Alfredo Vargas Aguirre

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Alfredo Vargas Aguirre as PDF for free.

More details

  • Words: 15,788
  • Pages: 51
Rutherford fue uno de los primeros y más importantes investigadores en física nuclear. Poco después del descubrimiento de la radiactividad en 1896 por el físico francés Antoine Henri Becquerel, Rutherford identificó los tres componentes principales de la radiación y los denominó rayos alfa, beta y gamma. También demostró que las partículas alfa son núcleos de helio. Su estudio de la radiación le llevó a formular una teoría de la estructura atómica que fue la primera en describir el átomo como un núcleo denso alrededor del cual giran los electrones. En 1919 Rutherford dirigió un importante experimento en física nuclear cuando bombardeó nitrógeno con partículas alfa y obtuvo átomos de un isótopo de oxígeno y protones. Esta transmutación de nitrógeno en oxígeno fue la primera que produjo una reacción nuclear de forma artificial. Inspiró la investigación de los científicos posteriores sobre otras transformaciones nucleares y sobre la naturaleza y las propiedades de la radiación. Rutherford y el físico británico Frederick Soddy desarrollaron la explicación de la radiactividad que todavía aceptan los científicos actuales. Ernest Rutherford, que obtuvo el Premio Nobel de Química en 1908, fue un pionero de la física nuclear por sus investigaciones experimentales y su desarrollo de la teoría nuclear de la estructura atómica. Bombardeando gas nitrógeno con partículas alfa (partículas nucleares emitidas en procesos radiactivos), Rutherford logró transformar un átomo de nitrógeno en un átomo de oxígeno y otro de hidrógeno. Este experimento fue un primer estímulo para el desarrollo de la energía nuclear, que se libera en cantidades enormes por la desintegración nuclear. Ernest Rutherford y sus colaboradores Hans Geiger y Ernest Marsden bombardearon con partículas alfa (con carga positiva) una lámina muy fina de oro y observaron que, aunque la mayor parte de las partículas la atravesaban sin desviarse, unas pocas sufrían una desviación bastante acusada e incluso algunas rebotaban al llegar a la lámina. Para explicar estos resultados, Rutherford propuso el modelo nuclear del átomo, según el cual un átomo está constituido en gran medida por espacio vacío, la carga positiva y la mayoría de su masa están concentradas en una pequeña región central llamada núcleo. En este modelo, los electrones, con carga negativa, giraban en órbitas alrededor del núcleo.

Rutherford fue uno de los primeros y más importantes investigadores en física nuclear. Poco después del descubrimiento de la radiactividad en 1896 por el físico francés Antoine Henri Becquerel, Rutherford identificó los tres componentes principales de la radiación y los denominó rayos alfa, beta y gamma. También demostró que las partículas alfa son núcleos de helio. En sus experimentos con partículas alfa observó, junto con sus colaboradores Hans Geiger y Ernest Marsden, que al bombardear una fina lámina de oro con estas partículas, algunas de ellas rebotaban contra la lámina en vez de atravesarla, lo cual era incompatible con el modelo atómico de Joseph J. Thomson, aceptado como válido por aquel entonces. Su estudio de la radiación le llevó a formular una teoría de la estructura atómica que fue la primera en describir el átomo como un núcleo denso cargado positivamente alrededor del cual giran los electrones cargados negativamente. Las partículas alfa que rebotaban eran aquellas pocas que chocaban frontalmente contra los núcleos de los átomos de oro. Su modelo atómico, sin embargo, contradecía la teoría electromagnética de James Clerk Maxwell, según la cual todo electrón acelerado que describe una trayectoria curva, emite una energía en forma de radiación, por lo que los electrones no podrían mantenerse indefinidamente en sus órbitas en torno al núcleo atómico: su energía se agotaría paulatinamente y caerían describiendo una espiral hasta colisionar contra el núcleo, destruyéndose el átomo. En 1919 Rutherford dirigió otro importante experimento en física nuclear cuando bombardeó nitrógeno con partículas alfa y obtuvo átomos de un isótopo de oxígeno y protones. Esta transmutación de nitrógeno en oxígeno fue la primera que produjo una reacción nuclear de forma artificial. Fue uno de los primeros científicos en determinar que la energía que se libera en una desintegración radiactiva es millones de veces mayor que la de cualquier enlace químico, y el primero en defender que dicha energía liberada es en realidad la energía interna de cualquier átomo. Inspiró la investigación de los científicos posteriores sobre otras transformaciones nucleares y sobre la naturaleza y las propiedades de la radiación. Rutherford y el físico británico Frederick Soddy desarrollaron la explicación de la radiactividad aceptada por los científicos actuales.

