Aljebra Mat I Sol 08-09

  • Uploaded by: Maite
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Aljebra Mat I Sol 08-09 as PDF for free.

More details

  • Words: 1,333
  • Pages: 5
MATEMATIKA I: ALJEBRA 1) LABURTU: x 3 − x 2 − 2x x 3 − 3x 2 + 2x ebazpena:

(

)

x ( x − 2) ( x + 1) x + 1 x 3 − x 2 − 2x x x2 − x − 2 = = = 3 2 2 x ( x − 2) ( x − 1) x −1 x − 3 x + 2x x x − 3 x + 2

(

)

2) Kalkulatu eta laburtu: 1

( x − 1) 2

+

2 1 + x −1 x2 −1

Ebazpena: 1

( x − 1) =

2

+

2 1 1 2 1 + = + + = x − 1 x 2 − 1 ( x − 1) 2 ( x − 1) ( x − 1) ( x + 1)

(

)

x + 1 + 2 x 2 − 1 + ( x − 1)

( x − 1) 2 ( x + 1)

=

x + 1 + 2x 2 − 2 + x − 1

( x − 1) 2 ( x + 1)

=

2x 2 + 2x − 2

( x − 1) 2 ( x + 1)

3) Ebatzi ondorengo ekuazioak: a) x 2 +

15 3 x 2 − x + 3 = +3 4 4

b) x 4 − 21x 2 − 100 = 0

Ebazpena: a) x 2 +

15 3 x 2 − x + 3 = +3 4 4

4 x 2 15 3 x 2 − x + 3 12 + = + 4 4 4 4 4 x 2 + 15 = 3 x 2 − x + 3 + 12 x2 + x = 0 x ( x + 1) = 0



x = 0   x + 1 = 0



b) x 4 − 21x 2 − 100 = 0 Cambio: x 2 = z



z 2 − 21z − 100 = 0

x 4 = z2

x = −1

z=

21 ±

441 + 400 2

=

21 ±

841 2

21 ± 29 2

=



z = 25 → x = ±5   z = −4 (no vale)

Bi soluzio: x1 = −5, x2 = 5 4) Ebatzi ondorengo ekuazioak: a)

3x − 3 + x = 7

b)

2 x −2 5 + = x −1 x +1 4

Ebazpena: a)

3x − 3 + x = 7 3x − 3 = 7 − x 3x − 3 = ( 7 − x ) 2 3 x − 3 = 49 + x 2 − 14 x 0 = x 2 − 17 x + 52 x=

17 ±

289 − 208 2

=

17 ±

81

2

=

17 ± 9 2

 x = 13    x = 4



Egiaztapena: x = 13 x=4

→ →

36 + 13 = 6 + 13 = 19 ≠ 7 9 +4 = 3+4 = 7





x = 13 no vale

x = 7 sí vale

Soluzioa: x = 4

b)

2 x −2 5 + = x −1 x +1 4 4( x − 1) ( x − 2 ) 5( x − 1) ( x + 1) 8( x + 1) + = 4( x − 1) ( x + 1) 4( x − 1) ( x + 1) 4( x − 1) ( x + 1)

(

) (

)

8x + 8 + 4 x 2 − 3x + 2 = 5 x 2 − 1 2

2

8 x + 8 + 4 x − 12 x + 8 = 5 x − 5 0 = x 2 + 4 x − 21 x=

− 4 ± 16 + 84 2

=

− 4 ± 100 2

3 2 c) x − 2 x − 11x + 12 = 0

Ebazpena: Fakturizatuko dugu:

=

− 4 ± 10 2



x = 3    x = −7

x − 2 x − 11x + 12 = ( x − 1) ( x − 4 ) ( x + 3 ) = 0 3

2



x − 1 = 0 → x = 1  x − 4 = 0 → x = 4  x + 3 = 0 → x = −3 

Soluzioak: x1 = 1,

x 2 = 4,

x 3 = −3

6) Ebatzi ondoko ekuazioak: a) 2 2 x − 2 x +1 +

3 =0 4

b) log ( x − 2 ) + log ( x − 3 ) = log 6

Ebazpena: a) 2 2 x − 2 x +1 +

(2 ) x

2

3 =0 4

− 2 ⋅ 2x +

3 =0 4

Hacemos el cambio de variable: 2x = y y 2 − 2y +

y =



3 =0 4



4y 2 − 8y + 3 = 0

64 − 48 8 ± 16 8 ± 4 = = 8 8 8



12 3  y = =  8 2  4 1 y = =  8 2

3 3 3 log 3 → 2x = → x = log 2 = log 2 3 − 1 = − 1 = 0,58 2 2 2 log 2 edo x = (log3 -log 2)/log 2=0,58 1 1 • y= → 2x = → x = −1 2 2 • y=

Bi soluzio: x1 = 0,58; x2 = −1 b) log ( x − 2) + log ( x − 3 ) = log 6 log [ ( x − 2 ) ( x − 3 ) ] = log 6

( x − 2) ( x − 3) = 6

x 2 − 5x + 6 = 6  x  0 (no vale) porque al sustituir en la ecuación x2  5x  0

x  x  5  0



 



quedaría log  2   log  3  , que no



existen.

  x 5 

Soluzioa: x  5

7) Ebatzi ondorengo ekuazio sistemak

1 2  x  y 5   1 1 5   x y 2 

a)

Ebazpena: 1 2   xy 5  1 1 5   x y 2  5  2x 

5  2 x  y  

5  2 x  2y  

2y  2 x  5 xy 

2 ; x

5  5 xy 

5 x  2 x 2  2;

 1  xy

5

25  16 4



5 4

9



53 4

 x2 

  

 x 



x1  2  Hay dos soluciones : 1 y1   2

y

x2 



y

2 1  4 2



1 2 

y2  2 

b)  2 x + y  32  ln x  ln y  ln 6 Ebazpena:  2 x + y = 32  ln x + ln y = ln 6

1 x

0  2x 2  5x  2 

x

y 

 2 x + y = 25  ln ( xy ) = ln 6

x + y = 5 xy = 6 

y =5−x x(5 − x ) = 6

1 2 y 2

5x − x 2 = 6

→ =

0 = x 2 − 5x + 6

5 ± 1 5 ±1 = 2 2



→ x= x = 3    x = 2



25 − 24 = 2 → y = 5−3 = 2 →

y =5−2=3

Bi soluzio: x1 = 3, y1 = 2 x2 = 2, y2 = 3 8) Ebatzi ondoko inekuazio edota inekuazio sistemak: x2 – 3x – 4 ≥ 0 8 (–∞, –1] « [4, +∞)

Related Documents

Aljebra Mat I Sol 08-09
November 2019 27
Aljebra Ggzzi Sol 08-09
November 2019 30
Mat Sol Funcoes
November 2019 15
Mat Sol Revisao
November 2019 14
Mat I (13-16)
October 2019 7
Mat I (9-12)
October 2019 23

More Documents from ""

December 2019 22
Aljebra Mat I Sol 08-09
November 2019 27
Perseo
December 2019 28