Algebre

  • Uploaded by: Salim
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Algebre as PDF for free.

More details

  • Words: 11,553
  • Pages: 18
‫]‪â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
‫ﺒﻨﻴﺔ ﺍﻝﻔﻀﺎﺀ ﺍﻝﺸﻌﺎﻋﻲ‪:‬‬ ‫ﻝﻴﻜﻥ ) • ‪ ( K , +,‬ﺤﻘل ﺘﺒﺩﻴﻠﻲ ‪ ،‬ﻭﻝﺘﻜﻥ ‪ E‬ﻤﺠﻤﻭﻋﺔ ﻏﻴﺭ ﺨﺎﻝﻴﺔ ‪.‬‬

‫ﻤﺜﺎل ‪:1‬‬

‫ﺘﻌﺭﻴﻑ ‪ :‬ﻨﻘﻭل ﺃﻥ ‪ E‬ﻓﻀﺎﺀ ﺸﻌﺎﻋﻲ ﻋﻠﻰ ﺍﻝﺤﻘل ‪ ، K‬ﺇﺩﺍ ﺯﻭﺩﻨﺎ ‪E‬‬

‫ﻜل ﺤﻘل ‪ K‬ﻓﻀﺎﺀ ﺸﻌﺎﻋﻲ ﻋﻠﻰ ﻨﻔﺴﻪ ‪ ( K , +, • ) ،‬ﺤﻘل‪.‬‬

‫ﺒﻌﻤﻠﻴﺘﻴﻥ‬ ‫‪ (1‬ﻋﻤﻠﻴﺔ ﺩﺍﺨﻠﻴﺔ ) ‪ : ( +‬ﺘﺠﻌل ﻤﻥ ‪ E‬ﺯﻤﺭﺓ ﺘﺒﺩﻴﻠﻴﺔ‬

‫‪E =K‬‬ ‫"‪ "+‬ﺍﻝﺩﺍﺨﻠﻴﺔ ﻋﻠﻰ ‪ E‬ﻫﻲ "‪ "+‬ﺍﻝﻌﻤﻠﻴﺔ ﺍﻝﺩﺍﺨﻠﻴﺔ ﻋﻠﻰ ‪. K‬‬

‫‪ (2‬ﺍﻝﻌﻤﻠﻴﺔ ﺍﻝﺨﺎﺭﺠﻴﺔ ) • ( ‪ :‬ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ‪:‬‬ ‫‪K ×E → E‬‬

‫" • " ﺍﻝﺨﺎﺭﺠﻴﺔ ﻋﻠﻰ ‪ E‬ﻫﻲ " • " ﺍﻝﻌﻤﻠﻴﺔ ﺍﻝﺨﺎﺭﺠﻴﺔ ﻋﻠﻰ ‪. K‬‬

‫‪(α , x ) → α • x‬‬

‫ﺤﺎﻝﺔ ﺨﺎﺼﺔ ‪ ℝ :‬ﻓﻀﺎﺀ ﺸﻌﺎﻋﻲ ﻋﻠﻰ ‪. ℝ‬‬

‫ﺒﺤﻴﺙ ‪:‬‬ ‫‪1) ∀α , β ∈ K : ∀u ∈ E : (α + β ) u = α u + β u‬‬

‫ﻤﺜﺎل ‪:2‬‬

‫‪2) ∀α ∈ K : ∀u ,v ∈ E : α (u + v ) = α u + α v‬‬

‫) ‪ : ℑ ( ℝ, ℝ‬ﻤﺞ ﺍﻝﺘﻁﺒﻴﻘﺎﺕ ﻤﻥ ‪ ℝ‬ﻓﻲ ‪. ℝ‬‬

‫) ‪3) ∀α , β ∈ K : ∀u ∈ E : (αβ ) u = α ( β u‬‬

‫‪ f‬ﺘﻁﺒﻴﻕ }‪ℑ ( ℝ, ℝ ) = { f : ℝ → ℝ‬‬

‫‪4) 1K • u = u‬‬

‫ﻋﻠﻰ ‪ E‬ﻨﻌﺭﻑ ﺍﻝﻌﻤﻠﻴﺘﻴﻥ‬ ‫‪E ×E → E‬‬

‫‪( f .g ) → f + g‬‬ ‫) ‪∀x ∈ ℝ : ( f + g )( x ) = f ( x ) + g ( x‬‬

‫ﺍﺼﻁﻼﺤﺎﺕ‪:‬‬ ‫•‬

‫ﻋﻨﺎﺼﺭ ‪ E‬ﺘﺴﻤﻰ ﺃﺸﻌﺔ‪.‬‬

‫•‬

‫ﻋﻨﺎﺼﺭ ‪) K‬ﺍﻝﺤﻘل( ﺘﺴﻤﻰ ﺴﻠﻤﻴﺎﺕ ‪.‬‬

‫•‬

‫ﺍﻝﻌﻨﺼﺭ ﺍﻝﺤﻴﺎﺩﻱ ﻝـ "‪ "+‬ﻓﻲ ‪ E‬ﻨﺭﻤﺯ ﻝﻪ ﺒـ‪. O E :‬‬

‫•‬

‫ﻨﺭﻤﺯ ﻝﻠﻔﻀﺎﺀ ﺍﻝﺸﻌﺎﻋﻲ ﺒـ ) • ‪ ( K , +,‬ﻭﻨﻘﻭل‬

‫‪ℝ×E → E‬‬

‫‪( λ.f ) → λ f‬‬ ‫) ‪)( x ) = λ f ( x‬‬

‫‪∀x ∈ ℝ : ( λ f‬‬

‫ﺇﺫﻥ ‪ ℝ‬ﻑ‪.‬ﺵ‬

‫ﺃﻥ ‪ E K‬ﻑ‪.‬ﺵ‪.‬‬

‫ﻤﺜﺎل ‪ :3‬ﻤﺠﻤﻭﻋﺔ ﻜﺜﻴﺭﺍﺕ ﺍﻝﺤﺩﻭﺩ ﺒﻤﻌﺎﻤﻼﺕ ﻤﻥ ﺍﻝﺤﻘل ‪: K‬‬

‫ﻗﻭﺍﻋﺩ ﺍﻝﺤﺴﺎﺏ ﻓﻲ ﻑ‪.‬ﺵ ‪:‬‬

‫] ‪= ℝ ∨ ℂ) , E = K [x‬‬

‫ﻝﻴﻜﻥ ‪ K , E‬ﻑ ‪.‬ﺵ ‪α , β ∈ K , u ,v ∈ E ،‬‬ ‫) ‪1) ∀α ∈ K , ∀u ∈ E :αu = O E ⇒ (α = O K ) ∨ (u = O E‬‬

‫ﻨﺯﻭﺩ ‪ E‬ﺒـ ‪:‬‬

‫) ‪ α −1 (α .α −1 = 1K‬د ⇒ ) ‪(α u = O E ) ∧ (α ≠ O K‬‬ ‫‪⇒ α u = O E ⇒ α −1 (α u ) = α −1O E‬‬

‫)‬

‫] ‪+ : K [x ]× K [x ] → K [x‬‬

‫(‬

‫‪⇒ αα −1 u = O E ⇒ 1K u = O E ⇒ u = O E‬‬ ‫‪2) α (u − v ) = α (u + ( −v ) ) = α u − α v‬‬

‫‪3) (α − β ) u = α u − β u‬‬

‫‪www.math.3arabiyate.net‬‬

‫] ‪ E = K [ x‬ﻫﻭ ﻑ‪.‬ﺵ‬

‫‪1‬‬

‫‪(K‬‬ ‫‪( p ,q ) → p + q‬‬ ‫) ‪( p + q )( x ) = p ( x ) + q ( x‬‬ ‫] ‪K × K [x ] → K [x‬‬ ‫‪(λ, p ) → λ p‬‬ ‫) ‪( λ p )( x ) = λ p ( x‬‬

â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
:4 ‫ﻤﺜﺎل‬

‫ ؟‬u1 , u 2 ‫ ﻫﻭ ﻋﺒﺎﺭﺓ ﺨﻁﻴﺔ ﻓﻲ‬v (1, −1)

.‫ﺵ‬.‫ ﻑ‬E K ‫ ﻤﺞ ﻭ‬X ≠ φ

∃α , β ∈ ℝ : v = α u 1 + β u 2

H = ℑ ( X , E ) = {f : X → E , f

(1, −1) = α ( 5, 2 ) + β (1, 0 ) = ( 5α + β , 2α )

f , g ∈ H , ( f + g )( x ) = f ( x ) + g ( x )

1  α =−  5 + = 1 α β   2 ⇒  2α = −1 β = 7  2

λ ∈ K , f ∈ H , ( λ f ( x ) ) = λ if ( x ) ‫ﺵ‬.‫ ﻑ‬KH

}

‫ﺇﺫﻥ‬

‫ﺵ‬.‫ ﻑ‬ℝ ‫ ﻫﻭ‬ℑ ([a , b ] , ℝ )

1 7 v = u 1 + u 2 ‫ﻭﻤﻨﻪ‬ 2 2

:5‫ﻤﺜﺎل‬ ‫ﺠﺩﺍﺀ ﻑ ﺸﻌﺎﻋﻴﺔ ﻋﻠﻰ ﻨﻔﺱ ﺍﻝﺤﻘل‬

:‫ﺍﻝﻔﻀﺎﺀ ﺍﻝﺸﻌﺎﻋﻲ ﺍﻝﺠﺯﺌﻲ‬

.‫ﺵ‬.‫ ﻑ‬K

E n ,............, E 3 , E 2 , E 1

E ⊇ F ≠ φ ‫ﺵ ﻭﻝﻨﻜﻥ‬.‫ ﻑ‬E , K ‫ﻝﻴﻜﻥ‬

E = E 1 × E 2 × E 3 × ..................E n

‫ﺝ ﻤﻥ ﺍﻝﻔﻀﺎﺀ ﺍﻝﺸﻌﺎﻋﻲ‬.‫ﺵ‬.‫ ﻑ‬F ‫ ﻨﻘﻭل ﺃﻥ‬:‫ﺘﻌﺭﻴﻑ‬

X ∈ E ⇔ X = ( x 1 , x 2 ,..........., x n ) / x i ∈ E i , i =1....n

: ‫ ( ﺇﺫﺍ ﻜﺎﻥ‬K , +, • )

X ,Y ∈ E , X +Y = ( x 1 , x 2 ,..., x n ) + ( y 1 , y 2 ,..., y n )

F ≠φ ♦

= ( x 1 + y 1 , x 2 + y 2 , ... , x n + y n )

K ‫ﺵ ﻋﻠﻰ ﺍﻝﺤﻘل‬.‫ ( ﺒﺩﻭﺭﻫﺎ ﻑ‬F , +, • ) ♦

λ ∈ K , X ∈ E : λ X = ( λ x 1 , λ x 2 ,........... λ x n )

(

O E = O E1 ,O E 2 ,................,O E n

:‫ﺝ‬.‫ﺵ‬.‫ﺘﻤﻴﻴﺯ ﺍﻝﻑ‬ E ⊇F ‫ﻭ‬

)

n

‫ﺵ‬.‫ ﻑ‬K ‫ ﻫﻭ‬E = ΠE i

‫ﺵ‬.‫ ﻑ‬K ( E , + , • )

i =1

.‫ﺵ‬.‫ ﻑ‬ℝ ‫ ﻫﻭ‬E = ℝ ← E i = ℝ n

 iF ≠ φ    ( I )  i∀u ,v ∈ F :u + v ∈ F  ⇔ (‫ﺝ‬.‫ﺵ‬.‫ ﻑ‬F )  i∀α ∈ K , ∀u ∈ F , α u ∈ F   

.‫ﺵ‬.‫ ﻑ‬ℝ ‫ ﻫﻭ‬ℝ 2 , n = 2 .‫ﺵ‬.‫ ﻑ‬ℝ ‫ ﻫﻭ‬ℝ 3 , n = 3

 iF ≠ φ  ⇔  i∀u ,v ∈ F , ∀ α , β ∈ K , α u + β v ∈ F 

:‫ﺍﻝﻌﺒﺎﺭﺓ ﺍﻝﺨﻁﻴﺔ ﻝﻤﺠﻤﻭﻋﺔ ﺃﺸﻌﺔ‬

( II ) 

‫ﺵ‬.‫ ﻑ‬E , K ‫ﻝﻴﻜﻥ‬

α1 , α 2 ∈ K , u1 , u 2 ∈ E ‫ﻭﻝﻴﻜﻥ‬

 iF ≠ φ  ( III )  ⇔  i∀u ,v ∈ F , ∀α ∈ K , α u + v ∈ F 

‫ ﻴﺴﻤﻰ ﻋﺒﺎﺭﺓ ﺨﻁﻴﺔ ﻓﻲ ﺍﻝﺸﻌﺎﻋﻴﻥ‬v = α1 u 1 + α 2 u 2 ∈ E ‫ﺍﻝﺸﻌﺎﻉ‬ u 2 , u1

:‫ﻭﻨﻌﻤﻡ ﺫﻝﻙ ﻜﻤﺎ ﻴﻠﻲ‬

O E ∈ F ‫ ﺘﺄﻜﺩ ﺃﻥ‬F ≠ φ ‫ ﻹﺜﺒﺎﺕ‬:‫ﻤﻼﺤﻅﺔ‬

E ‫( ﻤﺠﻤﻭﻋﺔ ﺃﺸﻌﺔ ﻤﻥ‬u i )i ∈I ‫ﻝﺘﻜﻥ‬

: ‫( ﻜل ﻋﺒﺎﺭﺓ ﻤﻥ ﺍﻝﺸﻜل‬u i ) ‫ﻨﺴﻤﻲ ﻋﺒﺎﺭﺓ ﺨﻁﻴﺔ ﻓﻲ ﺍﻷﺸﻌﺔ‬

∑α u i

i

, αi ∈ K

i ∈I

2

www.math.3arabiyate.net

â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
E ‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ ﻑ‬F2 ، F1 :‫ﺘﻌﺭﻴﻑ‬

{( x , y ) ∈ ℝ

u ∈ F1 ⇔ u = ( −2 y , y ) , y ∈ ℝ

(‫ﺵ‬.‫ )ﻑ‬E ‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ ﻑ‬F1 + F2 ‫ ﺇﻥ‬:‫ﻤﻼﺤﻅﺔ‬

v ∈ F2 ⇔ u = ( −2 y ′, y ′ ) , y ′ ∈ ℝ

α u + v = ( −2α y , α y ) + ( −2 y ′, y ′ )

E ‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ ﻑ‬F1 , F2 ,..........., Fp ، ‫ﺵ‬.‫ ﻑ‬K , E :‫ﺘﻌﻤﻴﻡ‬

= ( −2α y − 2 y ′, α y + y ′ )

‫ ﻭﺍﻝﻤﻌﺭﻑ ﺒـ‬H = F1 + F2 + ........ + Fp ‫ﺝ‬.‫ﺵ‬.‫ﻨﺴﻤﻲ ﺍﻝﻑ‬

= ( −2 (α y + y ′ ) , α y + y ′ ) ∈ F1

H = {w ∈ E / w = u 1 + u 2 + ......... + u p , u i ∈ Fi } F1 , F2 ,..........., Fp ‫ﺒﻤﺠﻤﻭﻉ‬

F2 = {( x , y , z ) ∈ ℝ3 / x + 2 y + z = 3}

φ ≠ X ⊂ E ، ‫ﺵ‬. ‫ ﻑ‬K E

K = ℝ , E = ℝ [x ]

V ect ( x ) ‫ ﺒـ‬X ‫ﻨﺴﻤﻲ ﻤﺠﻤﻭﻋﺔ ﻜل ﺍﻝﻌﺒﺎﺭﺍﺕ ﺍﻝﺨﻁﻴﺔ ﻝﻌﻨﺎﺼﺭ‬ OE ∈ F ⇒ F ≠ φ ?

p , q ∈ F ,α ∈ ℝ ⇒α p + q ∈ F

v ,w ∈V ect ( x ) , α ∈ K , (α .v + w ) ∈V ect ( x ) ♦

i ∈I

)

= α p ′ (0) + q ′ ( 0)



α U +V = ∑ (α λi ) u i + ∑ β j v j

= (α p + q )′ ( 0 ) = A ′ ( 0 )

j ∈J

= ∑ λ ′u i + ∑ β j v j i ∈I

(A = α p + q )

 p ( 0 ) = p ′ ( 0 )  q ′ ( 0 ) = q ′ ( 0 ) A ( 0 ) = (α p + q )( 0 ) = α p ( 0 ) + q ( 0 )

. X ‫ﺍﻝﻤﻭﻝﺩ ﺒـ‬

j ∈J

(3

F = { p ∈ E / p ( 0 ) = p ′ ( 0 )}

  V ect ( x ) = ∑ λi u i , λi ∈ K , u i ∈ X   i ∈I  ‫ ﻴﺴﻤﻰ ﺍﻝﻔﻀﺎﺀ ﺍﻝﺠﺯﺌﻲ‬E ‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ ﻑ‬V ect ( x ) ‫♦ ﺇﻥ‬