Rutherford of Nelson, Lord Ernest (1871 - 1937). Físico británico. Estudió en la Universidad de Nueva Zelanda y en la de Cambridge. Fue profesor de física en la Universidad McGill de Montreal, Canadá, desde 1898 a 1907 y en la de Manchester, en Inglaterra, durante los 12 años siguientes. A partir de 1919 ejerció como profesor de física experimental y director del Laboratorio Cavendish en la Universidad de Cambridge y también mantuvo una cátedra, a partir de 1920, en la Institución Real de Gran Bretaña en Londres. Rutherford fue uno de los primeros y más importantes investigadores en física nuclear. Poco después del descubrimiento de la radiactividad en 1896 por el físico francés Antoine Henri Becquerel, Rutherford identificó los tres componentes principales de la radiación y los denominó rayos alfa, beta y gamma. También demostró que las partículas alfa son núcleos de helio. Su estudio de la radiación le llevó a formular una teoría de la estructura atómica que fue la primera en describir el átomo como un núcleo denso alrededor del cual giran los electrones. En 1919 Rutherford dirigió un importante experimento en física nuclear cuando bombardeó nitrógeno con partículas alfa y obtuvo átomos de un isótopo de oxígeno y protones. Esta transmutación de nitrógeno en oxígeno fue la primera que produjo una reacción nuclear de forma artificial. Inspiró la investigación de los científicos posteriores sobre otras transformaciones nucleares y sobre la naturaleza y las propiedades de la radiación. Rutherford y el físico británico Sir Frederick Soddy desarrollaron la explicación de la radiactividad que todavía aceptan los científicos actuales. Rutherford fue elegido miembro de la Sociedad Real en 1903 y ejerció como presidente de esta institución desde 1925 a 1930. Recibió el título de sir en 1914. Murió en Londres el 19 de octubre de 1937 y fue enterrado en la Abadía de Westminster. Entre sus escritos se encuentran: Radioactivity (Radiactividad, 1904); Radiations from Radioactive Substances (Radiaciones de las sustancias radiactivas, 1930), que redactó con los físicos James Chadwick y Charles Drummond Ellis y que se ha convertido en un texto clásico, y The Newer Alchemy (La Nueva alquimia, 1937).

Una breve historia de la física nuclear y sus implicaciones Daniel Cano Ott En el siglo IV a.C., el filósofo griego Demócrito postuló que no es posible dividir infinitamente la materia en partes cada vez más pequeñas y que existe por tanto un constituyente básico e indivisible de la materia al que llamó átomo (en griego, sin división). La idea de Demócrito permaneció 2400 años en el campo de la especulación hasta que, a principios del siglo XIX, los físicoquímicos John Dalton, Amedeo Avogadro y Michael Faraday la ascendieron, por pura necesidad, al rango de teoría científica que explicara sus observaciones en un marco racional y coherente. Durante las décadas siguientes, se descubrieron la mayoría de los diferentes tipos de átomos (elementos químicos), se estudiaron las leyes que rigen su combinación y se clasificaron sistemáticamente, en lo que hoy se conoce como tabla periódica de los elementos de Menedeleyev. El siguiente paso fué descubrir las propiedades y estructura del átomo como entidad individual, lo que dió lugar al nacimiento de la Física Atómica. Tales investigaciones condujeron, entre otros, al descubrimiento del electrón en 1897 por Joseph John Thomson, quién imaginó al átomo como una diminuta nube de electrones sobre una esfera de carga positiva. Un año después, el físico francés Henri Becquerel se encontró con un hecho sorprendente: algunos átomos parecían cambiar de una especie a otra, transmutarse espontáneamente. Esta observación fue interpretada acertadamente como que algunos átomos son inestables y supuso el descubrimiento de la radioactividad natural en 1898. Marie y Pierre Curie estudiaron el proceso durante los años siguientes e identificaron varios elementos radioactivos naturales: el Polonio (Po) y el Radio (Ra). El físico inglés Ernest Rutherford volvió a dar otro salto y se dedicó a investigar las propiedades y naturaleza de las radiaciones: las clasificó en alfa (átomos de helio ionizados), beta (electrones) y gamma (fotones). Tras llegar a una comprensión "satisfactoria" (no por ello totalmente cierta), utilizó las radiaciones naturales como sondas para investigar la estructura de la materia. Bombardeando láminas de oro extremadamente delgadas con partículas alfa descubrió que la mayor parte de ellas atravesaban las láminas sin deflectarse. Midió con acierto que la materia, y por tanto el átomo, está prácticamente "hueca". Sin embargo, un reducido número de partículas alfa encontraban en su trayectoria algo que las hacía dispersarse [1]. Contrariamente a la teoría atómica de Thomson, vigente en aquellos momentos, el resultado de sus medidas permitió concluir que la masa de la materia debía concentrarse en una región muy reducida en tamaño, a la que llamó núcleo; el átomo pasó pues a entenderse como un sistema solar en miniatura, con un núcleo de carga positiva en el centro haciendo las labores de sol y electrones orbitando a su alrededor como planetas ligados mediante la fuerza de atracción eléctrica. Las medidas de Rutherford desvelaron una terra incógnita para las mentes de la

