Am Mock Solutions

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Am Mock Solutions as PDF for free.

More details

  • Words: 2,840
  • Pages: 13
Marking Scheme 1.

A man buys a new car at its pre-launch price. After t months, its value $V is given by V = 85988e − pt , where p is a constant.

(i)

What is the value of the new car at its pre-launch price?

[1]

The value of the car after 1 year is expected to be $74011. Calculate (ii)

the expected value, to the nearest dollar, of the car after 4 years,

(iii) the age of the car, to the nearest month, when its expected value will be less than $30000.

(i)

$85988 – A1

(ii)

85988e −12 p = 74011 - M1 p = 0.0125(3sf ) Expected value = 85988e −48×0.0125 - M1 (using t = 48) =$47191 – A1 (nearest dollar)

(iii)

85988e −0.0125t < 30000 ⎛ 30000 ⎞ −0.0125t < ln ⎜ ⎟ - M1;M1 (V<30000; t > 84.2 ) ⎝ 85988 ⎠ t > 84.2

85 months – A1

1

[3] [3]

2.

The roots of the quadratic equation −3 x 2 + 6 x − 7 = 0 are α and β . Find the quadratic equation [7]

whose roots are α 2 + 3 and β 2 + 3 . −3 x 2 + 6 x − 7 = 0

x2 − 2x +

7 =0 3

α +β =2 αβ =

- A1 (both answers are correct for sum and product of roots)

7 3

α2 +3+ β 2 +3 =α2 + β2 +6 = (α + β ) − 2αβ + 6 - M1 2

=

16 - A1 (sum of roots) 3



2

+ 3)( β 2 + 3)

= (αβ ) + 3 (α 2 + β 2 ) + 9 2

(

)

= (αβ ) + 3 (α + β ) − 2αβ + 9 - M1 2

=

2

112 - A1 (product of roots) 9

New Equation: x 2 −

16 112 x+ = 0 - A1 3 9

9 x 2 − 48 x + 112 = 0 - A1

2

3

(i)

Prove the identity

sin x sin x + ≡ 2 cot x . sec x − 1 sec x + 1

[5]

Find all the angles between 0° and 360° which satisfy the equation (ii)

sin x sin x + = 3. sec x − 1 sec x + 1

(i)

sin x sin x + sec x − 1 sec x + 1

[5]

=

sin x(sec x + 1) + sin x(sec x − 1) -M1 (common denominator) (sec x − 1)(sec x + 1)

=

2 sin x sec x - M1 (simplifying after common denominator) sec 2 x − 1

=

2 tan x - M1;M1 ( sin x sec x = tan x;sec 2 x − 1 = tan 2 x ) 2 tan x

=

2 1 - M1 ( = cot x ) tan x tan x

= 2cot x (shown)

(ii)

sin x sin x + =3 sec x − 1 sec x + 1

2 cot x = 3 3 - M1; M1 (using (i) 2cotx = 3;getting tan x = 2/3) 2 2 tan x = 3

cot x =

basic angle = 33.69° - M1 (correct basic angle) x = 33.7°, 213.7° - A2 (1 mark for each answer)

3

4.

Solve the equation (i)

3log x 2 + log x 18 = 2

[3]

(ii)

log 7 y − 15log y 7 = −2

[5]

(i)

3log x 2 + log x 18 = 2

log x (144 ) = 2 - M1 (apply laws of log) 144 = x 2 - M1 (index form) x = 12 or − 12( NA) - A1

(ii)

log 7 y − 15log y 7 = −2

⎛ 1 log 7 y − 15 ⎜ ⎝ log 7

⎞ ⎟ = −2 - M1 (apply laws of log) y⎠

Let x = log 7 y ⎛1⎞ x − 15 ⎜ ⎟ = −2 - M1 ⎝ x⎠

x 2 + 2 x − 15 = 0 - M1 x = 3 or − 5 3 = log 7 y or − 5 = log 7 y - M1 y = 343 or

1 - A1 75

5

3x 2 + 12 x − 27 3x 2 + 12 x − 27 = x( x − 3)( x + 3) x 3 − 9x A B C = + + x x−3 x+3

M1

3 x 2 + 12 x − 27 = A( x − 3)( x + 3) + B( x)( x + 3) + C ( x)( x − 3) Let x = 0, − 27 = −9 A ⇒ A = 3