V = ∑ β j v j (v j ∈ X

(2

O ℝ3 = ( 0, 0, 0 ) ∉ F2 ⇒ ‫ﺝ‬.‫ﺵ‬.‫ ﻝﻴﺱ ﻑ‬F2

E ‫ﺍﻝﻔﻀﺎﺀ ﺍﻝﺸﻌﺎﻋﻲ ﺍﻝﺠﺯﺌﻲ ﺍﻝﻤﻭﻝﺩ ﺒﺠﺯﺀ ﻤﻥ‬

)

(1

u ,v ∈ F1 , α ∈ ℝ ⇒ α u + v ∈ F1

F1 + F2 = { u + v / u ∈ F1 ,v ∈ F2 }

i ∈I

}

/ x + 2y = 0

O E = ( 0, 0 ) ∈ F1 ⇒ F1 ≠ φ

:‫ ﺍﻝﻤﺠﻤﻭﻋﺔ ﺍﻝﺘﺎﻝﻴﺔ‬F2 ‫ ﻭ‬F1 ‫ﻨﺴﻤﻲ ﻤﺠﻤﻭﻉ‬

U = ∑ λi u i (u i ∈ X

2

E = ℝ 2 :‫ﺃﻤﺜﻠﺔ‬

j ∈J

V ect ( F ) = F ، ‫ﺝ‬.‫ﺵ‬.‫ ﻑ‬F :‫ﺤﺎﻝﺔ ﺨﺎﺼﺔ‬

:‫ﺨﻭﺍﺹ‬

∑α u

‫ﺵ‬.‫ ﻑ‬E , K :‫ﻤﺜﺎل‬

i

X = { u1 ,u 2 } ♦

p ∈ℕ*

∈ F ‫ﺝ ﻓﺈﻥ‬.‫ﺵ‬.‫ ﻑ‬F ‫ ﻭ‬u i ∈ F (1

E ‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ ﻑ‬G ‫ ﻭ‬G ‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ ﻑ‬F (2

V ect ( X ) = { α1 u1 + α 2 u 2 , α1 , α 2 ∈ K } X = { u 1 , u 2 ,........., u p }

i

i ∈I

E ‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ ﻑ‬F ‫ﻓﺈﻥ‬



‫ ﻫﻭ ﺃﻴﻀﺎ‬F1 ∩ F2 ‫ ﻓﺈﻥ‬E ‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ ﻑ‬F2 ‫ ﻭ‬F1 (3

 p  V ect ( X ) = ∑ α i u i , α i ∈ K   i =1  V ect ( X ) ‫ﻴﺭﻤﺯ ﻓﻲ ﻫﺫﻩ ﺍﻝﺤﺎﻝﺔ ﻝـ‬

‫ﺝ‬.‫ﺵ‬.‫ﻑ‬ .‫ﺝ‬.‫ﺵ‬.‫ ﻋﻠﻰ ﻋﺩﺩ ﻜﻴﻔﻲ ﻤﻥ ﻑ‬3 ‫ﺘﻌﻤﻡ ﺍﻝﻨﺘﻴﺠﺔ‬ E ‫ﺝ ﻤﻥ ﻓﻀﺎﺀ ﺸﻌﺎﻋﻲ‬.‫ﺵ‬.‫ ﻑ‬Fi ، i ∈ I

V ect ( X ) = u 1 , u 2 ,............, u p ‫ﺒـ‬

.‫ﺝ‬.‫ﺵ‬.‫ﻫﻭ ﺃﻴﻀﺎ ﻑ‬

∩F

i

‫ﻓﺈﻥ‬

i ∈I

3

www.math.3arabiyate.net

â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
E = ℝ 2 , u = (1, 2, 0 ) , v ( 0, 0,1) , X = {u ,v } ♦ V ect ( X ) = u ,v

u = u 1 + u 2 ⇔ ( x , y ) = ( x 1 , − x 1 ) + ( x 2 , 2x 2 )

= { α u + β v , α , β ∈ ℝ}

1  x 1 = ( 2x − y )  + = x x x  1  3 2 ⇔ ⇔  − x 1 + 2x 2 = y x = 1 ( x + y )  2 3 ‫ ﻤﻭﺠﻭﺩﺍﻥ ﺩﺍﺌﻤﺎ‬x 1 , x 2

= { (α , 2α , 0 ) + ( 0, 0, β ) , α , β ∈ ℝ} = { (α , 2α , β ) , α , β ∈ ℝ}

. ‫ ﻤﻭﺠﻭﺩﺍﻥ ﺩﺍﺌﻤﺎ‬u 2 ( x 2 , 2x 2 ) , u1 ( x 1 , − x 1 ) ⇐

:‫ﺍﻝﻤﺠﻤﻭﻉ ﺍﻝﻤﺒﺎﺸﺭ ﻝﻔﻀﺎﺀﺍﺕ ﺸﻌﺎﻋﻴﺔ ﺠﺯﺌﻴﺔ‬ E ‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ ﻑ‬F2 ‫ ﻭ‬F1 ، ‫ﺵ‬.‫ ﻑ‬K , E ‫ﻝﻴﻜﻥ‬

:‫ﺍﻝﻔﻀﺎﺀﺍﺕ ﺍﻝﺸﻌﺎﻋﻴﺔ ﺍﻝﺠﺯﺌﻴﺔ ﺍﻹﻀﺎﻓﻴﺔ‬

‫ﺝ‬.‫ﺵ‬.‫ ﻑ‬H ‫ ﻨﻌﻠﻡ ﺃﻥ‬، H = F1 + F2 ‫ﻨﻀﻊ‬

‫ﺝ‬.‫ﺵ‬.‫ ﻑ‬F ,G ، ‫ﺵ‬.‫ ﻑ‬E ‫ﻝﻴﻜﻥ‬

‫ ﻭﻨﻜﺘﺏ‬F2 ‫ ﻭ‬F1 ‫ ﻤﺠﻤﻭﻉ ﻤﺒﺎﺸﺭ ﻝـ‬H ‫ ﻨﻘﻭل ﺃﻥ‬:‫ﺘﻌﺭﻴﻑ‬

F ≡ ‫ )ﺃﻭ‬F ‫ﺝ ﺇﻀﺎﻓﻲ ﻝـ‬.‫ﺵ‬.‫ ﻑ‬G ‫ ﻨﻘﻭل ﺃﻥ‬:‫ﺘﻌﺭﻴﻑ‬

‫ ﻴﻜﺘﺏ ﻋﻠﻰ ﺸﻜل ﻭﺤﻴﺩ‬H ‫ ﺇﺫﺍ ﻜﺎﻥ ﻜل ﻋﻨﺼﺭ ﻤﻥ‬، H = F1 ⊕ F2

E = F ⊕ G : ‫ ﺇﺫﺍ ﺘﺤﻘﻕ‬، ( G ‫ﺝ ﺇﻀﺎﻓﻲ ﻝـ‬.‫ﺵ‬.‫ﻑ‬

: ‫ ﺤﻴﺙ‬w = u + v :

(w ∈ H , u ∈ F1 , v ∈ F2 )

:‫ﺘﻤﻴﻴﺯ ﺍﻝﻤﺠﻤﻭﻉ ﺍﻝﻤﺒﺎﺸﺭ‬

E = ℝ 2 :‫ﻤﺜﺎل‬ F = {( x , y , z ) / x + y = z } ,G = {( x , y , z ) / x = y = z }

H = F1 + F2 ‫ ﻭ‬، E ‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ ﻑ‬F2 , F1 ‫ﻝﻴﻜﻥ‬

H = F1 + F2 H = F1 ⊕ F2 ⇔  F1 ∩ F2 = { O E }

ℝ = F ⊕ G ⇔ ‫ ﺇﻀﺎﻓﻴﺎﻥ‬G ‫ ﻭ‬F 3

F ∩ G = { O E }  3 ℝ ⊂ F + G

E = ℝ 2 :‫ﻤﺜﺎل‬



u ( x , y , z ) ∈ F ∩ G ⇒ u ∈ F ∧ u ∈G ⇒x +y =z ∧ x = y =z ⇒ 2x = x ⇒ x = 0 ⇒ y = z = 0

( x , y , z ) = ( 0, 0, 0 ) = O ℝ

{( x , y ) ∈ ℝ = {( x , y ) ∈ ℝ

}

F1 =

2

/x + y =0

F2

2

/ 2x − y = 0

}

‫ ؟‬E = F1 ⊕ F2 ‫ﻫل‬

3

F ∩ G = {O E } ‫ﺃﻱ‬

i) E = F1 + F2 E = F1 ⊕ F2 ⇔  ii) F1 ∩ F2 = {O E }

w ( x , y , z ) ∈ ℝ ‫♦ ﻝﻴﻜﻥ‬ 3

∃u ∈ F ,v ∈G : w = u + v

?

ii) u ( x , y ) ∈ F1 ∩ F2 ⇒ u = O ℝ2

u ( x 1 , y 1 , x 1 + y 1 ) ∈ F , v ( x 2 , x 2 , x 2 ) ∈G u +v = w ⇔ ( x 1 + x 2 , y 1 + x 2 , x 1 + y 1 + x 2 )

u ∈ F1 ∩ F2 ⇒ (u ∈ F1 ) ∧ (u ∈ F2 )

x 1 + x 2 = x .................. (1)   y 1 + x 2 = y ................. ( 2 )  x 1 + y 1 + x 2 = z .......... ( 3) x 1 = z − y ( 3) − ( 2 ) ⇒ x 2 = x + y − z y = z − x  1

x + y = 0 ⇒ x = y = 0 ⇒ u = O ℝ2   2x − y = 0 ii) ℝ 2 = F1 + F2 i ℝ 2 ⊃ F1 + F2 ‫ﻭﺍﻀﺢ‬ ?

i F1 + F2 ⊃ ℝ 2

∀u ( x , y ) ∈ ℝ 2 , ∃u1 ∈ F1 , u 2 ∈ F2 : u = u1 + u 2 4

www.math.3arabiyate.net

‫]‪â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
‫ﻭﻤﻨﻪ ‪ u‬ﻭ ‪ v‬ﻤﺴﺘﻘﻼﻥ ﺨﻁﻴﺎ‬

‫‪u ( z − y , z − x , 2z − x − y ) ∈ F‬‬ ‫‪v ( x + y − z , x + y − z , x + y − z ) ∈G‬‬

‫‪ ℝ 2 [ x ] .3‬ﻑ‪.‬ﻙ‪.‬ﺡ ﺍﻝﺘﻲ ﺩﺭﺠﺘﻬﺎ ≥ ‪2‬‬

‫‪u +v = ( x , y , z ) = w‬‬

‫‪u = x 2 , v = x , w =1‬‬ ‫‪α u + β v + δ w = Oℝ ⇒ α = β = δ = 0‬‬

‫ﻤﻼﺤﻅﺔ‪ :‬ﻓﻲ ﻓﻀﺎﺀ ﺸﻌﺎﻋﻲ ‪ ، E‬ﻜل ﻑ‪.‬ﺵ‪.‬ﺝ ﻴﻤﻠﻙ ﺇﻀﺎﻓﻴﺎ‪.‬‬

‫‪α x + β x + δ .1 = O ℝ , ∀x ∈ ℝ‬‬ ‫‪2‬‬

‫‪x =0:δ =0‬‬

‫‪‬‬ ‫‪‬‬ ‫‪x =1 : α + β +δ = 0  ⇒α = β = δ = 0‬‬ ‫‪x = −1 : α − β + δ = 0 ‬‬ ‫ﻭﻤﻨﻪ ‪ w , v , u‬ﻤﺴﺘﻘﻠﺔ ﺨﻁﻴﺎ‬

‫ﺍﻝﻌﺎﺌﻠﺔ ﺍﻝﺤﺭﺓ – ﺍﻝﻌﺎﺌﻠﺔ ﺍﻝﻤﻭﻝﺩﺓ – ﺍﻷﺴﺱ ﻓﻲ ﻓﻀﺎﺀ‬ ‫ﺸﻌﺎﻋﻲ‪:‬‬ ‫ﺍﻝﻌﺎﺌﻠﺔ ﺍﻝﺤﺭﺓ‪:‬‬ ‫ﻝﻴﻜﻥ ‪ K , E‬ﻑ‪.‬ﺵ ‪،‬‬

‫*‪p ∈ℕ‬‬

‫} ‪S = {u 1 , u 2 ,........, u p‬‬

‫ﻤﻼﺤﻅﺎﺕ ﻋﺎﻤﺔ‪:‬‬

‫ﺘﻌﺭﻴﻑ‪ :‬ﻨﻘﻭل ﺃﻥ ﺍﻝﻌﺎﺌﻠﺔ ‪ S‬ﺤﺭﺓ ‪ ،‬ﺃﻭ ﺃﻥ ﺍﻷﺸﻌﺔ ‪u1 , u 2 ,......., u p‬‬

‫‪، S = { u } (1‬‬

‫ﻤﺴﺘﻘﻠﺔ ﺨﻁﻴﺎ ﺇﺫﺍ ﺘﺤﻘﻕ‬

‫‪∀α1 , α 2 ,..., α p ∈ K ,‬‬

‫)ﺍﻝﺸﻌﺎﻉ ‪ u‬ﻤﺴﺘﻘل ﺨﻁﻴﺎ ⇔ ‪( u ≠ φ‬‬

‫‪α1u1 + α 2u 2 + ... + α pu p = 0 ⇒ α1 = α 2 = ... = α p = 0‬‬

‫‪S = { u ,v } (2‬‬

‫ﺃﻱ ﻻ ﺘﻘﺒل ﺍﻝﻤﻌﺎﺩﻝﺔ ﺇﻻ ﺍﻝﺤل ﺍﻝﻤﻌﺩﻭﻡ‬

‫‪ S‬ﻤﻘﻴﺩﺓ ⇔ ‪ u ,v‬ﻤﺭﺘﺒﻁﺎﻥ ﺨﻁﻴﺎ‬

‫) ‪(α ,α ,..., α ) = ( 0, 0,..., 0‬‬ ‫‪p‬‬

‫‪2‬‬

‫⇔ ) ‪∃ λ ∈ K * : (u = λ v ) ∨ (v = λ u‬‬

‫‪1‬‬

‫ﻭﺇﺫﺍ ﻭﺠﺩ ‪ α i‬ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﺒﺤﻴﺙ ‪= O E‬‬

‫‪ S‬ﺤﺭﺓ ⇔ ‪u ≠ O E‬‬

‫‪i =p‬‬

‫‪i‬‬

‫‪∑α u‬‬ ‫‪i‬‬

‫ﻤﺜﺎل‪ :‬ﻓﻲ ‪، ℝ3‬‬

‫ﻨﻘﻭل ﺃﻥ ﺍﻝﻌﺎﺌﻠﺔ‬

‫) ‪u (1, 2 ) , v ( −1, −2‬‬

‫‪ u ,v‬ﻤﺭﺘﺒﻁﺎﻥ ﺨﻁﻴﺎ ﻷﻥ ‪u + v = O ℝ2 ⇔ v = −u‬‬

‫‪i =1‬‬

‫‪ S‬ﻤﺭﺘﺒﻁﺔ ‪ ،‬ﺃﻭ ﺃﻥ ﺍﻷﺸﻌﺔ ‪ u1 , u 2 ,..., u p‬ﻤﺭﺘﺒﻁﺔ ﺨﻁﻴﺎ‪.‬‬

‫‪(3‬‬

‫*‬

‫‪p ∈ℕ‬‬

‫} ‪ S = {u 1 , u 2 ,........, u p‬ﻤﺭﺘﺒﻁﺔ ﺨﻁﻴﺎ‬

‫⇔ ﺃﺤﺩ ﻋﻨﺎﺼﺭ ﺍﻝﻌﺎﺌﻠﺔ ﻴﻜﺘﺏ ﻋﻠﻰ ﺸﻜل ﻋﺒﺎﺭﺓ ﺨﻁﻴﺔ ﻓﻲ ﺒﺎﻗﻲ‬

‫ﺃﻤﺜﻠﺔ‪:‬‬ ‫‪.1‬‬

‫‪2‬‬

‫ﺍﻝﻌﻨﺎﺼﺭ ‪.‬‬

‫‪u = (1,3) , v = ( 2, −1) , E = ℝ‬‬ ‫?‬

‫‪⇒α = β = 0‬‬

‫‪2‬‬

‫ﻤﺜﺎل‪:‬‬

‫‪α u + β v = Oℝ‬‬

‫♦‬

‫) ‪(α ,3α ) + ( 2β , − β ) = ( 0, 0‬‬

‫‪.w = u + 2v‬‬

‫♦ ] ‪w = 3x 2 − 2x , v = x , u = x 2 , E = ℝ 2 [ x‬‬ ‫ﻭﺍﻀﺢ ﺃﻥ ‪ w = 3u − 2v‬ﻭﻤﻨﻪ } ‪ { u ,v ,w‬ﻤﺭﺘﺒﻁﺔ ﺨﻁﻴﺎ ‪.‬‬