época y dieron luz a la Física Nuclear, la rama de la física que se encarga de estudiar los núcleos atómicos. En pocos años, se sucedieron importantes descubrimientos y la concepción del mundo subatómico cambió profundamente. Filosóficamente, la Física Cuántica [2], impulsada por Max Planck, Albert Einstein, Niels Bohr y Erwin Schrodinger, entre otros, acabó con el determinismo mecanicista de finales del siglo XIX y proporcionó una visión probabilística del átomo en particular y del mundo microscópico en general. En el campo de la experimentación, el descubrimiento del neutrón (James Chadwick en 1932) tuvo un gran impacto y ayudó a Werner Heisenberg a explicar el núcleo atómico formado por neutrones (sin carga eléctrica) y protones (con carga eléctrica positiva). El descubrimiento del neutrón y la investigación de sus interacciones con la materia dieron paso al que probablemente sea el hallazgo de la física con mayor impacto social en el siglo XX. En 1938, Lise Meitner, Otto Hahn y Fritz Strassman observaron que los átomos de uranio (símbolo químico U) se separan -fisionan- en dos fragmentos de masas parecidas cuando se bombardean con neutrones. Posteriormente, comprobaron que el proceso de fisión viene acompañado de una emisión de neutrones (2.3 en media para el uranio) y que libera una enorme cantidad de energía. El físico húngaro-estadounidense Leo Szilard fue el primero en darse cuenta de las tremendas implicaciones del hallazgo, pero cuestionó su viabilidad. Enrico Fermi no tardó demasiado en plasmar la simple y brillante idea: aprovechar los neutrones emitidos en una fisión para mantener una reacción en cadena de fisiones y utilizar el proceso como fuente de energía. El concepto se vió materializado en Diciembre de 1942: PILE-1, el primer reactor nuclear del mundo construido por Fermi y colaboradores, entraba en operación en la universidad de Chicago. En paralelo al uso pacífico de la energía nuclear, algunas mentes fueron fraguando la idea de desarrollar un arma -bomba- que aprovechase tan ingentes cantidades de energía. Corrían tiempos de guerra por Europa, y el temor de muchos científicos refugiados en EEUU a que el régimen nazi desarrollara tal arma con anterioridad les animó a tomar la iniciativa. El horror ante los nazis estaba muy fresco en sus conciencias y consideraron una prioridad absoluta detener a Hitler, a cualquier precio. Albert Einstein, convencido por Leo Szilard y Eugene Wigner, utilizó su imágen pública e influencia y urgió al presidente Roosevelt a adelantarse a los alemanes en la carrera por la bomba. El resultado fue el proyecto Manhattan, que logró su objetivo y condujo a los bombardeos de Hiroshima ("little boy", bomba de uranio) y Nagasaki ("fat man", una bomba de plutonio). Einstein, que nunca pensó que las bombas serían utilizadas en la guerra, se vió muy afectado por la atrocidad aprobada por el presidente Truman (sucesor del fallecido Roosevelt). Cinco meses antes de su muerte, Einstein escribía la siguiente frase: "cometí un gran error en mi vida... cuando firmé la carta para el presidente Roosevelt recomendando el desarrollo de la bomba atómica, pero hubo una cierta justificación - el peligro de que los alemanes la hicieran antes."