4

let x = 3, 36 = 18B ⇒ B = 2

M1

let x = –3, –36 = 18C ⇒ C = −2 3x 2 + 12 x − 27 3 2 2 = + − There fore, 3 x x−3 x+3 x − 9x

A1

d ⎛ 3 x 2 + 12 x − 27 ⎞ d ⎛ 3 2 2 ⎞ ⎜⎜ ⎟⎟ = − ⎜ + ⎟ 3 dx ⎝ x − 9x ⎠ dx ⎝ x x − 3 x + 3 ⎠ ⎛ 3 2 2 + = ⎜⎜ − 2 − 2 (x − 3) (x + 3)2 ⎝ x

⎞ ⎟ ⎟ ⎠

M2

⎛ 3 2 2 + Gradient of the curve when x = 1 is ⎜⎜ − 2 − 2 (1 + 3)2 ⎝ 1 (1 − 3)

6(a)

(b)

f ( x) = ( x − 1)( x − (1 + k ))( x − k 2 ) − 12 = (0 − 1)(0 − (1 + k ))(− k 2 ) k 3 + k − 12 = 0

M2 M1

5

(c)

⎞ 3 ⎟ = −3 . ⎟ 8 ⎠

A1

Let k = e y 2 = ey ln 2 = y ln e y = 0.693

A1

Total

9m

M1

Trial error :

g(2) = k 3 + k 2 − 12 =0 k − 2 is a factor of g By synthetic division g(k) = (k-2)( k 2 + 3k + 6 ) Consider k 2 + 3k + 6 = 0 − 3 ± 9 − 24 k= 2 Since D < 0, there are no other real roots i.e k = 2

M1

M1 M1

A1

5

7(a)

∠ABE = ∠DBE (given, BE ∠bisector) BE common side ∠BED =∠BEA = 90° (∠ in semicircle) ΔABE≡ΔDBE (ASA) ∴AE = DE

(b)

8(ai)

∠ADE = ∠CDE common angle ∠CED = ∠ABD (or ∠DCE = ∠DAB) (ext ∠ of cyclic quad) ΔABD is similar ΔCED AAAtest

∠OSP = 90 0 − θ ∠RST = θ

both M1 M1

M2

AD BD = CD ED

but AE = DE, AD = 2AE 2 AE BD = CD AE Proven AE2 = 12 BD×CD

M1

M1

M1 M1 M1

Total

(bi) M1 M1 A1

1.5 sin θ + 0.8 cos θ = R sin(θ + α )

(bii)

R = 1.5 2 + 0.8 2 = 1.7

M1

0 .8 α = 28.07 0 1 .5 OT = 1.7 sin(θ + 28.10 )

M1

tan α =

(c)

Proven

OS = 1.5 sin θ ST = 0.8 cosθ OT = 1.5 sin θ + 0.8 cosθ (aii)

7

9m

OT is max when sin(θ + 28.10 ) = 1 0 0 < θ < 90 0 (θ + 28.10 ) = 90 0 28.07 0 < θ + 28.07 < 118.07 0 θ = 61.9 0 1.7 sin(θ + 28.10 ) = 1.2 1 .2 sin(θ + 28.10 ) = 1 .7 0 Since 28.07 < θ + 28.07 < 118.07 0 (θ + 28.10 ) = 44.90 0 θ = 16.8 0

A1

Total

6

M1

A1

M1

A1 10m

Evaluate

9



1 0

⎛ ⎜3 x − ⎝

integers.

⎞ ⎟ dx , giving your answer in the form a + b 3 , where a and b are x+3⎠ [5] 1

⎛ 1 ⎞ ∫0 ⎜⎝ 3 x − x + 3 ⎟⎠ dx 1

1

=

⎡ 3 1 ⎢ 3 x 2 ( x + 3) 2 ⎢ 3 − 1 ⎢ ⎣ 2 2

⎤ ⎥ ⎥ ⎥ ⎦0

=

1 ⎤ ⎡ 32 2 − + 2 x 2 x 3 ( ) ⎢ ⎥ ⎣ ⎦0

3

1

( x + 3) 2 3x 2 B1 for , B1 for 3 1 2 2 1

= = =

3 1 ⎤ 1 ⎡ ⎡ 2 2 − + − − + 2(1) 2 1 3 2(0) 2 0 3 ( ) ⎥ ⎢ ( ) 2 ⎤⎥ ⎢ ⎦ ⎣ ⎦ ⎣ [ 2 − 2(2)] − ⎡⎣ −2 3 ⎤⎦

−2 + 2 3

M2

A1

10 A curve has the equation y = 2 cos 2 x − sin 2 x , where 0 ≤ x ≤ π .

d2 y dy (i) Obtain expressions for and . dx dx 2 function.