‫‪v = e x , u = sin x , E = ℑ ( ℝ, ℝ ) .2‬‬ ‫?‬

‫‪α u + β v = 0 ⇒α = β = 0‬‬ ‫‪α sin x + β e x = 0 , ∀x ∈ ℝ‬‬ ‫‪x = 0 ⇒ β = 0‬‬ ‫‪‬‬ ‫‪π‬‬ ‫‪‬‬ ‫‪x = ⇒ α = 0‬‬ ‫‪‬‬

‫‪www.math.3arabiyate.net‬‬

‫‪w = ( 5, 6, −2 ) , v ( 2, 2, −1) , u (1, 2, 0 ) , E = ℝ‬‬

‫} ‪ { u ,v ,w‬ﻤﻘﻴﺩﺓ ﺃﻱ ‪ u , v , w‬ﻤﺭﺘﺒﻁﺔ ﺨﻁﻴﺎ ﻷﻥ‬

‫‪α + 2 β = 0‬‬ ‫‪⇒‬‬ ‫‪3α − β = 0 ⇒ α = β = 0‬‬ ‫ﻭﻤﻨﻪ ‪ u‬ﻭ ‪ v‬ﻤﺴﺘﻘﻼﻥ ﺨﻁﻴﺎ ‪ ،‬ﺃﻭ } ‪ S = { u ,v‬ﺤﺭﺓ‪.‬‬

‫‪2‬‬

‫‪3‬‬

‫‪5‬‬

‫‪(4‬‬

‫ﻜل ﻋﺎﺌﻠﺔ ﺠﺯﺌﻴﺔ ﻤﻥ ﻋﺎﺌﻠﺔ ﺤﺭﺓ ﻫﻲ ﺒﺩﻭﺭﻫﺎ ﻋﺎﺌﻠﺔ ﺤﺭﺓ ‪.‬‬

‫‪(5‬‬

‫ﻜل ﻋﺎﺌﻠﺔ ﺘﺸﻤل ﻋﺎﺌﻠﺔ ﻤﻘﻴﺩﺓ ﻫﻲ ﺒﺩﻭﺭﻫﺎ ﻤﻘﻴﺩﺓ ‪.‬‬

‫‪(6‬‬

‫ﻜل ﻋﺎﺌﻠﺔ ﺘﺸﻤل ‪ O E‬ﻫﻲ ﺒﺎﻝﻀﺭﻭﺭﺓ ﻤﻘﻴﺩﺓ ‪.‬‬

‫]‪â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
‫ﺍﻝﻌﺎﺌﻠﺔ ﺍﻝﻤﻭﻝﺩﺓ‪:‬‬ ‫ﻝﻴﻜﻥ ‪ K , E‬ﻑ‪.‬ﺵ ‪ ،‬ﻭ‬

‫*‪p ∈ℕ‬‬

‫‪(α , −α ) + ( 0, 3 β ) = ( 0, 0 ) ⇒ ‬‬

‫} ‪ S = {u 1 , u 2 ,........, u p‬ﻋﺎﺌﻠﺔ ﺃﺸﻌﺔ‬

‫ﻤﻥ ‪ ، E‬ﻨﻘﻭل ﺃﻥ ﺍﻝﻌﺎﺌﻠﺔ ‪ S‬ﺘﻭﻝﺩ ﺍﻝﻔﻀﺎﺀ ‪ E‬ﺇﺫﺍ ﻜﺎﻥ ﻜل ﺸﻌﺎﻉ ﻤﻥ‬

‫‪ { u ,v‬ﺘﻭﻝﺩ ‪ℝ 2‬‬

‫• }‬ ‫‪= ( x , y ) ∈ ℝ2‬‬

‫‪ E‬ﻴﻜﺘﺏ ﻋﻠﻰ ﺸﻜل ﻋﺒﺎﺭﺓ ﺨﻁﻴﺔ ﻓﻲ ﺃﺸﻌﺔ ‪، S‬‬ ‫‪i =p‬‬

‫‪∀v ∈ E : ∃α1 , α 2 ,..., α p ∈ K / v = ∑ α i u i‬‬

‫ﺃﻱ‬

‫‪ w‬ﻜﻴﻔﻲ ‪∃α , β ∈ ℝ , w = α u + β v ،‬‬

‫) ‪( x , y ) = (α , −α ) + ( 0,3β‬‬

‫‪i =1‬‬

‫ﺃﻤﺜﻠﺔ‪:‬‬ ‫‪v (0, −1) , u (1, 2) , E = ℝ 2 (1‬‬

‫ﻭﻤﻨﻪ ﻓﻌﻼ‬

‫ﻝﻴﻜﻥ ‪ w = ( x , y ) ∈ ℝ 2‬ﻜﻴﻔﻲ‬ ‫‪∃α , β ∈ ℝ : w = α u + β v‬‬

‫}‬

‫‪α = x‬‬ ‫‪α = x‬‬ ‫‪‬‬ ‫‪⇒‬‬ ‫‪y +x‬‬ ‫‪‬‬ ‫‪α + 3 β = y‬‬ ‫‪ β = 3‬‬ ‫‪ { u ,v‬ﺃﺴﺎﺱ ﻝـ ‪. ℝ 2‬‬

‫ﺘﻌﺭﻴﻑ ﻤﻜﺎﻓﺊ ﻷﺴﺎﺱ ﻓﻲ ﻑ‪.‬ﺵ‪:‬‬

‫‪α = x‬‬ ‫‪α = x‬‬ ‫‪⇔‬‬ ‫‪‬‬ ‫‪2 α − β = y‬‬ ‫‪ β = 2x − y‬‬ ‫)‪w = x (1, 2 ) + ( 2x − y )( 0, −1‬‬

‫ﻝﻴﻜﻥ ‪ K , E‬ﻑ‪.‬ﺵ ‪،‬‬

‫*‪p ∈ℕ‬‬

‫} ‪ S = {u 1 , u 2 ,........, u p‬ﻋﺎﺌﻠﺔ ﺃﺸﻌﺔ‬

‫ﻤﻥ ‪E‬‬

‫‪ u ,v‬ﻴﻭﻝﺩﺍﻥ ‪. ℝ 2‬‬

‫‪ S‬ﺃﺴﺎﺱ ﻝـ ‪ E‬ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ﻜل ﺸﻌﺎﻉ ﻤﻥ ‪ E‬ﻴﻜﺘﺏ ﻋﻠﻰ‬ ‫ﺸﻜل ﻋﺒﺎﺭﺓ ﺨﻁﻴﺔ ﻓﻲ ﻋﻨﺎﺼﺭ ‪ S‬ﻭﻫﺫﻩ ﺍﻝﻜﺘﺎﺒﺔ ﻭﺤﻴﺩﺓ‬ ‫‪k =n‬‬

‫‪u = x 2‬‬ ‫‪‬‬ ‫‪v = x ، E = ℝ 2 [ x ] (2‬‬ ‫‪‬‬ ‫‪w = 1‬‬

‫‪∀v ∈ E , ∃! α1 , α 2 ,..., α n ∈ K : v = ∑ α k u k‬‬ ‫‪k =1‬‬

‫ﺘﺭﻤﻴﺯ‪ :‬ﺘﺴﻤﻰ ‪ α1 , α 2 ,..., α n‬ﻤﺭﻜﺒﺎﺕ ‪ v‬ﻓﻲ ﺍﻷﺴﺎﺱ ‪S‬‬

‫ﺇﻥ } ‪ { u ,v ,w‬ﺘﻭﻝﺩ ‪E‬‬

‫ﺃﻤﺜﻠﺔ‪:‬‬

‫‪∀p ∈ E : p = a x 2 + b x + c‬‬

‫‪E = ℝ n (1‬‬ ‫♦ ‪E = ℝ2 ← n = 2‬‬ ‫)‪v = ( x , y ) = ( x ,0 ) + ( 0, y ) = x (1, 0 ) + y ( 0,1‬‬

‫ﻤﻼﺤﻅﺔ‪ :‬ﻜل ﻋﺎﺌﻠﺔ ﺘﺸﻤل ﻋﺎﺌﻠﺔ ﻤﻭﻝﺩﺓ ﻫﻲ ﺒﺩﻭﺭﻫﺎ ﻤﻭﻝﺩﺓ‪.‬‬

‫ﺇﺫﻥ ) ‪ e 2 ( 0,1) , e1 (1, 0‬ﻴﻭﻝﺩﺍﻥ ‪ℝ 2‬‬

‫ﺍﻷﺴﺎﺱ‪:‬‬

‫‪( x , y ) = x e1 + y e 2‬‬ ‫‪⇒ (α , β ) = ( 0, 0 ) ⇒ α = β = 0‬‬ ‫ﻭﻤﻨﻪ } ‪ { e1 , e 2‬ﺃﺴﺎﺱ ﻝـ ‪ℝ 2‬‬

‫ﻭ ‪ e 2 , e1‬ﻤﺴﺘﻘﻼﻥ ﺨﻁﻴﺎ‪.‬‬

‫ﺘﻌﺭﻴﻑ‪ :‬ﻨﻘﻭل ﻋﻥ ﻋﺎﺌﻠﺔ ﺃﺸﻌﺔ ﺃﻨﻬﺎ ﺃﺴﺎﺱ ﻓﻲ ﺍﻝﻔﻀﺎﺀ ‪ E‬ﺇﺫﺍ ﻜﺎﻨﺕ‬ ‫ﺤﺭﺓ ﻭﻤﻭﻝﺩﺓ ﻓﻲ ﺁﻥ ﻭﺍﺤﺩ‪.‬‬

‫ﻴﺴﻤﻰ ﻫﺫﺍ ﺍﻷﺴﺎﺱ ﺍﻝﻁﺒﻴﻌﻲ )ﺃﻭ ﺍﻝﻘﺎﻨﻭﻨﻲ( ﻝﻠﻔﻀﺎﺀ ‪. ℝ 2‬‬

‫ﻤﻭﻀﻭﻋﺔ‪ :‬ﻓﻲ ﻜل ﻓﻀﺎﺀ ﺸﻌﺎﻋﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﺘﻭﺠﺩ ﺃﺴﺱ‪.‬‬

‫♦ ‪E = ℝ3 ← n = 3‬‬ ‫) ‪u ( x , y , z ) = ( x , 0, 0 ) + ( 0, y , 0 ) + ( 0, 0, z‬‬

‫ﻤﺜﺎل‪V ( 0,3) , u (1, −1) , E = ℝ 2 :‬‬

‫}‬

‫)‪= x (1, 0, 0 ) + y ( 0,1, 0 ) + z ( 0, 0,1‬‬

‫‪ { u ,v‬ﺃﺴﺎﺱ ﻝـ ‪ℝ 2‬‬ ‫•‬

‫}‬

‫ﻭﻤﻨﻪ ) ‪ e 3 ( 0, 0,1) , e 2 ( 0,1, 0 ) , e1 (1, 0, 0‬ﺘﻭﻝﺩ ‪ℝ3‬‬

‫‪ { u ,v‬ﺤﺭﺓ‬

‫ﻭﻫﻲ ﻤﺴﺘﻘﻠﺔ ﺨﻁﻴﺎ ﻭﻤﻨﻪ } ‪ { e1 , e 2 , e 3‬ﺃﺴﺎﺱ ﻝـ ‪ℝ3‬‬

‫‪α u + β v = Oℝ ⇒ α = β = 0‬‬

‫ﻴﺴﻤﻰ ﺍﻝﻘﺎﻨﻭﻥ ﺍﻝﻁﺒﻴﻌﻲ ﻝـ ‪. ℝ3‬‬

‫‪2‬‬

‫‪www.math.3arabiyate.net‬‬

‫‪2‬‬

‫‪α e1 + β e 2 = O ℝ‬‬

‫‪6‬‬

‫]‪â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
‫ﺘﻌﺭﻴﻑ ﺒﻌﺩ ﻓﻀﺎﺀ ﺸﻌﺎﻋﻲ )‪: (Dimension‬‬ ‫‪n‬‬

‫‪v ∈ℝ‬‬

‫ﻝﻴﻜﻥ ‪ K , E‬ﻑ‪.‬ﺵ ﻤﻨﺘﻬﻲ ﺍﻝﺒﻌﺩ‬

‫)‪v = x 1 (1, 0,..., 0 ) + x 2 ( 0,1, 0,..., 0 ) + ... + x n ( 0, 0,..., 0,1‬‬

‫ﻤﺒﺭﻫﻨﺔ ﻭﺘﻌﺭﻴﻑ‪ :‬ﻜل ﺍﻷﺴﺱ ﻝﻬﺎ ﻨﻔﺱ ﺍﻝﻌﺩﺩ ﻤﻥ ﺍﻝﻌﻨﺎﺼﺭ ) ‪، (Card‬‬

‫ﺍﻷﺸﻌﺔ‪:‬‬

‫ﻨﺴﻤﻲ ﺒﻌﺩ ‪ E‬ﻋﺩﺩ ﻋﻨﺎﺼﺭ ﺃﺴﺎﺱ ﻜﻴﻔﻲ ﻤﺎ ‪ ،‬ﻭﻨﻜﺘﺏ‬

‫)‪ e1 (1, 0,...,0 ) + e 2 ( 0,1, 0,..., 0 ) + ... + e n ( 0, 0,..., 0,1‬ﺘﻭﻝﺩ‬

‫) ‪ ، dim K E = card ( B‬ﺤﻴﺙ ‪ : B‬ﺃﺴﺎﺱ ﻤﺎ ‪.‬‬

‫‪ ℝ n‬ﻭﻫﻲ ﻤﺴﺘﻘﻠﺔ ﺨﻁﻴﺎ ‪ ،‬ﻓﻬﻲ ﺇﺫﻥ ﺃﺴﺎﺱ ﻝـ ‪ ، ℝ n‬ﺘﺴﻤﻰ ﺍﻷﺴﺎﺱ‬

‫ﻤﻼﺤﻅﺔ‪ :‬ﺇﻥ ﺒﻌﺩ ﻑ‪.‬ﺵ ﻴﺘﻌﻠﻕ ﺒﺎﻝﺤﻘل ﺍﻝﻤﺴﺘﺨﺩﻡ‬

‫ﺍﻝﻘﺎﻨﻭﻨﻲ ‪.‬‬

‫♦ ‪ ℂ‬ﻑ‪.‬ﺵ ﻋﻠﻰ ‪) ℂ‬ﻜل ﺤﻘل ﻑ‪.‬ﺵ ﻋﻠﻰ ﻨﻔﺴﻪ( ﺒﻌﺩﻩ ‪، 1‬‬ ‫‪dim ℂ ℂ = 1‬‬

‫‪E = ℝ n [ x ] (2‬‬ ‫‪p = a0 + a1x + a2 x 2 + ... + an x n , ai ∈ ℝ‬‬

‫)‪( z ∈ ℂ‬‬

‫‪p ∈ ℝ n [x ] ,‬‬

‫‪z = z ⋅1‬‬

‫‪u = 1∈ ℂ = E ,‬‬

‫♦ ‪ E = ℂ‬ﻫﻭ ﻑ‪.‬ﺵ ﻋﻠﻰ ﺍﻝﺤﻘل ‪K = ℝ‬‬ ‫‪z = α .1 + β . i , α , β ∈ ℝ , z = α + β . i , z ∈ ℂ = E‬‬

‫ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ ‪ 1, x , x 2 ,..., x n‬ﺘﻭﻝﺩ ] ‪ ℝ n [ x‬ﻭﻫﻲ ﻤﺴﺘﻘﻠﺔ ﺨﻁﻴﺎ‬ ‫ﻭﻤﻨﻪ ﺍﻝﻌﺎﺌﻠﺔ } ‪ { 1, x , x 2 ,..., x n‬ﺃﺴﺎﺱ ﻝـ ] ‪. ℝ n [ x‬‬

‫} ‪ { u1 ,u 2 } = { 1, i‬ﺃﺴﺎﺱ ﻝﻠﻔﻀﺎﺀ ‪ ℂ‬ﻋﻠﻰ ﺍﻝﺤﻘل ‪، ℝ‬‬ ‫‪dim ℝ ℂ = 2‬‬ ‫♦ ∞‪dim ℚ ℂ = +‬‬

‫ﺍﻝﻔﻀﺎﺀ ﺍﻝﺸﻌﺎﻋﻲ ﺍﻝﻤﻨﺘﻪ ﺍﻝﺒﻌﺩ‪:‬‬ ‫ﺘﻌﺭﻴﻑ‪ :‬ﻨﻘﻭل ﻋﻥ ﻓﻀﺎﺀ ﺸﻌﺎﻋﻲ ﺃﻨﻪ ﻤﻨﺘﻬﻲ ﺍﻝﺒﻌﺩ ﺇﺫﺍ ﻗﺒل ﻋﺎﺌﻠﺔ ﻤﻭﻝﺩﺓ‬