La evolución posterior de la física nuclear ha venido marcada por estos hechos. No importan los tremendos logros conceptuales o lo beneficiosos que han sido los desarrollos civiles y pacíficos asociados a ella: la producción de energía, las terapias contra el cáncer, desarrollos tecnológicos como los primeros ordenadores, entre otros. La percepción que la opinión pública tiene de lo "nuclear" es irracionalmente negativa y hará falta tiempo y educación para que adquiera una cierta perspectiva. Es mi intención que la comprensión y exposición correcta de los hechos en esta bitácora nos lleve, sin embargo, a una conclusión bien distinta. Que vivimos en un mundo "nuclear", rodeado de la radiación natural que contribuyó a nuestro nacimiento como especie (a través de mutaciones); que lo nuclear ha supuesto y supone beneficios netamente positivos para el desarrollo de la humanidad y que seguirá teniendo un papel destacado a la hora de afrontar los serios retos que se le plantean a la humanidad.

FISICA NUCLEAR En 1931 el físico estadounidense Harold Clayton Urey descubrió el isótopo del hidrógeno denominado deuterio y lo empleó para obtener agua pesada. El núcleo de deuterio o deuterón (formado por un protón y un neutrón) constituye un excelente proyectil para inducir reacciones nucleares. Los físicos franceses Irène y Frédéric Joliot-Curie produjeron el primer núcleo radiactivo artificial en 1933-1934, con lo que comenzó la producción de radioisótopos para su empleo en arqueología, biología, medicina, química y otras ciencias. Fermi y numerosos colaboradores emprendieron una serie de experimentos para producir elementos más pesados que el uranio bombardeando éste con neutrones. Tuvieron éxito, y en la actualidad se han creado artificialmente al menos una docena de estos elementos transuránicos. A medida que continuaba su trabajo se produjo un descubrimiento aún más importante. Irène Joliot-Curie, los físicos alemanes Otto Hahn y Fritz Strassmann, la física austriaca Lise Meitner y el físico británico Otto Robert Frisch comprobaron que algunos núcleos de uranio se dividían en dos partes, fenómeno denominado fisión nuclear. La fisión liberaba una cantidad enorme de energía debida a la pérdida de masa, además de algunos neutrones. Estos resultados sugerían la posibilidad de una reacción en cadena automantenida, algo que lograron Fermi y su grupo en 1942, cuando hicieron funcionar el primer reactor nuclear. Los avances tecnológicos fueron rápidos; la primera bomba atómica se fabricó en 1945 como resultado de un ingente programa de investigación dirigido por el físico estadounidense J. Robert Oppenheimer, y el primer reactor nuclear destinado a la producción de electricidad entró en funcionamiento en Gran Bretaña en 1956, con una potencia de 78 megavatios. La investigación de la fuente de energía de las estrellas llevó a nuevos avances. El físico estadounidense de origen alemán Hans Bethe demostró que las estrellas obtienen su energía de una serie de reacciones nucleares que tienen lugar a temperaturas de millones de grados. En estas reacciones, cuatro núcleos de hidrógeno se convierten en un núcleo de helio, a la vez que liberan dos positrones y cantidades inmensas de energía. Este proceso de fusión nuclear se adoptó con algunas modificaciones -en gran medida a partir de ideas desarrolladas por el físico estadounidense de origen húngaro Edward Teller- como base de la bomba de fusión, o bomba de hidrógeno. Este arma, que se detonó por primera vez en 1952, era mucho más potente que la bomba de fisión o atómica. En la bomba de hidrógeno, una pequeña bomba de fisión aporta las altas temperaturas necesarias para desencadenar la fusión, también llamada reacción termonuclear. Gran parte de las investigaciones actuales se dedican a la producción de un dispositivo de fusión controlada, no explosiva, que sería menos radiactivo que un reactor de fisión y proporcionaría una fuente casi ilimitada de energía. En diciembre de 1993 se logró un avance significativo en esa dirección cuando los investigadores de la Universidad de Princeton, en Estados Unidos, usaron el Reactor Experimental de Fusión Tokamak para producir una reacción de fusión

controlada que proporcionó durante un breve tiempo una potencia de 5,6 megavatios. Sin embargo el reactor consumió más energía de la que produjo.