Express each answer as a single trigonometric [4]

(ii) Find the x-coordinate of the stationary point of the curve, and determine the nature of this stationary point. [4] 10 (i)

dy dx

B1 for 4 cos x ( − sin x ) , B1 for −2cos 2x

= 4 cos x ( − sin x ) − 2 cos 2 x

= −4sin x cos x − 2cos2x = −2sin 2x − 2cos2x = −2 2 sin ( 2 x + 0.7854 ) or equivalent

d2 y = −4cos 2x + 4sin2x dx 2

B1 for −4cos 2x , B1 for 4sin2x

= −4 2 cos ( 2 x + 0.7854 ) or equivalent dy = 0. dx −2sin 2x − 2cos2x = 0 tan2x = −1

(ii) For stationary point,

M1

7

2 x = π − 0.7854, 2π − 0.7854, , 3π − 0.7854 A1 - arrive at both answers x = 1.1781, 2.7489

d2 y When x = 1.1781, = −4 2 cos ( 2(1.1781) + 0.7854 ) = 5.657 > 0 dx 2 The stationary point at x = 1.1781 is a minimum point.

M1 for method of determining nature of stationary pt

d2 y When x = 2.7489, = −4 2 cos ( 2(2.7489) + 0.7854 ) = −5.657 < 0 dx 2 The stationary point at x = 2.7489 is a maximum point.

A1 for determining nature of both stationary pts

11 (a)(i)

(a)(ii)

dy dx

=

x(−1)e− x + e − x (1)

=

(1 − x ) e− x

(shown)

∫ (1 − x ) e dx = xe + c ∫ e − x e d x = xe + c ∫ e dx − ∫ xe dx = xe + c − e − ∫ xe dx = xe + c ∫ xe dx = − e − xe + C −x −x

−x

−x

−x

−x

−x

−x

−x

−x

(a)(iii)

B1 for x(−1)e − x , B1 for e− x (1)

M1

−x

−x

−x

−x

A1

dy >0 dx (1 − x ) e− x > 0

1 − x > 0, since e− x is always positive x<1 B1

11 (b) A circle passes through the points A (0, 8) and B (7, 1). The centre of the circle lies on the 4 line y = x . Find the equation of the circle. [6] 3

8

11 (b) Let the equation by ( x − p ) + ( y − q ) = r 2 ----- (1) 2

Since centre (p, q) lies on the line y =

2

4 x, 3

4 p 3 Subst into (1): q=

M1 2

4p ( x − p ) + ⎛⎜ y − ⎞⎟ = r 2 ----- (2) 3 ⎠ ⎝ Subst (0, 8) into (2): 2

2

4p 2 ( 0 − p ) + ⎛⎜ 8 − ⎞⎟ = r 2 3 ⎠ ⎝ 64 p 16 p 2 p 2 + 64 − + = r2 3 9 2 25 p 64 p − + 64 = r 2 ----- (3) 9 3 Subst (7, 1) into (2):

M1

2

4p ( 7 − p ) + ⎛⎜1 − ⎞⎟ = r 2 3 ⎠ ⎝ 8 p 16 p 2 49 − 14 p + p 2 + 1 − + = r2 3 9 2 25 p 50 p − + 50 = r 2 ----- (4) 9 3 (3) – (4): 14 p − + 14 = 0 3 p=3 q=4 Subst into (3): 25(32 ) 64 ( 3) − + 64 = r 2 9 3 r=5 2

M1

A1

A1

Subst p, q, r into (1): Equation of the circle is: 2 2 ( x − 3 ) + ( y − 4 ) = 52 x2 − 6 x + y 2 − 8 y = 0

A1

9

11 (b) Alternative Method

Centre of circle lies on perpendicular bisector of AB Mid-point of AB = (3.5, 4.5) Gradient of AB = −1 Gradient of perpendicular = 1 Equation of perpendicular bisector of AB: y – 4.5 = 1 (x − 3.5) y = x + 1 ----- (1) 4 y = x ----- (2) 3 Solving (1) and (2), x = 3, y = 4 Centre of circle = (3, 4)