‫ﺃﻤﺜﻠﺔ‪:‬‬

‫ﻤﻨﺘﻬﻴﺔ ‪.‬‬ ‫ﻤﻭﻀﻭﻋﺔ‪ K , E :‬ﻑ‪.‬ﺵ ‪،‬‬

‫*‪p ∈ℕ‬‬

‫‪ n ≥ 1 ، E = ℝ n (1‬ﻫﻲ ﻑ‪.‬ﺵ ﻤﻨﺘﻪ ﺍﻝﺒﻌﺩ ﻤﻊ ‪. dim ℝ n = n‬‬

‫} ‪ S = {u 1 , u 2 ,........, u p‬ﻋﺎﺌﻠﺔ‬

‫‪ E = ℝ n [ x ] (2‬ﺒﻌﺩﻩ ﻤﻨﺘﻬﻲ ﻤﻊ ‪dim ℝ n [ x ] = n + 1‬‬

‫ﺃﺸﻌﺔ ﻤﻥ ‪E‬‬

‫ﺃﺴﺎﺴﻪ } ‪{ 1, x , x ,..., x‬‬ ‫ﻤﻥ ﺃﺠل ] ‪ { 1, x , x } : ℝ [ x‬ﺍﻷﺴﺎﺱ ﺍﻝﻘﺎﻨﻭﻨﻲ‬ ‫}‪ {2,3x + 1, x − 2‬ﺃﺴﺎﺱ ﺁﺨﺭ‪.‬‬ ‫‪n‬‬

‫ﺃ( ﺇﺫﺍ ﻜﺎﻨﺕ ‪ S‬ﺘﻭﻝﺩ ‪ E‬ﻓﺈﻥ ﻜل ﻋﺎﺌﻠﺔ ﺃﺸﻌﺔ ﺒﻬﺎ ﺃﻜﺜﺭ ﻤﻥ ‪p‬‬

‫‪2‬‬

‫ﻋﻨﺼﺭ ﻓﻬﻲ ﺒﺎﻝﻀﺭﻭﺭﺓ ﻤﻘﻴﺩﺓ‪.‬‬

‫‪ S ′‬ﻤﻘﻴﺩﺓ ⇒ ‪Card ( S ′ ) ≥ p + 1‬‬

‫‪2‬‬

‫‪2‬‬

‫‪2‬‬

‫‪S′⊆E‬‬

‫ﺏ( ﺇﺫﺍ ﻜﺎﻨﺕ ‪ S‬ﺤﺭﺓ ﻓﺈﻥ ﻜل ﻋﺎﺌﻠﺔ ﺃﺸﻌﺔ ﺒﻬﺎ ﺃﻗل ﻤﻥ ‪ p‬ﺸﻌﺎﻉ‬

‫ﻨﺘﻴﺠﺔ ﻫﺎﻤﺔ‪:‬‬

‫ﻻ ﻴﻤﻜﻥ ﺃﻥ ﺘﻜﻭﻥ ﻤﻭﻝﺩﺓ ‪.‬‬

‫ﻝﻴﻜﻥ ‪ K , E‬ﻑ‪.‬ﺵ ﺒﻌﺩﻩ ﻤﻌﻠﻭﻡ ) ∞‪= n ≺ +‬‬

‫‪( dim E‬‬

‫ﻭﻝﺘﻜﻥ ‪ B‬ﻋﺎﺌﻠﺔ ﺃﺸﻌﺔ ﻤﻥ ‪ E‬ﻤﻊ ‪Card B = n‬‬

‫ﻨﻅﺭﻴﺔ‪ :‬ﻝﻴﻜﻥ ‪ K , E‬ﻑ‪.‬ﺵ ﻤﻨﺘﻬﻲ ﺍﻝﺒﻌﺩ )ﻴﻤﻠﻙ ﻤﺠﻤﻭﻋﺔ ﻤﻭﻝﺩﺓ ﻤﻨﺘﻬﻴﺔ(‬ ‫} ‪ S = { e1 , e 2 ,...., e m‬ﻤﻭﻝﺩﺓ ‪ B = {u 1 , u 2 ,........, u p } ،‬ﺤﺭﺓ‬

‫‪ B‬ﺃﺴﺎﺱ ⇐ ‪ B‬ﺤﺭﺓ ⇐ ‪ B‬ﻤﻭﻝﺩﺓ ‪.‬‬

‫ﻭﻝﻴﺴﺕ ﻤﻭﻝﺩﺓ ‪ ،‬ﻋﻨﺩﺌﺫ ﻴﻤﻜﻥ ﺇﻜﻤﺎل ﺍﻝﻌﺎﺌﻠﺔ ‪ B‬ﺒﻌﻨﺎﺼﺭ ﻤﻥ ‪S‬‬

‫ﻤﺜﻼ‪B = {(1, 2 ) , ( 3, −1)} , dim E = 2 , E = ℝ 2 :‬‬

‫ﻝﻠﺤﺼﻭل ﻋﻠﻰ ﺃﺴﺎﺱ ﻝـ ‪. E‬‬

‫ﺒﻤﺎ ﺃﻥ ‪ Card B = dim E‬ﻴﻜﻔﻲ ﻹﺜﺒﺎﺕ ﺃﻥ ‪ B‬ﺃﺴﺎﺱ ﺃﻥ ﻨﺩﺭﺱ‬

‫ﺍﻻﺴﺘﻘﻼل ﺍﻝﺨﻁﻲ ﻝﻠﺸﻌﺎﻋﻴﻥ )‪u (1, 2 ) , v ( 3, −1‬‬

‫‪α u + β v = OE ⇔ α = β = 0‬‬

‫) ‪(α , 2α ) + ( 3β , − β ) = ( 0, 0‬‬ ‫‪α + 3 β = 0‬‬ ‫‪⇒‬‬ ‫‪⇒α =β =0‬‬ ‫‪2α − β = 0‬‬ ‫‪www.math.3arabiyate.net‬‬

‫‪7‬‬

‫]‪â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
‫ﻤﻼﺤﻅﺎﺕ‪:‬‬ ‫‪ (1‬ﻝﻴﻜﻥ ‪ K , E‬ﻑ‪.‬ﺵ ﺒﻌﺩﻩ ‪ n‬ﻤﻨﺘﻬﻲ ‪،‬‬

‫ﻝﻴﻜﻥ ﺍﻝﻔﻀﺎﺀ ﺍﻹﻀﺎﻓﻲ ‪G‬‬

‫ﺇﻥ ﻜل ﻋﺎﺌﻠﺔ ﺃﺸﻌﺔ ﻤﻜﻭﻨﺔ ﺃﻜﺜﺭ ﻤﻥ ‪ n‬ﺸﻌﺎﻉ ﻫﻲ ﺒﺎﻝﻀﺭﻭﺭﺓ‬

‫‪ G‬ﺇﻀﺎﻓﻲ ﻝـ ‪E = F ⊕ G ⇔ F‬‬ ‫‪dim E = dim F + dim G‬‬ ‫‪⇒ dim G = dim E − dim F = 2 − 1 = 1‬‬ ‫ﻭﻤﻨﻪ ‪dim G = 1‬‬

‫ﻤﺭﺘﺒﻁﺔ ﺨﻁﻴﺎ ‪.‬‬ ‫ﻭﻤﻨﻪ ﺍﻷﺴﺎﺱ ﻋﺒﺎﺭﺓ ﻋﻥ ﻋﺎﺌﻠﺔ ﺤﺭﺓ ﺃﻋﻅﻤﻴﺔ‪.‬‬ ‫‪ (2‬ﻜل ﻋﺎﺌﻠﺔ ﺒﻬﺎ ﺃﻗل ﻤﻥ ‪ n‬ﺸﻌﺎﻉ ﻻ ﻴﻤﻜﻥ ﺃﻥ ﺘﻜﻭﻥ ﻤﻭﻝﺩﺓ ‪،‬‬

‫ﺇﺫﻥ ‪ G‬ﻤﻭﻝﺩ ﺒﺸﻌﺎﻉ ﻭﺍﺤﺩ‬

‫ﻓﺈﻥ ﻜل ﺃﺴﺎﺱ ﻓﻬﻭ ﻋﺎﺌﻠﺔ ﻤﻭﻝﺩﺓ ﻭﻋﺎﺌﻠﺔ ﻤﻭﻝﺩﺓ ﺃﺼﻐﺭﻴﺔ ‪،‬‬

‫ﺒﺤﻴﺙ ‪ w‬ﻤﺴﺘﻘل ﺨﻁﻴﺎ ﻤﻊ ‪. u‬‬

‫ﺒﻤﻌﻨﻰ ﺃﻥ ﺃﻗل ﻋﺩﺩ ﻤﻥ ﺍﻷﺸﻌﺔ ﺍﻝﻤﻭﻝﺩﺓ ﻫﻭ ‪. n‬‬

‫ﻝﻨﺤﺼل ﻋﻠﻰ } ‪ { u ,w‬ﺃﺴﺎﺱ ﻝـ ‪E = ℝ 2‬‬

‫) ‪w ( 0,1) , u (1, 2‬‬

‫ﺒﻌﺩ ﻑ‪.‬ﺵ‪.‬ﺝ‪:‬‬ ‫ﻝﻴﻜﻥ ‪ K , E‬ﻑ‪.‬ﺵ ﺒﻌﺩﻩ ‪ n‬ﻤﻨﻬﻲ‬

‫) ‪, F (1, 2‬‬

‫) ∞‪( dim E ≺ +‬‬

‫‪ F ⊂ E‬ﻑ‪.‬ﺵ‪.‬ﺝ ﻤﻥ ‪E‬‬

‫‪1) dim F ≤ dim E‬‬ ‫‪2) dim F = dim E ⇔ E = F‬‬ ‫‪ G , F‬ﻑ‪.‬ﺵ‪.‬ﺝ ﻤﻥ ‪E‬‬

‫ﻨﻌﻠﻡ ﺃﻥ ‪ F + G‬ﻫﻭ ﺃﻴﻀﺎ ﻑ‪.‬ﺵ‪.‬ﺝ‬

‫) ‪dim ( F + G ) = dim F + dim G − dim ( F ∩ G‬‬ ‫ﺘﻁﺒﻴﻕ‪ K , E :‬ﻑ‪.‬ﺵ ﺒﻌﺩﻩ ﻤﻨﺘﻪ‬ ‫‪ G , F‬ﻑ‪.‬ﺵ‪.‬ﺝ ﻤﻨﻪ ﺤﻴﺙ ‪. E = F ⊕ G‬‬ ‫} ‪1) F ∩ G = { O E‬‬ ‫‪E = F ⊕G ⇔ ‬‬ ‫‪2) E = F + G‬‬ ‫} ‪F ∩ G = {O E‬‬

‫) ‪⇔ dim E = dim F + dim G − dim ( F ∩ G‬‬ ‫‪⇔ dim E = dim F + dim G‬‬ ‫ﻤﺜﺎل‪F = {( x , y ) / 2x − y = 0} :‬‬

‫♦ ﺘﻌﻴﻴﻥ ﺃﺴﺎﺱ ﻝـ ‪: F‬‬ ‫‪u = ( x , y ) = ( x , 2x ) , x ∈ ℝ‬‬ ‫‪= x (1, 2 ) , x ∈ ℝ‬‬

‫ﺇﺫﻥ ) ‪ u1 = (1, 2‬ﻴﻭﻝﺩ ‪ ، F‬ﻭ ﻤﻨﻪ } ‪ { u‬ﻋﺎﺌﻠﺔ ﻤﻭﻝﺩﺓ ﻭﻫﻲ‬ ‫ﻤﺴﺘﻘﻠﺔ ﺨﻁﻴﺎ‬

‫‪≠ O ℝ2 ) G = w‬‬

‫) ‪(u ≠ O‬‬ ‫‪ℝ2‬‬

‫ﻭﻤﻨﻪ } ‪ { u‬ﺃﺴﺎﺱ ﻝـ ‪ F‬ﺇﺫﻥ ‪. dim F = 1‬‬

‫‪www.math.3arabiyate.net‬‬

‫‪8‬‬

‫)‪( 0,1‬‬

‫‪.G‬‬

‫‪(w‬‬

â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
( ( 0, 0, 0 ) ) = ( 0,1) ≠ ( 0, 0 ) = O

‫ﺍﻝﺘﻁﺒﻴﻘﺎﺕ ﺍﻝﺨﻁﻴﺔ‬

ℝ2

. ‫ ﻝﻴﺱ ﺨﻁﻲ‬f ‫ﺇﺫﻥ‬

ϕ : ℝ [x ] → ℝ [x ]

. ‫ ﺘﻁﺒﻴﻕ‬f : E → F ‫ ﻭﻝﻴﻜﻥ‬، ‫ﺵ‬.‫ ﻑ‬K F , E ‫ﻝﻴﻜﻥ‬

(3

:‫ﺘﻌﺭﻴﻑ‬

p → ϕ ( p ) = p′

⇔ ‫ ﺨﻁﻲ‬f

ϕ ( p + q ) = ( p + q )′ = p ′ + q ′

f ∀u ,v ∈ E , ∀α ∈ K :  f

ϕ (α p ) = (α p )′ = α p ′

( u + v ) = f (u ) + f (v ) ( α u ) = α f (u )

:‫ﺘﻌﺭﻴﻑ ﻤﻜﺎﻓﺊ‬ ∀u ,v ∈ E , ∀α , β ∈ K : f (α u + β v ) = α f (u ) + β f (v )

E = ℓ ( [ a , b ] , ℝ ) , F = ℝ (4

ϕ :E → ℝ f → ϕ (f

:‫ﺘﻌﺭﻴﻑ ﻤﻜﺎﻓﺊ‬

b

) = ∫a f (t ) dt

∀u ,v ∈ E , ∀α ∈ K : f (α u +v ) = α f (u ) + f (v )

‫ ﺨﻁﻲ‬ϕ

( f (O ) = O ) ⇐ (‫ ﺨﻁﻲ‬f ) :‫ﺨﺎﺼﻴﺔ‬ . (‫ ﻝﻴﺱ ﺨﻁﻲ‬f ) ⇐ ( f (O ) ≠ O ) :‫ﻋﻜﺱ ﺍﻝﻨﻘﻴﺽ‬ E

b

ϕ (α f + g ) = ∫ α f (t ) + g (t )  dt a

b

b

a

a

F

E

= α ∫ f (t ) dt + ∫ g (t ) dt

F

:‫ﺘﺭﻤﻴﺯ‬ F ‫ ﻭ‬E ‫( ﻨﺭﻤﺯ ﻝﻤﺠﻤﻭﻋﺔ ﺍﻝﺘﻁﺒﻴﻘﺎﺕ ﺍﻝﺨﻁﻴﺔ ﺒﻴﻥ ﺍﻝﻔﻀﺎﺌﻴﻥ‬1

ℓ ( E , F ) ‫ﺒـ‬

. ‫ ﺨﻁﻲ‬f : E → F ‫ ﻝﻴﻜﻥ‬:‫ﺨﻭﺍﺹ‬ . F ‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ ﻑ‬f ( E 1 ) ⇐ E ‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ ﻑ‬E 1 . E ‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ ﻑ‬f

−1

( F1 ) ⇐ F

‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ ﻑ‬F1

‫ ﻤﺞ ﺍﻝﺘﻤﺎﺘﻼﺕ‬ℓ ( E , E ) = ℓ ( E ) : E = F ‫( ﺇﺫﺍ ﻜﺎﻥ‬2

• •

.‫ﺍﻝﺩﺍﺨﻠﻴﺔ‬ E ‫ ﻤﺞ ﺍﻷﺸﻜﺎل ﺍﻝﺨﻁﻴﺔ ﻋﻠﻰ‬ℓ ( E , K ) = E ′ : F = K

.‫ ﻤﺞ ﺍﻝﺘﺸﺎﻜﻼﺕ ﺍﻝﺩﺍﺨﻠﻴﺔ‬: GL ( E ) (4

:‫ﻨﻭﺍﺓ ﻭﺼﻭﺭﺓ ﺘﻁﺒﻴﻕ ﺨﻁﻲ‬

. ‫ ﻤﺘﻘﺎﺒل‬+ ‫ﺍﻝﺘﺸﺎﻜل ≡ ﺨﻁﻲ‬

‫ ﺨﻁﻲ‬f : E → F

:‫ﺃﻤﺜﻠﺔ‬

‫ ﺍﻝﻤﻌﺭﻑ ﺒـ‬E ‫ ﺍﻝﺠﺯﺀ ﻤﻥ‬f ‫ ﻨﺴﻤﻲ ﻨﻭﺍﺓ‬: f ‫ﺘﻌﺭﻴﻑ ﻨﻭﺍﺓ‬ ker f = f

−1

({O }) = {x ∈ E F

/ f (x ) = OF }

. E ‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ﺍﻝﻨﻭﺍﺓ ﻫﻲ ﻑ‬



. ker f ≠ φ ⇐ f (O E ) = O F



، f 1 : ℝ2 → ℝ2

. ‫ ﺨﻁﻲ‬f

(1

(x , y ) → (x + y , y − x ) u ( x , y ) , y ( x ′, y ′ ) , α ∈ ℝ f (α u + v ) = f