Los comienzos Desde que Hitler subió al poder, la tensión en Europa no paraba de crecer. Sus ideas expansionistas y su carácter agresivo fomentaron esta tensión. Pese a las imposiciones del Tratado de Versalles, la Alemania nazi comenzó a rearmarse. Al principio de forma discreta, y más adelante, ante la pasividad de Reino Unido, Francia y Estados Unidos, de forma descarada fabricando aviones de combate, carros blindados, etc… En aquella época se sucedían los descubrimientos en el campo de la física nuclear. Ya en 1939, era seguro que aplicando las técnicas necesarias podría lograrse una fisión nuclear que desencadenase una devastadora explosión, pero aun no se había llegado siquiera a una fisión controlada y autosuficiente. No obstante, el miedo generalizado a que Alemania se adelantase al resto de países en sus investigaciones y lograse la fabricación de un arma nuclear fue creciendo, sobre todo tras publicar los últimos avances logrados en este campo en la revista Naturwissenshaften. En un artículo publicado el 6 de enero de 1939, los científicos Otto Hahn y Lise Meitner comentaban como habían logrado transmutar Uranio 92 en 2 nuevos elementos. Acababan de descubrir la fisión nuclear. A causa del creciente antisemitismo que reinaba en el Tercer Reich, Lise Meitner se vio obligada a exiliarse a Suecia dada su condición de judía. Una vez allí, junto con su sobrino y con Niels Bohr prosiguió sus investigaciones. Finalmente, confirmaron la existencia de un proceso de fisión nuclear en esas transmutaciones, tras lo cual Bohr partió hacia Washington para comunicar sus descubrimientos a los estadounidenses. Desde luego los alemanes andaban bien encaminados hacia la fisión nuclear, lo que motivó a Alber Einstein a escribir una carta al presidente Franklin D. Roosevel instándole a incentivar las investigaciones respecto a la fisión nuclear para lograr antes que Alemania la bomba nuclear y evitar una catástrofe. Por su parte, Alemania puso al frente de sus investigaciones nucleares a diversos científicos, pero el que realmente llevaba la batuta era Werner Heisenberg, destacado físico de la época famoso por sus investigaciones en ese campo y por su “Principio de incertidumbre”. Asistente de Max Born y alumno de Niels Bohr, Heisenberg fue atacado por la prensa nazi bajo la acusación de que su forma de estudiar física era “judía”. La ignorancia y odio nazis habían llegado hasta tal punto de distinguir entre ciencia aria y ciencia judía. Lo más curioso es que este no era judío. A raíz de esto su familia medió con Himmler logrando que se retirasen todas las acusaciones.

La fluorescencia es una propiedad que tienen algunas substancias que consiste en emitir una luz de color o frecuencia diferente a la que reciben. Un ejemplo de este material es el que forma la capa blanca de los tubos fluorescentes. En el interior de estos tubos hay un gas (vapor de mercurio de baja presión). Los átomos de mercurio, excitados, producen luz ultravioleta, no visible. Pero al chocar los fotones ultravioletas con el material fluorescente son absorbidos, excitando los átomos del material. Al desexcitarse emite fotones de colores visibles. En uno de sus experimentos Röntgen observó que cuando aplicaba tensión al tubo de rayos catódicos no solo se iluminaba el trocito de papel que estaba enfrente de la ventana hecha en el cartón, sino también los que estaban por los alrededores, incluso debajo de la mesa. Como los rayos catódicos no se propagaban por el aire a presión atmosférica, Röntgen sacó la conclusión de que se estaban produciendo otros rayos que atravesaban no solo el cartón sino incluso la madera de la mesa. Como desconocía su naturaleza los llamó rayos X y se dedicó a estudiarlos en profundidad. En Diciembre de 1885 publicó un trabajo titulado "Sobre una nueva clase de rayos" Röntgen descubrió que los rayos X se propagan en línea recta, que impresionan los negativos fotográficos, que no son sensibles al campo magnético y, sobre todo, que son extremadamente penetrantes, para que fueran parcialmente absorbidos por los materiales. Los huesos absorben más radiación que los tejidos blandos y eso le permitió obtener la primera radiografía de la historia, el 22 de Diciembre de 1895: era la radiografía de una mano de su esposa. A Röntgen le concedieron el primer premio Nóbel de la historia, en 1901; cedió el dinero asociado al premio a la Universidad de Würzburg. Hasta 1912 no se descubrió la verdadera naturaleza de los misteriosos rayos X; son radiaciones como las de la luz, pero de longitud de onda más corta pero esto es adelantar acontecimientos.

