14 = 0 3 p=3 q=4 Subst into (3): 25(32 ) 64 ( 3) − + 64 = r 2 9 3 r=5 2
M1
A1
A1
Subst p, q, r into (1): Equation of the circle is: 2 2 ( x − 3 ) + ( y − 4 ) = 52 x2 − 6 x + y 2 − 8 y = 0
A1
9
11 (b) Alternative Method
Centre of circle lies on perpendicular bisector of AB Mid-point of AB = (3.5, 4.5) Gradient of AB = −1 Gradient of perpendicular = 1 Equation of perpendicular bisector of AB: y – 4.5 = 1 (x − 3.5) y = x + 1 ----- (1) 4 y = x ----- (2) 3 Solving (1) and (2), x = 3, y = 4 Centre of circle = (3, 4)
M1 A1
M1 A1
Let the equation of the circle be ( x − 3) + ( y − 4 ) = r 2 Subst A (0, 8): 2 2 ( 0 − 3) + ( 8 − 4 ) = r 2 2
25 = r 2 r=5
2
M1
Equation of the circle is: 2 2 ( x − 3 ) + ( y − 4 ) = 52 x2 − 6 x + y 2 − 8 y = 0
A1
10
12(a)(i) Area of A 3 18 = ∫ dx 2 6− x
M1
= ⎡⎣ − 18ln ( 6 − x ) ⎤⎦ 2 A1 – correct integration = ⎣⎡ − 18ln ( 6 − 3) ⎦⎤ − ⎡⎣ − 18ln ( 6 − 2 ) ⎦⎤ 3
= −18ln3 + 18ln4 = 5.1783 = 5.18 sq units
A1
12(a)(ii) Subst x = 2: y = 4.5
Subst x = 3: y=6
M1 for obtaining y = 4.5 and y = 6
Area of B = Total – Area of A = 1.5×3 + 4.5×1 – 5.1783 = 3.8217 = 3.82 sq units
A1
π⎞ ⎛ (b) The diagram shows part of the curve y = 4 sin ⎜ 2 x + ⎟ . Find the area of the shaded region, 6⎠ ⎝ which is bounded by the curve, the line y = − 2 and the line x =
π
6
.
[5]
y
π⎞ ⎛ y = 4sin ⎜ 2 x + ⎟ 6⎠ ⎝ A
O
x B
x=
12(b)
C
π 6
π⎞ ⎛ Subst 4sin ⎜ 2 x + ⎟ = 0: 6⎠ ⎝
11
y=−2
2x + x=
π 6
= 0, π , 2π ,...
5π [or 1.309] 12
π⎞ ⎛ At intersection point, subst 4sin ⎜ 2 x + ⎟ = −2: 6⎠ ⎝ π⎞ 1 ⎛ sin ⎜ 2 x + ⎟ = − 6⎠ 2 ⎝ π 7π 11π 2x + = , ,... 6 6 6 π x= 2
M1 for obtaining either x-coordinate
Area A =
5π 12
∫π
6
π⎞ ⎛ 4sin ⎜ 2 x + ⎟ dx 6⎠ ⎝
M1
5π
⎡− 4 π ⎞ ⎤ 12 ⎛ = ⎢ cos ⎜ 2 x + ⎟ ⎥ 6 ⎠⎦ π ⎝ ⎣ 2 6 5π 12
⎡− 4 π ⎞⎤ ⎛ =⎢ cos ⎜ 2 x + ⎟ ⎥ 6 ⎠⎦ π ⎝ ⎣ 2
6
⎛ ⎛ 5π ⎞ π ⎞ ⎛ ⎛π ⎞ π ⎞ = − 2 cos ⎜ 2 ⎜ ⎟ + ⎟ + 2 cos ⎜ 2 ⎜ ⎟ + ⎟ ⎝ ⎝ 12 ⎠ 6 ⎠ ⎝ ⎝6⎠ 6⎠ = 2 sq units Area of B ⎛ 5π π ⎞ =2× ⎜ − ⎟ ⎝ 12 6 ⎠ π = sq units 2
M1 [or 1.571]
Area of C ⎛ π 5π ⎞ =2× ⎜ − ⎟− ⎝ 2 12 ⎠
π
⎛
π⎞
∫ π 4sin ⎜⎝ 2 x + 6 ⎟⎠ dx 2 5 12
M1
π
⎡ π ⎞⎤ 2 ⎛ = + ⎢ 2 cos ⎜ 2 x + ⎟ ⎥ 6 ⎠ ⎦ 5π 6 ⎣ ⎝
π
12
12
⎛ ⎛π ⎞ π ⎞ ⎛ ⎛ 5π ⎞ π ⎞ + 2 cos ⎜ 2 ⎜ ⎟ + ⎟ − 2 cos ⎜ 2 ⎜ ⎟+ ⎟ 6 ⎝ ⎝2⎠ 6⎠ ⎝ ⎝ 12 ⎠ 6 ⎠ π = + ( −1.732 ) − ( −2 ) 6 = 0.7916 sq units =
π
Total shaded area = 2 + 1.571 + 0.7916 = 4.36 sq units
A1
13