( (α x + x ′, α y + y ′) )

= (α x + x ′ + α y + y ′, α y + y ′ − α x − x ′ )

‫ ﺍﻝﻤﻌﺭﻑ ﺒـ‬F ‫ ﺍﻝﺠﺯﺀ ﻤﻥ‬f ‫ ﻨﺴﻤﻲ ﺼﻭﺭﺓ‬: f ‫ﺘﻌﺭﻴﻑ ﺼﻭﺭﺓ‬

= (α x + α y , α y − α x ) + ( x ′ + y ′, y ′ − x ′ )

Im f = f ( E ) = {f ( x ) , x ∈ E }

= α ( x + y , y − x ) + ( x ′ + y ′, y ′ − x ′ )

= {y ∈ F / ∃ x ∈ E :f ( x ) = y } . F ‫ﺝ ﻤﻥ‬.‫ﺵ‬.‫ ﻫﻲ ﻑ‬Im f

(3

= α f (u ) + f (v )



f : ℝ3 → ℝ 2

(2

( x , y , z ) → ( x + y − z ,1) 9

www.math.3arabiyate.net

â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
f : ℝ 2 → ℝ 2 :‫ﻤﺜﺎل‬

( x , y ) → ( 0, x ) f ∈L

(‫ ﺨﻁﻲ‬f ) f ∈ L

(E , F )

2

2

‫ﻝﻴﻜﻥ‬

2

ker f = {O E } ⇔ ‫ ﻤﺘﺒﺎﻴﻥ‬f -1

= {( 0, y ) , y ∈ ℝ}

Im f = F ⇔ ‫ ﻏﺎﻤﺭ‬f -2

= { y ( 0,1) , y ∈ ℝ}

F ‫ ﺘﺒﻘﻰ ﺤﺭﺓ ﻓﻲ‬E ‫ ﻤﺘﺒﺎﻴﻥ ⇔ ﺼﻭﺭﺓ ﻜل ﻋﺎﺌﻠﺔ ﺤﺭﺓ ﻤﻥ‬f -3

= ( 0,1)

‫ ﻫﻲ ﻋﺎﺌﻠﺔ ﻤﻭﻝﺩﺓ‬E ‫ ﻏﺎﻤﺭ ⇔ ﺼﻭﺭﺓ ﻋﺎﺌﻠﺔ ﻤﻭﻝﺩﺓ ﻝـ‬f -4

{ = {( u ,v ) ∈ ℝ = {( u ,v ) ∈ ℝ = {( u ,v ) ∈ ℝ

}

Im f = y = ( u ,v ) ∈ ℝ 2 / ∃ ( x , y ) ∈ ℝ 2 : ( 0, x ) = ( u ,v )

Im f ‫ﻝـ‬

‫ ﻓﺈﻥ‬E ‫ { ⇔ ﺘﻭﻝﺩ‬u1 ,u 2 ,........,u n } Im f = f (u 1 ) , f (u 2 ) ,...., f (u n )

:‫ﻨﻅﺭﻴﺔ ﺍﻝﺒﻌﺩ‬

/ ∃ ( x , y ) ∈ ℝ 2 : ( 0, x ) = ( u ,v )

2

/ ∃( x , y ) ∈ ℝ 2

2

/ u = 0 v ∈ℝ

}

= ( 0,1)

: ‫ ﻝﺩﻴﻨﺎ‬، f ∈ L ( E , F ) dim E = dim ker f + dim Im f

} :u = 0 ∧v = x }

2

= {( 0,v ) , v ∈ ℝ }

‫ ﻭﻝﻴﻜﻥ‬، ‫ ﻤﻨﺘﻪ‬dim E = n ‫ﺵ ﻤﻊ‬.‫ ﻑ‬F ‫ ﻭ‬E ‫ﻝﻴﻜﻥ‬

ker f ∩ Im f = ( 0,1) f : ℝ3 → ℝ 2

‫ ﻤﻨﺘﻬﻲ‬dim E = dim F ‫ ﻤﻊ‬f ∈ L ( E , F ) :‫ﻨﺘﻴﺠﺔ‬ (‫ ﺘﻘﺎﺒﻠﻲ )ﺘﺸﺎﻜل‬f ⇔ ‫ ﻏﺎﻤﺭ‬f ⇔ ‫ ﻤﺘﺒﺎﻴﻥ‬f ker f

dim E = n  . F ‫ ﻭ‬E ‫ ⇐ ﻻ ﻴﻭﺠﺩ ﺃﻱ ﺘﺸﺎﻜل ﺒﻴﻥ‬dim F = m n ≠ m 

. ‫ ﺍﻝﻤﺴﺘﻘﻠﺔ ﺨﻁﻴﺎ‬S ‫ ﺃﻜﺒﺭ ﻋﺩﺩ ﻤﻥ ﺃﺸﻌﺔ‬S ‫ﻨﺴﻤﻲ ﺭﺘﺒﺔ‬

ker f = (1, −1, 0 ) dim ker f = 1 ‫ﺃﺴﺎﺱ ﻝﻠﻨﻭﺍﺓ ﻭ‬

) = dim ( Im f )

10

{(1, −1, 0 )}

Im f = {(u ,v ) ∈ ℝ 2 / ∃ ( x , y , z ) ∈ ℝ 3 , f ( x , y , z ) = (u ,v )}

:‫( ﺭﺘﺒﺔ ﺘﻁﺒﻴﻕ ﺨﻁﻲ‬2 ‫ ﺒﻌﺩ ﺼﻭﺭﺘﻪ‬f : E → F ‫ﻨﺴﻤﻲ ﺭﺘﺒﺔ ﺘﻁﺒﻴﻕ ﺨﻁﻲ‬

(x , y , z ) → (x + y − z , x + y + z ) = {( x , y , z ) / x + y + z = 0 ∧ x + y − z = 0}

= x (1, −1, 0 ) , x ∈ ℝ

:‫( ﺭﺘﺒﺔ ﺠﻤﻠﺔ ﺃﺸﻌﺔ‬1 ، E ‫ ﻋﺎﺌﻠﺔ ﺃﺸﻌﺔ ﻤﻥ‬S = { u1 ,u 2 ,........,u n } ، ‫ﺵ‬.‫ ﻑ‬E

:‫ﻤﺜﺎل‬

 y = −x ⇒ 2(x + y ) = 0 ⇒ x + y = 0 ⇒  z = 0 u ( x , −x , 0 ) ∈ ker f , x ∈ ℝ

: Rang ‫ﺍﻝﺭﺘﺒﺔ‬

rg ( f

2

{( x , y ) ∈ ℝ / f ( x , y ) = ( 0, 0 )} = {( x , y ) ∈ ℝ / ( 0, x ) = ( 0, 0 )} = {( x , y ) ∈ ℝ / x = 0 , ∀y }

ker f =

:‫ﺨﻭﺍﺹ ﺍﻝﺼﻭﺭﺓ ﻭﺍﻝﻨﻭﺍﺓ ﻭﻋﻼﻗﺘﻬﺎ ﺒﺎﻝﺘﻁﺒﻴﻕ‬

(ℝ )

 x  z 

 x + y − z = u  = (u ,v ) ∈ ℝ 2 / ∃ ( x , y , z ) ∈ ℝ 3 ,   x + y + z = v   u +v u v +y = x = ,y = 2 2 2 v −u v −u = z = 2 2

www.math.3arabiyate.net

â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
:‫ﻤﺜﺎل‬

⇒ f (u ) = u − g (u )

ϕ : ℝ 3 [x ] → ℝ

( g (u ) = 0 ‫) ﻷﻥ‬

p → p ( 2)

⇒ u ∈ Im f

K = ℝ ‫ ﻭ‬E ‫ ﺨﻁﻲ ﺒﻴﻥ‬ϕ ⇔ ϕ ∈ ( ℝ 3 [ x ])

*

Im f ⊂ ker g



. ‫ ﺨﻁﻲ‬p ‫ﺇﺫﻥ‬

∃u ∈ E : f (u ) = v ⇐ v ∈ Im f ‫ﻝﻴﻜﻥ‬ ⇒ g ( f (u ) ) = g (v )

⇒ (g f

: ker ϕ ‫♦ ﺘﻌﻴﻴﻥ‬

ker ϕ = { p ∈ E / ϕ ( p ) = 0}

)(u ) = g (v )

= { p ∈ E / ϕ ( 2 ) = 0}

g f = 0 ‫ﺒﻤﺎ ﺃﻥ‬

p (x ) ∈ E ⇔ p (x ) = a x 3 +b x + c x + d

⇒ g (v ) = 0 v ∈ ker g

p ( 2) = 8 a + 4b + 2c + d

‫ﺃﻱ‬

p ∈ ker ϕ ⇔ p ( 2 ) = 0 ⇔ 8 a + 4 b + 2 c + d = 0 ⇔ d = −8 a − 4 b − 2 c

. ker g = Im f

:‫ﻭﻤﻨﻪ‬

p ( x ) = a x 3 + b x 2 + c x + ( −8 a − 4 b − 2 c )

(

) (

)

= a x 3 − 8 + b x 2 − 4 + c ( x − 2) , a,b ,c ∈ ℝ

: rg ( f ) + rg ( g ) = n ‫ ﺘﺒﻴﻴﻥ ﺃﻥ‬-2

ker ϕ = x 3 − 8, x 2 − 4, x − 2

:‫ﻝﺩﻴﻨﺎ‬

(‫ﻭﻫﺫﻩ ﺍﻷﺸﻌﺔ ﻤﺴﺘﻘﻠﺔ ﺨﻁﻴﺎ )ﺒﺩﺭﺠﺎﺕ ﻤﺨﺘﻠﻔﺔ ﻤﺜﻨﻰ ﻤﺜﻨﻰ‬

n = dim E = dim ker g + dim Im g

dim ker ϕ = 3

= dim Im f + dim Im g

: Im ϕ ‫♦ ﺘﻌﻴﻴﻥ‬

= rg ( f ) + rg ( g )

dim ( Im ϕ ) = dim E − dim ( ker ϕ ) = 4 − 3 = 1 dim ( Im ϕ ) = dim ℝ = 1 ‫ ﻭ‬، ‫ﺝ‬.‫ﺵ‬.‫ ﻑ‬Im ϕ ⊆ ℝ ‫ﺒﻤﺎ ﺃﻥ‬ Im ϕ = ℝ : ‫ﻓﺈﻥ‬

:‫ﺘﻤﺭﻴﻥ‬

( dim E

= n ) ‫ﺵ ﺒﻌﺩﻩ ﻤﻨﺘﻬﻲ‬.‫ ﻑ‬E ‫ﻝﻴﻜﻥ‬

. g f = 0 , f + g = id E :‫ ﺒﺤﻴﺙ‬f , g ∈ L

(E )

‫ﻭﻝﻴﻜﻥ‬

. ker g = Im f :‫ ﺒﺭﻫﻥ ﺃﻥ‬-1 . rg ( f ) + rg ( g ) = n :‫ ﺒﺭﻫﻥ ﺃﻥ‬-2

:‫ﺍﻝﺤل‬ : ker g = Im f ‫ ﺘﺒﻴﻴﻥ ﺃﻥ‬-1 ker g ⊂ Im f •

g (u ) = 0 ⇐ u ∈ ker g ‫ﻝﻴﻜﻥ‬ id (u ) = u ‫ﻝﻜﻥ‬ ⇒ ( f + g )(u ) = u

11

www.math.3arabiyate.net

‫]‪â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
‫ﺍﻝﻤﺼﻔﻭﻓﺎﺕ‬ ‫ﻝﻴﻜﻥ ‪ K‬ﺤﻘﻼ ﺘﺒﺩﻴﻠﻲ ‪( K = ℂ ∨ K = ℝ ) ،‬‬ ‫ﺘﻌﺭﻴﻑ‪ :‬ﻨﺴﻤﻲ ﻤﺼﻔﻭﻓﺔ ﻤﻥ ﺍﻝﻨﻭﻉ ) ‪ ( m , n‬ﺃﻭ ) ‪( m × n‬‬ ‫ﺘﻁﺒﻴﻕ ﻤﻥ } ‪ E = {1, 2,3,...., m } × {1, 2,3,...., n‬ﻨﺤﻭ‬

‫ﻨﺭﻤﺯ ﻝﻤﺠﻤﻭﻋﺔ ﺍﻝﻤﺼﻔﻭﻓﺎﺕ ﻤﻥ ﺍﻝﻨﻭﻉ ‪ m × n‬ﺒﻤﻌﺎﻤﻼﺕ ﻤﻥ ‪K‬‬

‫ﻜل‬ ‫‪. K‬‬

‫ﺒﺎﻝﺭﻤﺯ ‪:‬‬ ‫ﻤﺜﻼ‪:‬‬

‫‪1 2‬‬ ‫‪A‬‬ ‫•‬ ‫) ‪ ∈ Μ 2×2 ( ℝ‬‬ ‫‪3 6‬‬ ‫‪ 2 5 3 7‬‬ ‫‪B ‬‬ ‫• ) ‪ ∈ Μ 2×4 ( ℝ‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪0‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪3 0‬‬ ‫‪ i‬‬ ‫‪‬‬ ‫‪‬‬ ‫• ) ‪C  i + 1 j j 2  ∈ Μ 3×3 ( ℂ‬‬ ‫‪ 1‬‬ ‫‪−3 0 ‬‬ ‫‪‬‬ ‫‪2π‬‬ ‫‪i‬‬ ‫‪2π‬‬ ‫‪2π ‬‬ ‫‪= e 3 = cos‬‬ ‫‪+ i sin‬‬ ‫‪j 3 =1‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪3 ‬‬

‫ﻨﺭﻤﺯ ﻝﻠﻤﺼﻔﻭﻓﺔ ﺒـ ‪. M , C , B , A‬‬ ‫‪A : E →K‬‬

‫‪( i , j ) → ai j‬‬ ‫ﻨﻜﺘﺏ ﻋﻨﺎﺼﺭ ﺍﻝﻤﺼﻔﻭﻓﺔ ﻋﻠﻰ ﺸﻜل ﺠﺩﻭل‬

‫‪ a11 a12 a13 .......... a1n ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪a21 a22 a23 .......... a2 n ‬‬ ‫‪‬‬ ‫‪A‬‬ ‫⋮‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ am 1 am 2 am 3 .......... amn ‬‬ ‫‪ ai j‬ﺍﻝﻌﻨﺼﺭ ﺍﻝﻤﻭﺠﻭﺩ ﻓﻲ ﺍﻝﻤﺼﻔﻭﻓﺔ ‪ A‬ﻓﻲ ﺍﻝﻤﻭﻀﻊ ‪:‬‬ ‫ﺘﻘﺎﻁﻊ ﺍﻝﺴﻁﺭ ‪ i‬ﻤﻊ ﺍﻝﻌﻤﻭﺩ ‪. j‬‬ ‫‪ : i‬ﺭﻗﻡ ﺍﻝﺴﻁﺭ ‪،‬‬

‫‪ : j‬ﺭﻗﻡ ﺍﻝﻌﻤﻭﺩ ‪.‬‬

‫ﻋﺩﺩ ﺍﻷﺴﻁﺭ ﻫﻭ ‪ ، m‬ﻋﺩﺩ ﺍﻷﻋﻤﺩﺓ ﻫﻭ ‪. n‬‬

‫•‬ ‫•‬

‫•‬ ‫•‬

‫‪1‬‬ ‫‪ A ‬ﻤﻥ ﺍﻝﻨﻭﻉ ‪. 2 × 2‬‬ ‫‪2‬‬ ‫‪1 3‬‬ ‫‪ B ‬ﻤﻥ ﺍﻝﻨﻭﻉ ‪. 2 × 3‬‬ ‫‪ 0 −1‬‬

‫‪3‬‬ ‫‪‬‬ ‫‪− 1‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪3 ‬‬ ‫‪1 ‬‬ ‫‪ ‬‬ ‫‪ C  2 ‬ﻤﻥ ﺍﻝﻨﻭﻉ ‪. 3 × 1‬‬ ‫‪0‬‬ ‫‪ ‬‬ ‫) ‪ D (1, 2, −5‬ﻤﻥ ﺍﻝﻨﻭﻉ ‪. 1× 3‬‬

‫•‬

‫‪ H = 5‬ﻤﻥ ﺍﻝﻨﻭﻉ ‪. 1× 1‬‬

‫•‬

‫‪ 1‬‬ ‫‪i‬‬ ‫‪0‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ M  i‬ﻤﻥ ﺍﻝﻨﻭﻉ ‪. 3 × 3‬‬ ‫‪i + 1 −1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪i 2‬‬