Historia de la Radioactividad

La radiactividad, que está presente de forma natural en todos los lugares de nuestro planeta y del universo, y forma parte esencial de nuestro entorno, fue descubierta a finales del siglo XIX por Henri Becquerel quien descubrió, en marzo de 1896, una radiaciones invisible, penetrante, espontáneamente emitida por el uranio. Demostró que esos "rayos uránicos" impresionaban las placas fotográficas y hacian que el aire condujera la electricidad. A partir de ese momento, los médicos pretenden su utilización para desarrollar sus técnicas diagnósticas (gracias a que los Rayos X permiten ver el interior del cuerpo humano) y terapéuticas, desconociendo sus efectos biológicos, por lo que muchos de ellos sufren efectos perjudiciales a causa de las dosis recibidas. Pierre y Marie Curie descubrieron otros dos elementos que emitían radiaciones parecidas. Al primero le dieron el nombre de polonio en Julio de 1898 y al segundo lo llamaron radio en Diciembre del mismo año. Pierre y Marie Curie caracterizaron el fenómeno que originaba dichas radiaciones y le dieron el nombre de "radioactividad". A masas idénticas, el radio, el más activo de los "radioelementos" emitía 1,4 millones de veces más radiaciones que el uranio.

Descubrimiento de la Radiactividad Poco después de que se descubriera los rayos X, en 1895; Antoine Henri Becquerel (1852-1908) trató de demostrar la relación entre los rayos X y la fosforescencia de las sales de uranio. En uno de sus experimentos envolvió una placa fotográfica en papel negro, colocó una muestra de sal de uranio sobre ella y la expuso a la luz solar. Al revelar la placa apareció que los rayos emitidos por la sal habían penetrado a través del papel. Tiempo después, Becquerel se preparaba para repetir el experimento pero, como la luz solar era intermitente, colocó el conjunto en un cajón. Días después reveló la placa, esperando encontrarla sólo débilmente afectada. Se asombró al observar una imagen intensa en la placa. Repitió el experimento en la oscuridad total y obtuvo los mismos resultados, probando que la sal de uranio emitía rayos que afectaban la emulsión fotográfica, sin necesidad de ser expuesta a la luz solar. De este modo fue que Becquerel descubrió la radiactividad. Marie Curie, dos años después en 1898 dio a este fenómeno el nombre de radiactividad. Radiactividad es la emisión espontánea de partículas o rayos por el núcleo de un átomo. A los elementos que tienen esta propiedad se les llama radiactivos. Posteriormente, Becquerel mostró que los rayos provenientes del uranio podían ionizar el aire y también eran capaces de penetrar a través de láminas metálicas delgadas. En 1898, Marie Sklodowska Curie (1867-1934), con su esposo Pierre Curie (18591906), dirigió sus investigaciones a la radiactividad. En corto tiempo los Curie descubrieron dos elementos nuevos, el polonio y el radio, ambos radiactivos. Para confirmar su trabajo sobre el radio, procesaron una tonelada de residuos de mineral llamado pecblenda, para obtener 0.1 g de cloruro de radio puro, que usaron para efectuar más estudios sobre las propiedades del radio y determinar su masa atómica. Ernest Rutherford, en 1899, comenzó a investigar la naturaleza de los rayos emitidos por el uranio. Encontró dos tipos de rayos, a los que llamó rayos alfa y beta. Pronto se dio cuenta que el uranio, al emitir estos rayos, se transformaba en otro elemento. A la altura de 1912 se conocían ya más de 30 isótopos radiactivos y hoy se conocen mucho más. Paul Villard descubrió en 1900, los rayos gamma, un tercer tipo de rayos que emiten los materiales radiactivos y que es semejante a los rayos X. De acuerdo con la descripción del átomo nuclear, Rutherford se atribuyó el fenómeno de la radiactividad a reacciones que se efectúan en los núcleos de los átomos.