M1 A1

M1 A1

Let the equation of the circle be ( x − 3) + ( y − 4 ) = r 2 Subst A (0, 8): 2 2 ( 0 − 3) + ( 8 − 4 ) = r 2 2

25 = r 2 r=5

2

M1

Equation of the circle is: 2 2 ( x − 3 ) + ( y − 4 ) = 52 x2 − 6 x + y 2 − 8 y = 0

A1

10

12(a)(i) Area of A 3 18 = ∫ dx 2 6− x

M1

= ⎡⎣ − 18ln ( 6 − x ) ⎤⎦ 2 A1 – correct integration = ⎣⎡ − 18ln ( 6 − 3) ⎦⎤ − ⎡⎣ − 18ln ( 6 − 2 ) ⎦⎤ 3

= −18ln3 + 18ln4 = 5.1783 = 5.18 sq units

A1

12(a)(ii) Subst x = 2: y = 4.5

Subst x = 3: y=6

M1 for obtaining y = 4.5 and y = 6

Area of B = Total – Area of A = 1.5×3 + 4.5×1 – 5.1783 = 3.8217 = 3.82 sq units

A1

π⎞ ⎛ (b) The diagram shows part of the curve y = 4 sin ⎜ 2 x + ⎟ . Find the area of the shaded region, 6⎠ ⎝ which is bounded by the curve, the line y = − 2 and the line x =

π

6

.

[5]

y

π⎞ ⎛ y = 4sin ⎜ 2 x + ⎟ 6⎠ ⎝ A

O

x B

x=

12(b)

C

π 6

π⎞ ⎛ Subst 4sin ⎜ 2 x + ⎟ = 0: 6⎠ ⎝

11

y=−2

2x + x=

π 6

= 0, π , 2π ,...

5π [or 1.309] 12

π⎞ ⎛ At intersection point, subst 4sin ⎜ 2 x + ⎟ = −2: 6⎠ ⎝ π⎞ 1 ⎛ sin ⎜ 2 x + ⎟ = − 6⎠ 2 ⎝ π 7π 11π 2x + = , ,... 6 6 6 π x= 2

M1 for obtaining either x-coordinate

Area A =

5π 12

∫π

6

π⎞ ⎛ 4sin ⎜ 2 x + ⎟ dx 6⎠ ⎝

M1



⎡− 4 π ⎞ ⎤ 12 ⎛ = ⎢ cos ⎜ 2 x + ⎟ ⎥ 6 ⎠⎦ π ⎝ ⎣ 2 6 5π 12

⎡− 4 π ⎞⎤ ⎛ =⎢ cos ⎜ 2 x + ⎟ ⎥ 6 ⎠⎦ π ⎝ ⎣ 2

6

⎛ ⎛ 5π ⎞ π ⎞ ⎛ ⎛π ⎞ π ⎞ = − 2 cos ⎜ 2 ⎜ ⎟ + ⎟ + 2 cos ⎜ 2 ⎜ ⎟ + ⎟ ⎝ ⎝ 12 ⎠ 6 ⎠ ⎝ ⎝6⎠ 6⎠ = 2 sq units Area of B ⎛ 5π π ⎞ =2× ⎜ − ⎟ ⎝ 12 6 ⎠ π = sq units 2

M1 [or 1.571]

Area of C ⎛ π 5π ⎞ =2× ⎜ − ⎟− ⎝ 2 12 ⎠

π



π⎞

∫ π 4sin ⎜⎝ 2 x + 6 ⎟⎠ dx 2 5 12

M1

π

⎡ π ⎞⎤ 2 ⎛ = + ⎢ 2 cos ⎜ 2 x + ⎟ ⎥ 6 ⎠ ⎦ 5π 6 ⎣ ⎝

π

12

12

⎛ ⎛π ⎞ π ⎞ ⎛ ⎛ 5π ⎞ π ⎞ + 2 cos ⎜ 2 ⎜ ⎟ + ⎟ − 2 cos ⎜ 2 ⎜ ⎟+ ⎟ 6 ⎝ ⎝2⎠ 6⎠ ⎝ ⎝ 12 ⎠ 6 ⎠ π = + ( −1.732 ) − ( −2 ) 6 = 0.7916 sq units =

π

Total shaded area = 2 + 1.571 + 0.7916 = 4.36 sq units

A1

13

Related Documents

Am Mock Solutions
June 2020 5
Em Mock Solutions
June 2020 9
Mock 6 Solutions
November 2019 10
Solutions To Mock Cat Test
November 2019 4