‫ﻨﺴﻤﻲ ﺍﻝﻤﺼﻔﻭﻓﺔ ﺍﻝﻤﻌﺩﻭﻤﺔ ﻓﻲ ) ‪ Μ m ×n ( K‬ﺍﻝﻤﺼﻔﻭﻓﺔ‬

‫)‬

‫(‬

‫‪ O α i j‬ﺒﺤﻴﺙ ‪∀i , j : α i j = O k‬‬

‫‪0‬‬ ‫ﻤﺜﺎل ‪=   :‬‬ ‫‪0‬‬

‫‪O Μ 2×1‬‬

‫‪0 0‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪= 0 0‬‬ ‫‪0 0‬‬ ‫‪‬‬ ‫‪‬‬

‫‪,‬‬

‫‪O Μ3×2‬‬

‫ﻤﻨﻘﻭل ﻤﺼﻔﻭﻓﺔ‪:‬‬ ‫ﻝﺘﻜﻥ ) ‪∈ Μ m ×n ( K‬‬

‫)‬

‫‪1≤i ≤ m‬‬ ‫‪1≤ j ≤ n‬‬

‫(‬

‫‪A αi j‬‬

‫ﻨﺴﻤﻲ ﻤﻨﻘﻭل ‪ A‬ﺍﻝﻤﺼﻔﻭﻓﺔ ‪ t A‬ﻭﺍﻝﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ‪:‬‬ ‫ﻤﺼﻔﻭﻓﺔ ﻤﻥ ﺍﻝﻨﻭﻉ ‪ n × m‬ﻭﺍﻝﻨﺎﺘﺠﺔ ﺒﺘﺒﺩﻴل ﺃﺴﻁﺭ ﻭﺃﻋﻤﺩﺓ ‪A‬‬

‫ﻤﺜﺎل‪:‬‬ ‫‪3‬‬ ‫♦ ‪‬‬ ‫‪7‬‬

‫‪7‬‬ ‫♦ ‪‬‬ ‫‪0‬‬

‫‪−1 ‬‬ ‫‪1‬‬ ‫‪←A‬‬ ‫‪7‬‬ ‫‪ −1‬‬ ‫‪2‬‬ ‫‪1 3‬‬ ‫‪‬‬ ‫‪5 ← B ‬‬ ‫‪2 5‬‬ ‫‪0 ‬‬

‫‪1 ‬‬ ‫♦ ‪C (1, 2 ) ← C  ‬‬ ‫‪ 2‬‬

‫‪t‬‬

‫‪www.math.3arabiyate.net‬‬

‫‪‬‬ ‫‪j‬‬ ‫‪‬‬

‫ﺍﻝﻤﺼﻔﻭﻓﺔ ﺍﻝﻤﻌﺩﻭﻤﺔ ﻓﻲ ) ‪Μ m ×n ( K‬‬

‫‪1≤ i ≤ m‬‬ ‫‪1≤ j ≤ n‬‬

‫ﺃﻤﺜﻠﺔ‪:‬‬

‫) ‪Μ m ×n ( K‬‬

‫‪12‬‬

‫‪1‬‬ ‫‪A‬‬ ‫‪3‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪t‬‬ ‫‪B 3‬‬ ‫‪7‬‬ ‫‪‬‬ ‫‪t‬‬

â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
−4   8 2  7

:‫ﺨﻭﺍﺹ‬ t

(A + B ) = t A + tB t (λ A ) = λ . t A t

:‫ ﺍﻝﻀﺭﺏ ﻓﻲ ﺴﻠﻤﻴﺔ‬-2

( )

A ai j

1≤ i ≤ m 1≤ j ≤ n

t

( A .B ) = t B .t A

.4

‫ ﻤﺭﺒﻌﺔ ﺇﺫﺍ ﻜﺎﻥ ﻋﺩﺩ ﺃﺴﻁﺭﻫﺎ ﻴﺴﺎﻭﻱ ﻋﺩﺩ‬A ‫ﻨﻘﻭل ﻋﻥ ﻤﺼﻔﻭﻓﺔ‬

:‫ﻤﺜﺎل‬

. ( n = m ) ‫ﺃﻋﻤﺩﺘﻬﺎ‬

 9 −3   3 −1  3A   ← A  , λ =3  6 15  2 5 

(‫ﺃﺜﺭ ﻤﺼﻔﻭﻓﺔ )ﺨﺎﺹ ﺒﺎﻝﻤﺼﻔﻭﻓﺔ ﺍﻝﻤﺭﺒﻌﺔ‬

:‫ﺨﻭﺍﺹ‬

n × n ‫ ﻤﺭﺒﻌﺔ ﻤﻥ ﺍﻝﻨﻭﻉ‬A ∈ Μ n ( K ) ‫ﻝﺘﻜﻥ‬

‫ ﺍﻝﻤﺯﻭﺩ ﺒﺎﻝﺠﻤﻊ ﻭﺍﻝﻀﺭﺏ ﻓﻲ ﺴﻠﻤﻴﺔ ﻝﻬﺎ ﺒﻨﻴﺔ‬Μ m ×n ( K ) ‫ﺇﻥ‬

( )

A = ai j

: ‫ ﻭﺃﺴﺎﺴﻪ ﺍﻝﻘﺎﻨﻭﻨﻲ‬، m × n ‫ ﺒﻌﺩﻩ ﻫﻭ‬K ‫ﺵ ﻋﻠﻰ‬.‫ﻑ‬ 1 0 ⋯ 0  0 1 ⋯ 0  0 0 ⋯ 0       0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 E1  , E2  , ⋯ , E mn  ⋮  ⋮  ⋮         0 0 0 0  0 0 0 0 0 0 0 1

 a b     a, b , c , d ∈ ℝ  = Μ 2×2 ( ℝ ) :‫ﻤﺜﺎل‬  c d   dim ( Μ 2×2 ( ℝ ) ) = 4 1 0 0 1 0 0 0 0 E1   , E2   , E3   , E4   0 0 0 0 1 0 0 1

n

Tr ( A ) = a11 + a22 + a33 + ......... + ann = ∑ akk

:‫ ﺍﻝﺠﻤﻊ‬-1 :‫ ﺤﻴﺙ‬A , B ∈ Μ m ×n ( K ) ‫ﻝﺘﻜﻥ‬

‫ ﻭﺍﻝﻤﻌﺭﻓﺔ‬C = A iB ‫ ﺍﻝﻤﺼﻔﻭﻓﺔ‬B ‫ ﻭ‬A ‫ ﻨﺴﻤﻲ ﺠﺩﺍﺀ‬:‫ﺘﻌﺭﻴﻑ‬

( )

. ‫ ﻤﺠﻤﻭﻋﺔ ﻋﻨﺎﺼﺭ ﻗﻁﺭﻫﺎ‬A ‫ﻨﺴﻤﻲ ﺃﺜﺭ ﺍﻝﻤﺼﻔﻭﻓﺔ‬

‫ﻋﻤﻠﻴﺎﺕ ﻋﻠﻰ ﺍﻝﻤﺼﻔﻭﻓﺎﺕ‬

A ∈ Μ k ×l ( K ) , B ∈ Μ l ×n ( K ) ‫ﻝﺘﻜﻥ‬ k × n ‫ ﻤﻥ ﺍﻝﻨﻭﻉ‬C c i j

1≤i , j ≤ n

k =1

:‫ ﺠﺩﺍﺀ ﻤﺼﻔﻭﻓﺘﻴﻥ‬-3

)

 t ( A )  = A .3  

:‫ﺍﻝﻤﺼﻔﻭﻓﺔ ﺍﻝﻤﺭﺒﻌﺔ‬

1≤ j ≤ n

(

.2

∈ Μ m ×n ( K ) , λ ∈ K

λ A = λ ( ai j )1≤i ≤ m ‫ ﻨﻌﺭﻑ‬:‫ﺘﻌﺭﻴﻑ‬

C ∈ Μk n (K )

.1

( )

A ai j

: ‫ﺒـ‬

1≤ i ≤ m 1≤ j ≤ n

( )

, B bi j

1≤ i ≤ m 1≤ j ≤ n

‫ ﺍﻝﻤﻌﺭﻓﺔ ﻜﻤﺎ‬C ‫ ﺍﻝﻤﺼﻔﻭﻓﺔ‬B ‫ ﻭ‬A ‫ﻨﺴﻤﻲ ﻤﺠﻤﻭﻉ ﺍﻝﻤﺼﻔﻭﻓﺘﻴﻥ‬

l

C i j = ∑ ai k i b k j

( )

∀i , j : c i j = ai j + bi j ‫ ﺤﻴﺙ‬C c i j

k =1

j ‫ ﻓﻲ ﺍﻝﻌﻤﻭﺩ‬A ‫ ﻤﻥ ﺍﻝﻤﺼﻔﻭﻓﺔ‬i ‫ ﻫﻭ ﻨﺎﺘﺞ ﻀﺭﺏ ﺍﻝﺴﻁﺭ‬c i j

1≤i ≤ m 1≤ j ≤ n

: ‫ﻴﻠﻲ‬

:‫ﻤﺜﺎل‬

.‫ ﻤﻌﺎﻤﻼ ﻤﻌﺎﻤﻼ‬B ‫ﻤﻥ‬

 1 −2   5 −2  1 5 0  −2 5 2  A ,B ,D ,F  3 7  0 1  3 2 7  −1 1 0 

 1 7  0 7 1 3   C  −2 6  , B   , A  :‫ﻤﺜﺎل‬  −1 3   2 4  5 1  

13

www.math.3arabiyate.net

‫]‪â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
‫ﻜل ﻤﻥ ‪ B iA‬ﻭ ‪ A iB‬ﻭ ‪ C iA‬ﻤﻌﺭﻓﺔ ‪،‬‬

‫‪ 1 −1 0 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪A 2 6 1‬‬ ‫‪3 5 7‬‬ ‫‪‬‬ ‫‪‬‬

‫‪ A iC‬ﻏﻴﺭ ﻤﻌﺭﻓﺔ ‪.‬‬

‫‪0‬‬ ‫‪7‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪ −1‬‬ ‫‪‬‬ ‫‪ 1 3   1× 0 + 3 × ( −1) 1× 7 + 3 × 3 ‬‬ ‫‪A iB = ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 2 4   2 × 0 + 4 × ( −0 ) 2 × 7 + 4 × 2 ‬‬ ‫‪ −3 10 ‬‬ ‫‪=‬‬ ‫‪‬‬ ‫‪ −4 26 ‬‬

‫‪1 = ( 42 − 3 + 0 ) − ( 0 + 5 − 14 ) = 48‬‬ ‫‪7‬‬

‫‪6‬‬ ‫‪5‬‬

‫‪det ( A ) = 2‬‬ ‫‪3‬‬

‫ﺤﺴﺎﺏ ﻤﻘﻠﻭﺏ ﻤﺼﻔﻭﻓﺔ‪:‬‬

‫ﺨﺎﺼﻴﺔ‪:‬‬ ‫♦‬

‫‪1 −1 0‬‬

‫‪A i( B iC ) = A iB + A iC‬‬

‫ﺘﻌﺭﻴﻑ‪ :‬ﻝﺘﻜﻥ ) ‪A ∈ Μ n ( K‬‬

‫‪( B iC )iA = B iA + C iA‬‬

‫ﻨﻘﻭل ﻋﻥ ‪ A‬ﺃﻨﻬﺎ ﻗﺎﺒﻠﺔ ﻝﻠﻘﻠﺏ ﺇﺫﺍ ﻭﺠﺩﺕ ‪ A ′ ∈ Μ n‬ﺒﺤﻴﺙ‪:‬‬

‫♦ ﺤﺎﻝﺔ ﺍﻝﻤﺼﻔﻭﻓﺔ ‪ A‬ﻤﺭﺒﻌﺔ ﻤﻥ ﺍﻝﻨﻭﻉ ‪n × n‬‬ ‫‪A n = A n −1 iA ,............, A 3 = A 2 iA , A 2 = A iA‬‬

‫‪A iA ′ = A ′iA = I n‬‬

‫ﺤﻴﺙ ‪ I n‬ﻫﻲ ﻤﺼﻔﻭﻓﺔ ﺍﻝﻭﺤﺩﺓ ﻓﻲ ﺍﻝﻔﻀﺎﺀ ‪ Μ n ×n‬ﻭﻫﻲ ﻤﻌﺭﻓﺔ ﺒـ‪:‬‬ ‫‪1 0 ⋯ 0‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪0 1‬‬ ‫‪0‬‬ ‫‪In ‬‬ ‫⋮‪‬‬ ‫‪⋱ ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪0 ⋯ ⋯ 1‬‬

‫ﺤﺴﺎﺏ ﺍﻝﻤﺤﺩﺩﺍﺕ ﻤﻥ ﺭﺘﺒﺔ ﺩﻨﻴﺎ ‪:‬‬ ‫ﺤﺎﻝﺔ ﺍﻝﻤﺼﻔﻭﻓﺎﺕ ﻤﻥ ﺍﻝﻨﻭﻉ ‪2x2‬‬ ‫‪a b ‬‬ ‫‪A‬‬ ‫ﻝﺘﻜﻥ ) ‪ ∈ Μ 2×2 ( K‬‬ ‫‪c d ‬‬ ‫ﻨﺴﻤﻲ ﻤﺤﺩﺩ ‪ A‬ﺍﻝﻌﺩﺩ ‪= ab − bc‬‬

‫ﻤﺜﺎل‪:‬‬ ‫‪a b‬‬ ‫‪c d‬‬

‫= ) ‪det ( A‬‬

‫‪ 1 −5 ‬‬ ‫‪ 3 5‬‬ ‫‪A =‬‬ ‫‪ , B‬‬ ‫ﻤﺜﺎل‪ :‬‬ ‫‪3 7 ‬‬ ‫‪ −2 13 ‬‬ ‫‪1 −5‬‬ ‫= ) ‪det ( A‬‬ ‫‪= 22 , det ( B ) = 49‬‬ ‫‪3 7‬‬

‫ﺤﺎﻝﺔ ﺍﻝﻤﺼﻔﻭﻓﺎﺕ ﻤﻥ ﺍﻝﻨﻭﻉ ‪3x3‬‬ ‫‪ a11 a12 a13 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﻝﺘﻜﻥ ) ‪A  a21 a22 a23  ∈ Μ 3×3 ( K‬‬ ‫‪a‬‬ ‫‪‬‬ ‫‪ 31 a32 a33 ‬‬ ‫ﻨﺴﻤﻲ ) ‪ det ( A‬ﺍﻝﻌﺩﺩ ﺍﻝﻤﻌﺭﻑ ﺒـ‪:‬‬

‫‪1 0 0‬‬ ‫‪1 0‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ ، I 2 ‬ﻓﻲ ‪I 3  0 1 0  : Μ 3×3‬‬ ‫ﻓﻲ ‪ : Μ 2×2‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪0 0 1‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﻨﺭﻤﺯ ﻝﻠﻤﻘﻠﻭﺏ ﺇﻥ ﻭﺠﺩ ﺒـ ‪A −1‬‬ ‫ﺸﺭﻁ ﻻﺯﻡ ﻭﻜﺎﻓﻲ ﻝﻭﺠﻭﺩ ‪A −1‬‬

‫) ‪ A −1‬ﻤﻭﺠﻭﺩﺓ(‬

‫⇔ ) ‪( det ( A ) ≠ 0‬‬

‫ﻗﺎﻋﺩﺓ ﺤﺴﺎﺏ ﻤﻘﻠﻭﺏ ﻤﺼﻔﻭﻓﺔ‪:‬‬ ‫‪ -1‬ﺍﻝﺘﺄﻜﺩ ﻤﻥ ﺃﻥ ‪. det ( A ) ≠ 0‬‬ ‫‪ -2‬ﺘﻌﻴﻴﻥ ﻤﺼﻔﻭﻓﺔ ﺍﻝﻤﻜﻤﻤﺎﺕ ﺍﻝﺠﺒﺭﻴﺔ ﺍﻝﻤﻘﺎﺒﻠﺔ ﻨﺭﻤﺯ ﻝﻬﺎ ﺒـ ‪. Aɶ‬‬ ‫‪1‬‬ ‫‪t ɶ‬‬ ‫= ‪A −1‬‬ ‫‪A -3‬‬ ‫) ‪det ( A‬‬

‫) ‪det ( A ) = ( a11 a22 a33 + a12 a23 a31 + a13 a21 a32‬‬ ‫) ‪− ( a31 a22 a13 + a32 a23 a11 + a33 a21 a12‬‬

‫‪www.math.3arabiyate.net‬‬

‫)‪= ℂ ∨ ℝ‬‬

‫‪(K‬‬

‫‪14‬‬

‫]‪â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
‫ﺘﻌﻤﻴﻡ ﺤﺴﺎﺏ ﺍﻝﻤﺤﺩﺩﺍﺕ‪:‬‬

‫ﺃ‪ -‬ﺤﺎﻝﺔ ﻤﺼﻔﻭﻓﺔ ‪A ∈ Μ 2×2‬‬ ‫‪a b ‬‬ ‫‪ɶ  d −c  → t Aɶ =  d −b ‬‬ ‫‪A =‬‬ ‫‪→A =‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪c d ‬‬ ‫‪ −b a ‬‬ ‫‪ −c a ‬‬ ‫‪ d −b ‬‬ ‫‪1  d −b ‬‬ ‫‪1‬‬ ‫= ‪A −1‬‬ ‫‪‬‬ ‫=‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪det ( A )  −c a  a d − b c  −c a ‬‬

‫ﺤﺴﺎﺏ ﻤﺤﺩﺩ ﻤﻥ ﺍﻝﺭﺘﺒﺔ‬

‫‪a21 a22 a23 .......... a2 n‬‬ ‫⋮‬ ‫‪ai 1 ai 2 ai 3 .......... ain‬‬ ‫‪an 1 an 2 an 3 .......... an n‬‬

‫ﺤﺴﺎﺏ ) ‪ det ( A‬ﻴﺘﻡ ﻭﻓﻕ ﻁﺭﻴﻘﺘﻴﻥ‪:‬‬

‫ﺃ‪ -‬ﻨﺸﺭ ﺍﻝﻤﺤﺩﺩ ﻭﻓﻕ ﺴﻁﺭ‪:‬‬ ‫ﻨﺸﺭ ﻤﺤﺩﺩ ‪ A‬ﻭﻓﻕ ﺍﻝﺴﻁﺭ ‪ i 0‬ﻴﻌﻁﻰ ﺒﺎﻝﻘﺎﻋﺩﺓ‪:‬‬

‫‪ai 0 j ∆i 0 j‬‬

‫) (‬

‫‪ : aɶi , j ، Aɶ = aɶi j‬ﻴﺴﻤﻰ ﺍﻝﻤﻜﻤﻡ ﺍﻝﺠﺒﺭﻱ ﻝـ ‪ai j‬‬

‫‪∆i j‬‬

‫= ) ‪det ( A‬‬

‫⋮‬

‫‪ a11 a12 a13 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﻝﺘﻜﻥ ‪A  a21 a22 a23 ‬‬ ‫‪a‬‬ ‫‪‬‬ ‫‪ 31 a32 a33 ‬‬ ‫‪ .1‬ﺍﻝﺘﺄﻜﺩ ﻤﻥ ﺃﻥ ‪. det ( A ) ≠ 0‬‬ ‫‪ .2‬ﻨﺤﺴﺏ ﻤﺼﻔﻭﻓﺔ ﺍﻝﻤﻜﻤﻤﺎﺕ ‪Aɶ‬‬ ‫‪1≤i , j ≤3‬‬

‫‪n‬‬

‫‪a11 a12 a13 .......... a1n‬‬

‫ﺏ‪ -‬ﺤﺎﻝﺔ ﻤﺼﻔﻭﻓﺔ ‪A ∈ Μ 3×3‬‬

‫‪i+j‬‬

‫) ‪( A ∈ Μ n ×n‬‬

‫)‪aɶi j = ( −1‬‬

‫‪n‬‬

‫‪det ( A ) = ∑ ( −1) 0‬‬

‫‪i +j‬‬

‫‪j =1‬‬

‫ﺤﻴﺙ ‪ : ∆ i 0 j‬ﺍﻝﻤﺤﺩﺩ ﺍﻝﻨﺎﺘﺞ ﻤﻥ ﻤﺤﺩﺩ ‪ A‬ﺒﺤﺫﻑ ﺍﻝﺴﻁﺭ ‪ i 0‬ﻭﺍﻝﻌﻤﻭﺩ ‪j‬‬

‫ﺤﻴﺙ ‪ : ∆ i j‬ﺍﻝﻤﺤﺩﺩ ﺍﻝﻨﺎﺘﺞ ﻤﻥ ﻤﺤﺩﺩ ‪ A‬ﺒﺤﺫﻑ ﺍﻝﺴﻁﺭ ‪ i‬ﻭﺍﻝﻌﻤﻭﺩ ‪j‬‬

‫ﺏ‪ -‬ﻨﺸﺭ ﺍﻝﻤﺤﺩﺩ ﻭﻓﻕ ﻋﻤﻭﺩ‪:‬‬

‫ﻤﺜﻼ‪:‬‬

‫ﻨﺸﺭ ﻤﺤﺩﺩ ‪ A‬ﻭﻓﻕ ﺍﻝﻌﻤﻭﺩ ‪ j 0‬ﻴﻌﻁﻰ ﺒﺎﻝﻘﺎﻋﺩﺓ‪:‬‬ ‫‪a23‬‬

‫‪a22‬‬

‫‪a33‬‬

‫‪a32‬‬

‫‪a12‬‬

‫‪a11‬‬

‫‪a32‬‬

‫‪a32‬‬

‫= ‪∆11‬‬ ‫= ‪∆ 23‬‬

‫‪ai j 0 ∆i j 0‬‬

‫)‪aɶ11 = ( −1‬‬

‫‪1+1‬‬

‫‪2 +3‬‬

‫)‪aɶ23 = ( −1‬‬

‫‪1‬‬ ‫‪t ɶ‬‬ ‫‪ -1‬ﻨﻁﺒﻕ ﺍﻝﻘﺎﻋﺩﺓ ‪A :‬‬ ‫) ‪det ( A‬‬

‫= ‪A −1‬‬

‫‪i + j0‬‬

‫‪n‬‬

‫)‪det ( A ) = ∑ ( −1‬‬ ‫‪i =1‬‬

‫ﺤﻴﺙ ‪ : ∆ i j 0‬ﺍﻝﻤﺤﺩﺩ ﺍﻝﻨﺎﺘﺞ ﻤﻥ ﻤﺤﺩﺩ ‪ A‬ﺒﺤﺫﻑ ﺍﻝﺴﻁﺭ ‪ i‬ﻭﺍﻝﻌﻤﻭﺩ ‪j 0‬‬

‫ﻤﺜﺎل‪:‬‬

‫‪1 2 3‬‬ ‫‪ 1 2 3‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪A  3 0 1 , A = 3 0 1‬‬ ‫‪ −1 1 3 ‬‬ ‫‪−1 1 3‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﻨﻨﺸﺭﻩ ﻭﻓﻕ ﺍﻝﺴﻁﺭ ‪: i 0 = 2‬‬ ‫‪a2 j ∆ 2 j‬‬

‫‪2+ j‬‬

‫‪3‬‬

‫)‪det ( A ) = ∑ ( −1‬‬ ‫‪j =1‬‬

‫‪3‬‬

‫‪1‬‬

‫‪−1 3‬‬

‫‪a22‬‬

‫‪2+ 2‬‬

‫)‪+ ( −1‬‬ ‫‪2‬‬

‫‪2 3‬‬ ‫‪1 3‬‬ ‫‪1‬‬

‫‪−1 1‬‬

‫‪a23‬‬

‫‪a21‬‬ ‫‪2+3‬‬

‫‪2 +1‬‬

‫)‪= ( −1‬‬

‫)‪+ ( −1‬‬

‫‪= −9 + 0 − 3 = −12‬‬

‫‪www.math.3arabiyate.net‬‬

‫‪15‬‬

â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
g : ℝ 2 → ℝ3

:‫ﻤﺼﻔﻭﻓﺔ ﺘﻁﺒﻴﻕ ﺨﻁﻲ‬ .‫ ﻋﻠﻰ ﺍﻝﺘﺭﺘﻴﺏ‬m ‫ ﻭ‬n ‫ ﺒﻌﺩﺍﻫﻤﺎ‬،‫ ﻓﻀﺎﺌﻴﻥ ﺸﻌﺎﻋﻴﻥ‬F ‫ ﻭ‬E ‫ ﺘﻁﺒﻴﻕ ﺨﻁﻲ‬f : E → F

(x , y ) → (x + y , 2 x − y , x − 3 y ) B E = {(1, 0 ) , ( 0,1)}   B F = (1, 0, 0 ), ( 0,1, 0 ), ( 0, 0,1)  v2 v3  v 1  f f

2

1

‫ﺍﻝﺘﻲ ﺃﻋﻤﺩﺘﻬﺎ ﻫﻲ ﺼﻭﺭ ﺃﺴﺎﺱ ﺍﻝﻤﻨﻁﻠﻕ ﻤﻜﺘﻭﺒﺔ ﻓﻲ ﺃﺴﺎﺱ ﺍﻝﻭﺼﻭل‬ f (u 1 ) = α11v 1 + α 21v 2 + α 31v 3 + .......... + α m 1v m

3

2

f (u 2 ) = α12v 1 + α 22v 2 + α 32v 3 + .......... + α m 2v m

3

1 1    ⇒ M =  2 −1   1 −3   



f (u j ) = α1 jv 1 + α 2 jv 2 + α 3 jv 3 + .......... + α mjv m ⋮

h : ℝ 3 [x ] → ℝ 3 [x ] p → p′



B E = {1, x , x 2 , x 3 } , B F = {1, x , x 2 , x 3 }

↓  α11  α 21 M (f , B E , B F ) =   ⋮  αm1

h (1) = 0 = 0i1 + 0ix + 0ix 2 + 0ix 3 h ( x ) = 1 = 1i1 + 0ix + 0ix 2 + 0ix 3

( ) = 2x = 0i1 + 2ix + 0ix h ( x ) = 3x = 0i1 + 0ix + 3ix 2

3

2

2

0  0 M (h ) =  0  0

+ 0i x

2

f (u n ) = α1nv 1 + α 2 nv 2 + α 3nv 3 + .......... + α mnv m f (u1 ) f (u 2 ) ⋯ f (u j ) ⋯ f (u n )

dim E = dim F = 4 ‫ ﻷﻥ‬4 × 4 ‫ ﻤﻥ ﺍﻝﻨﻭﻉ‬h ‫ﺇﻥ ﻤﺼﻔﻭﻓﺔ‬

h x

F ‫ ﺃﺴﺎﺱ ﻝـ‬B F = { v 1 ,v 2 ,⋯ ,v m }

‫ ﺍﻝﻤﺼﻔﻭﻓﺔ‬B F ‫ ﻭ‬B E ‫ ﺒﺎﻝﻨﺴﺒﺔ ﻝﻸﺴﺎﺴﻴﻥ‬f ‫ ﻨﺴﻤﻲ ﻤﺼﻔﻭﻓﺔ‬:‫ﺘﻌﺭﻴﻑ‬

( (1, 0 ) ) = (1, 2,1) = v + 2v + v ( ( 0,1) ) = (1, −1, −3) = v −v + 3v 1

E ‫ ﺃﺴﺎﺱ ﻝـ‬B E = { u1 , u 2 ,⋯ , u n }

3









α12 α 22



α1 j α2 j





⋯ ⋮

αm 2





⋯ ⋮

α mj





α1n  v 1 α 2 n  v 2

⋮  ⋮  α m n v m

+ 0i x 3

m × n : M ‫ﻨﻭﻉ ﺍﻝﻤﺼﻔﻭﻓﺔ‬

1 0 0  0 2 0 :‫ﻭﻤﻨﻪ‬ 0 0 3  0 0 0

k : ℝ → ℝ3 t → ( t , 2t , 6t )

E ‫ ﺒﻌﺩ‬: M ‫ ﻋﺩﺩ ﺃﻋﻤﺩﺓ‬، F ‫ ﺒﻌﺩ‬: M ‫ﻋﺩﺩ ﺃﺴﻁﺭ‬

. 3 × 2 ‫ ﻤﺼﻔﻭﻓﺔ ﻤﻥ ﺍﻝﻨﻭﻉ‬، ‫ ﺨﻁﻲ‬f : ℝ 2 → ℝ 3 :‫ﻤﺜﻼ‬



3 × 1 ‫ ﻤﻥ ﺍﻝﻨﻭﻉ‬k ‫ﻤﺼﻔﻭﻓﺔ‬ B E = { 1} , B F = {(1, 0, 0 ) , ( 0,1, 0 ) , ( 0, 0,1)} f (1) = (1, 2, 6 ) = 1e1 + 2 e 2 + 6 e 3

1   M ( k , B E , B F ) =  2  :‫ﻭﻤﻨﻪ‬ 6  

16

 dim E = n  ‫ ﺘﻘﺎﺒﻠﻪ‬  f ∈ L ( E , F ) ‫ﻜل‬  dim F = m  . Μ m ×n ‫ﻤﺼﻔﻭﻓﺔ ﻤﻥ ﺍﻝﻨﻭﻉ‬

‫ ﻭﻁﻠﺏ ﺍﻝﺘﻁﺒﻴﻕ ﺍﻝﺨﻁﻲ‬Μ m ×n ‫ﺇﺫﺍ ﻋﻠﻤﺕ ﻤﺼﻔﻭﻓﺔ ﻤﻥ ﺍﻝﻨﻭﻉ‬





:‫ﺍﻝﻤﻘﺎﺒل ﻝﻬﺎ ﻓﺈﻥ ﻋﺒﺎﺭﺘﻪ ﺘﻌﻁﻰ ﺒﺎﻝﻘﺎﻋﺩﺓ‬

f : E ( dim E = n ) → F ( dim F = m ) f (X ) = A t X  a11 a12 a13 .......... a1n   x 1     a a a .......... a2 n   x 2  f ( X ) =  21 22 23 ⋮  ⋮       am 1 am 2 am 3 .......... amn   x n  www.math.3arabiyate.net

‫]‪â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
‫ﻤﺼﻔﻭﻓﺔ ﺍﻻﻨﺘﻘﺎل )ﺘﻐﻴﻴﺭ ﺍﻝﻘﺎﻋﺩﺓ( ‪:‬‬

‫‪ 1 0 −1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪A 2 0 5 ‬‬ ‫‪3 1 6 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﻝﻨﺒﺤﺙ ﻋﻥ ﺍﻝﺘﻁﺒﻴﻕ ﺍﻝﺨﻁﻲ ﺍﻝﻤﻘﺎﺒل ﻝﻬﺎ‪.‬‬

‫‪ E‬ﻓﻀﺎﺀ ﺸﻌﺎﻋﻲ‪ ،‬ﺒﻌﺩﻩ ‪. n‬‬

‫} ‪B 2 = { v 1 ,v 2 ,⋯ ,v n } ، B 1 = { u1 , u 2 ,⋯ , u n‬‬ ‫ﺃﺴﺎﺴﻴﻥ ﻝـ ‪. E‬‬ ‫ﺘﻌﺭﻴﻑ‪ :‬ﻨﺴﻤﻲ ﻤﺼﻔﻭﻓﺔ ﺍﻻﻨﺘﻘﺎل ﻤﻥ ﺍﻷﺴﺎﺱ ‪ B 1‬ﻨﺤﻭ ﺍﻷﺴﺎﺱ ‪: B 2‬‬

‫ﺇﻨﻬﺎ ﻤﻥ ﺍﻝﻨﻭﻉ ‪3 × 3‬‬

‫ﺍﻝﻤﺼﻔﻭﻓﺔ ‪ P‬ﺍﻝﺘﻲ ﺃﻋﻤﺩﺘﻬﺎ ﻫﻲ ﻋﻨﺎﺼﺭ ﺍﻷﺴﺎﺱ ‪ B 2‬ﻤﻜﺘﻭﺒﺔ ﻓﻲ‬

‫ﻝﻨﻔﺭﺽ ﺃﻥ ‪ A‬ﻤﺭﻓﻘﺔ ﺒﺎﻝﺘﻁﺒﻴﻕ‪:‬‬ ‫‪3‬‬

‫‪, X ( x , y , z ) ∈ ℝ3‬‬

‫)‬

‫‪f :ℝ → ℝ‬‬ ‫‪3‬‬

‫ﺍﻷﺴﺎﺱ ‪. B 1‬‬ ‫‪v 1 = α11u1 + α 21u 2 + α 31u 3 + ⋯ + α n 1u n‬‬

‫(‬

‫‪f (x , y , z ) = t A. t X‬‬

‫‪v 2 = α12u1 + α 22u 2 + α 32u 3 + ⋯ + α n 2 u n‬‬

‫‪x −z‬‬ ‫‪ 1 0 −1 x  ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪  ‬‬ ‫‪‬‬ ‫‪ 2 0 5  y  =  2 x + 5 z ‬‬ ‫‪ 3 1 6  z   3 x + y + 6 z ‬‬ ‫‪‬‬ ‫‪  ‬‬ ‫‪‬‬ ‫) ‪f (x , y , z ) = (x − z , 2 x + 5 z , 3x + y + 6 z‬‬

‫⋮‬ ‫‪v i = α1i u 1 + α 2i u 2 + α 3i u 3 + ⋯ + α n i u n‬‬ ‫⋮‬ ‫‪v n = α1nu1 + α 2 nu 2 + α 3nu 3 + ⋯ + α n n u n‬‬

‫‪1 2‬‬ ‫‪ ، M = ‬ﻭﻝﻴﻜﻥ ‪ f‬ﺍﻝﺘﻁﺒﻴﻕ ﺍﻝﺨﻁﻲ ﺤﻴﺙ‪:‬‬ ‫♦ ﻝﺘﻜﻥ ‪‬‬ ‫‪3 4‬‬ ‫) ‪f : M 2×2 ( ℝ ) → M 2×2 ( ℝ‬‬ ‫‪X → f ( X ) = MX‬‬

‫‪2  1 0   1‬‬ ‫‪‬‬ ‫‪=‬‬ ‫‪4  0 0   3‬‬ ‫‪2  0 1   0‬‬ ‫‪‬‬ ‫‪ =‬‬ ‫‪4  0 0   0‬‬ ‫‪2  0 0   2‬‬ ‫‪‬‬ ‫‪ =‬‬ ‫‪4  1 0   4‬‬

‫‪0‬‬ ‫‪ = 1B1 + 0B 2 + 3B3 + 0B 4‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪ = 0B1 + 1B 2 + 0B3 + 3B 4‬‬ ‫‪3‬‬ ‫‪0‬‬ ‫‪ = 2B1 + 0B 2 + 4B3 + 0B 4‬‬ ‫‪0‬‬ ‫‪ 1 2  0 0   0 2 ‬‬ ‫‪f ( B 4 ) = MB 4 = ‬‬ ‫‪‬‬ ‫‪ =‬‬ ‫‪ = 0B1 + 2B 2 + 0B3 + 4B 4‬‬ ‫‪ 3 4  0 1   0 4 ‬‬

‫‪0 2 0‬‬ ‫‪‬‬ ‫‪1 0 2‬‬ ‫ﺇﺫﻥ‪:‬‬ ‫‪0 4 0‬‬ ‫‪‬‬ ‫‪3 0 4‬‬

‫‪1‬‬ ‫‪‬‬ ‫‪0‬‬ ‫‪M (f , B , B ) = ‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪0‬‬

‫‪1‬‬ ‫‪f ( B1 ) = MB1 = ‬‬ ‫‪3‬‬ ‫‪1‬‬ ‫‪f ( B 2 ) = MB 2 = ‬‬ ‫‪3‬‬ ‫‪1‬‬ ‫‪f ( B3 ) = MB3 = ‬‬ ‫‪3‬‬

‫↓‬

‫⋯‬

‫⋮ ‪⋮ ‬‬ ‫‪‬‬ ‫‪α n n  u n‬‬

‫ﺇﻴﺠﺎﺩ ﻤﺼﻔﻭﻓﺔ ‪ f‬ﺒﺎﻝﻨﺴﺒﺔ ﻝﻠﻘﺎﻋﺩﺓ ﺍﻝﻤﻌﺘﺎﺩﺓ‬ ‫‪‬‬ ‫‪1 0‬‬ ‫‪0 1‬‬ ‫‪0 0‬‬ ‫‪ 0 0 ‬‬ ‫‪B = B1 = ‬‬ ‫‪, B2 = ‬‬ ‫‪, B3 = ‬‬ ‫‪, B4 = ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪0 0‬‬ ‫‪0 0‬‬ ‫‪1 0‬‬ ‫‪ 0 1 ‬‬ ‫‪‬‬ ‫ﻝﺩﻴﻨﺎ‪:‬‬

‫‪vn‬‬

‫⋯‬

‫‪α1n  u1‬‬ ‫‪α 2 n  u 2‬‬

‫⋯‬

‫‪v2‬‬

‫‪v1‬‬

‫↓‬

‫⋯‬

‫↓‬

‫↓‬

‫⋯‬

‫‪α1i‬‬ ‫‪α 2i‬‬

‫⋯‬ ‫⋯‬

‫‪α12‬‬ ‫‪α 22‬‬

‫⋮‬

‫⋮‬

‫⋮‬

‫⋮‬

‫⋯‬

‫‪α ni‬‬

‫⋯‬

‫‪αn 2‬‬

‫⋯‬

‫‪vi‬‬

‫‪ α11‬‬ ‫‪‬‬ ‫‪α 21‬‬ ‫‪P =‬‬ ‫⋮ ‪‬‬ ‫‪‬‬ ‫‪ α n1‬‬

‫ﻨﻭﻉ ﺍﻝﻤﺼﻔﻭﻓﺔ ‪n × n : M‬‬

‫ﺘﻌﺭﻴﻑ‪ :2‬ﻨﺴﻤﻲ ﻤﺼﻔﻭﻓﺔ ﺍﻻﻨﺘﻘﺎل ﻤﻥ ﺍﻷﺴﺎﺱ ‪ B 1‬ﻨﺤﻭ ﺍﻷﺴﺎﺱ ‪: B 2‬‬ ‫ﻤﺼﻔﻭﻓﺔ ﺍﻝﺘﻁﺒﻴﻕ ﺍﻝﺨﻁﻲ ‪ ، Id : E → E‬ﺤﻴﺙ ‪ Id‬ﺍﻝﺘﻁﺒﻴﻕ‬ ‫ﺍﻝﻤﻁﺎﺒﻕ ﻓﻲ ‪ ، E‬ﻤﺯﻭﺩﺍ ﺒﺎﻷﺴﺎﺱ ‪ B 2‬ﻓﻲ ﺍﻝﻤﻨﻁﻠﻕ‪ ،‬ﻭﺍﻷﺴﺎﺱ ‪B 1‬‬

‫ﻓﻲ ﺍﻝﻭﺼﻭل‪ ،‬ﻭﻨﻜﺘﺏ‪. P = M ( Id , B 2 , B 1 ) :‬‬ ‫♦ ﻝﺘﻜﻥ ‪ Q‬ﻤﺼﻔﻭﻓﺔ ﺍﻻﻨﺘﻘﺎل ﻤﻥ ﺍﻷﺴﺎﺱ ‪ B 2‬ﻨﺤﻭ ﺍﻷﺴﺎﺱ ‪B 1‬‬

‫) ‪Q = M ( Id , B 1 , B 2‬‬ ‫ﻝﺩﻴﻨﺎ ‪. Q = P −1 :‬‬ ‫ﺤﺫﺍﺭ‪ :‬ﻝﺘﺤﻭﻴل ﻋﺒﺎﺭﺓ ﺸﻌﺎﻉ ﻤﻜﺘﻭﺏ ﻓﻲ ﺍﻷﺴﺎﺱ ‪ B 1‬ﻨﺤﻭ ﺍﻷﺴﺎﺱ‬ ‫‪ B 2‬ﻨﺴﺘﻌﻤل ﻤﺼﻔﻭﻓﺔ ﺍﻻﻨﺘﻘﺎل ﻤﻥ ﺍﻷﺴﺎﺱ ‪ B 2‬ﻨﺤﻭ ﺍﻷﺴﺎﺱ ‪. B 1‬‬

‫‪www.math.3arabiyate.net‬‬

‫‪17‬‬

‫]‪â‡<ê×éfu<<<<<<<<<<<<<<<<<<<<<<<<êŞ}<¢]<–<êÞ^nÖ]<ðˆ¢]
‫}‬

‫‪3‬‬

‫‪f‬‬ ‫‪E , B 2 ‬‬ ‫‪→ F , B 2′‬‬

‫{‬

‫)‪B 1 = {1, x , x 2 , x 3 } , B 2 = 1, ( x − 1) , ( x − 1) , ( x − 1‬‬ ‫‪2‬‬

‫‪f = ( Id ) F f Id E‬‬ ‫‪−1‬‬

‫‪3‬‬

‫‪2‬‬

‫‪−1‬‬

‫♦ ﺇﺫﺍ ﻜﺎﻥ ‪ E = F‬ﻓﺈﻥ‪:‬‬

‫‪1‬‬ ‫‪‬‬ ‫‪0‬‬ ‫‪P =‬‬ ‫‪0‬‬ ‫‪‬‬ ‫‪0‬‬

‫‪E , B 2 ‬‬ ‫‪→E ,B2‬‬ ‫‪f‬‬

‫‪f = ( Id ) E f Id E‬‬ ‫‪−1‬‬

‫‪f‬‬ ‫‪E , B 1 ‬‬ ‫‪→ E , B1‬‬

‫‪x3‬‬

‫‪x2‬‬

‫‪x‬‬

‫‪1‬‬

‫‪1‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪1‬‬

‫‪1‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪0‬‬

‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪0‬‬

‫‪1‬‬ ‫‪0‬‬ ‫‪−1‬‬ ‫‪Q =P =‬‬ ‫‪0‬‬ ‫‪‬‬ ‫‪0‬‬

‫) ‪f ( x , y , z ) = ( x + 3 y + 2z , x − 4z , y + 3z‬‬ ‫ﺃﻭﺠﺩ ‪ B‬ﻤﺼﻔﻭﻓﺔ ‪) f‬ﺍﻝﺘﻤﺜﻴل ﺍﻝﻤﺼﻔﻭﻓﻲ( ﻓﻲ ﺍﻝﻘﺎﻋﺩﺓ‪:‬‬

‫}) ‪S = {w 1 = (1,1,1) , w 2 = (1,1, 0 ) , w 3 = (1, 0, 0‬‬

‫ﻝﺩﻴﻨﺎ ﻤﺼﻔﻭﻓﺔ ‪ f‬ﻓﻲ ﺍﻝﻘﺎﻋﺩﺓ ﺍﻝﻤﻌﺘﺎﺩﺓ‬

‫‪. ( x − 1) ، ( x − 1) ، ( x − 1) ، 1‬‬ ‫‪2‬‬

‫‪3‬‬

‫})‪ E = {e1 = (1, 0, 0 ) , e 2 = ( 0,1, 0 ) , e 3 = ( 0, 0,1‬ﻫﻲ‬

‫ﺍﻝﻐﺭﺽ ﻤﻥ ﺍﻝﺘﻁﺒﻴﻕ ﺘﺤﻭﻴل ﻋﺒﺎﺭﺓ ‪ p‬ﺍﻝﻤﻜﺘﻭﺏ ﻓﻲ ﺍﻝﻘﺎﻋﺩﺓ ‪ B 1‬ﺇﻝﻰ‬ ‫ﻋﺒﺎﺭﺓ ﻤﻜﺘﻭﺒﺔ ﻓﻲ ﺍﻝﻘﺎﻋﺩﺓ ‪ ، B 2‬ﻝﻬﺫﺍ ﻨﺴﺘﻌﻤل ﻤﺼﻔﻭﻓﺔ ﺍﻻﻨﺘﻘﺎل ‪ Q‬ﻤﻥ‬ ‫ﺍﻷﺴﺎﺱ ‪ B 2‬ﻨﺤﻭ ﺍﻷﺴﺎﺱ ‪1 1 1   1   7  . B 1‬‬ ‫‪   ‬‬ ‫‪1 2 3   1  14 ‬‬ ‫=‬ ‫‪0 1 3   2   11 ‬‬ ‫‪   ‬‬ ‫‪0 0 1  3  3 ‬‬

‫‪1‬‬ ‫‪‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪‬‬ ‫‪0‬‬

‫ﻭﻤﻨﻪ )‪p ( x ) = 7 + 14 ( x − 1) + 11( x − 1) + 3 ( x − 1‬‬ ‫‪2‬‬

‫‪3‬‬

‫ﻗﺎﻋﺩﺓ‪:‬‬ ‫ﻝﻴﻜﻥ ‪ ، f : E → F‬ﺤﻴﺙ ‪ E‬ﻭ ‪ F‬ﻓﻀﺎﺌﻴﻥ ﻤﻨﺘﻬﻴﻲ ﺍﻝﺒﻌﺩ‪.‬‬ ‫‪012‬‬

‫ﻭﻝﻴﻜﻥ ‪ B 1′ ، B 1‬ﺃﺴﺎﺴﻴﻥ ﻝـ ‪ F ، E‬ﻋﻠﻰ ﺍﻝﺘﺭﺘﻴﺏ‪.‬‬

‫(‬

‫‪. A = M f , B1 , B 1′‬‬

‫ﻭﻝﻴﻜﻥ ‪ B 2′ ، B 2‬ﺃﺴﺎﺴﻴﻥ ﺁﺨﺭﻴﻥ ﻝـ ‪ F ، E‬ﻋﻠﻰ ﺍﻝﺘﺭﺘﻴﺏ‪.‬‬

‫(‬

‫‪. B = M f , B 2 , B 2′‬‬

‫ﻝﺩﻴﻨﺎ ﻤﺎ ﻴﻠﻲ‪:‬‬

‫‪−1‬‬

‫‪B = P −1AP‬‬

‫ﺘﻁﺒﻴﻕ‪ :‬ﺃﻜﺘﺏ ‪ p ( x ) = 1 + x + 2x 2 + 3x 3‬ﺒﺩﻻﻝﺔ‪:‬‬

‫)‬

‫‪↑ ( Id )E‬‬

‫↓ ‪Id E‬‬

‫ﻤﺜﺎل‪ :‬ﻝﻴﻜﻥ ‪ f : ℝ3 → ℝ 3‬ﻤﻌﺭﻑ ﻜﻤﺎ ﻴﻠﻲ‪:‬‬

‫‪1‬‬ ‫‪‬‬ ‫)‪ ( x − 1‬‬ ‫‪‬‬ ‫‪2‬‬ ‫)‪ ( x − 1‬‬ ‫‪‬‬ ‫‪3‬‬ ‫)‪ ( x − 1‬‬

‫)‬

‫‪f‬‬ ‫‪E , B 1 ‬‬ ‫‪→ F , B 1′‬‬

‫‪1‬‬

‫‪−1  1‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪−2‬‬ ‫‪3  x‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪−3  x 2‬‬ ‫‪‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪1  x3‬‬ ‫ﻤﺼﻔﻭﻓﺔ ﺍﻻﻨﺘﻘﺎل ‪ Q‬ﻤﻥ ﺍﻷﺴﺎﺱ ‪ B 2‬ﻨﺤﻭ ﺍﻷﺴﺎﺱ ‪: B 1‬‬ ‫‪1‬‬

‫‪−1‬‬

‫‪B = Q −1AP‬‬

‫ﻤﺼﻔﻭﻓﺔ ﺍﻻﻨﺘﻘﺎل ‪ P‬ﻤﻥ ﺍﻷﺴﺎﺱ ‪ B 1‬ﻨﺤﻭ ﺍﻷﺴﺎﺱ ‪: B 2‬‬

‫)‪( x − 1) ( x − 1) ( x − 1‬‬

‫‪↑ ( Id )F‬‬

‫↓ ‪Id E‬‬

‫‪B = Q −1AP‬‬

‫‪2‬‬ ‫‪‬‬ ‫‪−4 ‬‬ ‫‪3 ‬‬ ‫ﻭﻝﺩﻴﻨﺎ‬

‫‪1 1 1 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ ، P = 1 1 0 ‬ﺇﺫﻥ ﻤﺼﻔﻭﻓﺔ ﺘﻐﻴﻴﺭ ﺍﻝﻘﺎﻋﺩﺓ ﻤﻥ ﺍﻷﺴﺎﺱ ‪ S‬ﺇﻝﻰ‬ ‫‪1 0 0 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪0 0 1 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪−1‬‬ ‫ﺍﻷﺴﺎﺱ ‪ E‬ﻫﻲ ‪ Q = P −1‬ﺤﻴﺙ‪P =  0 1 −1 :‬‬ ‫‪ 1 −1 0 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪B = P −1AP‬‬ ‫‪ 0 0 1   1 3 2  1 1 1   4 1 0 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ ‬‬ ‫‪‬‬ ‫ﺇﺫﻥ ‪B =  0 1 −1   1 0 −4   1 1 0  =  −7 0 1 ‬‬ ‫‪ 1 −1 0   0 1 3   1 0 0   9 3 0 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ ‬‬ ‫‪‬‬

‫‪ 4 1 0‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﺃﻱ‪. B = M ( f , S , S ) =  −7 0 1  :‬‬ ‫‪ 9 3 0‬‬ ‫‪‬‬ ‫‪‬‬

‫‪ : P‬ﻫﻲ ﻤﺼﻔﻭﻓﺔ ﺍﻻﻨﺘﻘﺎل ﻤﻥ ‪ B 1‬ﻨﺤﻭ ‪. B 2‬‬ ‫‪ : Q‬ﻫﻲ ﻤﺼﻔﻭﻓﺔ ﺍﻻﻨﺘﻘﺎل ﻤﻥ ‪ B 1′‬ﻨﺤﻭ ‪. B 2′‬‬ ‫‪www.math.3arabiyate.net‬‬

‫‪1 3‬‬ ‫‪‬‬ ‫‪A = M (f , E , E ) =  1 0‬‬ ‫‪0 1‬‬ ‫‪‬‬ ‫ﻤﺼﻔﻭﻓﺔ ﺘﻐﻴﻴﺭ ﺍﻝﻘﺎﻋﺩﺓ ﻤﻥ ﺍﻷﺴﺎﺱ ‪ E‬ﺇﻝﻰ ﺍﻷﺴﺎﺱ ‪ S‬ﻫﻲ‬

‫‪18‬‬

Related Documents

Algebre
November 2019 9
Algebre
November 2019 41
Exos Algebre Relationnel
November 2019 13

More Documents from ""

Store Monitor
November 2019 46
Data Riset 2
April 2020 34
Nama1.docx
December 2019 41
Algebre
November 2019 41
Miiraj Al Tachawuf
July 2020 25