La historiografía de la radiactividad ha experimentando una profunda transformación en las tres últimas décadas. La renovación ha afectado tanto a la forma de tratar las fuentes como a los temas abordados, y se caracteriza por una crítica de la teleología implícita en las historias tradicionales de la radiactividad, que se solía considerar como una “prehistoria” de la ciencia y tecnología nucleares. Ya sea desde el análisis de controversias, la reconstrucción de espacios de investigación, las relaciones de género o los vínculos investigación e industria, las nuevas narrativas configuran una visión más compleja de la historia de la radiactividad, que también aparece más integrada en su contexto económico, social y cultural. Aguas, semillas y radiaciones contribuye a esta renovación a partir de una reconstrucción detallada de la historia del Laboratorio de Radiactividad de la Universidad de Madrid, y por extensión de la difusión de la radiactividad en España. Creado en 1904 y elevado a la categoría de instituto en 1911, el Laboratorio de Radiactividad fue la primera y principal institución dedicada al estudio y promoción de la radiactividad en España. Fue fundado por José Muñoz del Castillo, catedrático de Mecánica Química en la Universidad Central de Madrid y miembro de la Academia de Ciencias. A pesar de que su oposición a la hipótesis de la desintegración radiactiva lo aisló de los principales grupos de investigación europeos, sus relaciones privilegiadas con los centros de poder científico y político español le permitieron adjudicarse el estatus de experto y movilizar importantes recursos humanos y materiales para sus investigaciones sobre las radiaciones en los seres vivos. En una primera etapa, el laboratorio se convirtió en un centro de recogida de datos sobre aguas minerales, que permitieron trazar el primer mapa de zonas radiactivas de la península ibérica y establecer vínculos sólidos con la comunidad de hidrólogos médicos, que en muchos casos usaron la actividad radiactiva de aguas minerales para publicitar determinados manantiales o balnearios. En 1911, con su transformación en instituto, el laboratorio dedicó la mayor parte de sus trabajos al estudio de los efectos de la radiactividad en el crecimiento de las plantas. Las investigaciones radio-agrícolas del instituto coincidieron con importantes esfuerzos de divulgación, que se concretaron en la edición de una revista y cursos para la promoción del uso de abonos radiactivos, y con intentos de establecer al laboratorio como institución metrológica del radio. Sin embargo, la jubilación de

Muñoz en 1920 provocó una pérdida de sintonía con el poder político, lo que provocó el declive del instituto tanto en términos financieros como en cuanto a personal. Más allá de una descripción de los acontecimientos, Aguas, semillas y radiaciones pretende esclarecer las causas que motivaron tanto la adopción de estas líneas de investigación como su desarrollo particular. Así, el papel central de las investigaciones sobre aguas minerales y la radio-agricultura se explica no tanto como un exotismo ibérico, sino por la aparición contemporánea de una industria de los abonos radiactivos en Francia y Portugal, las prioridades de la política científica española y el bagaje científico de Muñoz, que conocía de primera mano la importancia económica del análisis de las aguas y la química agrícola. Por otra parte, el aislamiento internacional y la decadencia del instituto en los años 20 no fueron sólo resultados de la idiosincrasia del director del laboratorio, sino que tienen su raíz en la características estructurales de la academia española (como sistemas de acceso a la investigación, de comunicación de resultados y de relación con el poder político) y en la inexistencia de una industria nacional de radioelementos en España. Estas conclusiones plantean, en suma, una interrogación sobre el estatus marginal o periférico de la ciencia producida en España. Lejos de asumir esta condición natural, el libro cuestiona sobre sus bases culturales, sociales y materiales. Al mismo tiempo, y dando otra vuelta de tuerca al argumento, la historia de la radiactividad en España puede iluminar el estudio de desarrollos en los países “centrales” planteando nuevas preguntas. Por ejemplo, ¿qué papel jugaron las investigaciones sobre aguas minerales en la emergencia de laboratorios de radiactividad en países como Inglaterra o el Imperio Austro-Húngaro? ¿Qué importancia y alcance tuvo la industria de los abonos radiactivos en Francia o Estados Unidos? Estos desarrollos, que han sido poco estudiados en la literatura internacional, podrían dar lugar a una interesante revisión historiográfica de las relaciones entre ciencia e industria de la radiactividad en los inicios de esta disciplina. Otro aspecto relevante del libro es el uso original de las fuentes para reconstruir la historia del laboratorio de radiactividad. Tanto el Laboratorio de Radiactividad como su fundador y director, el catedrático José Muñoz del Castillo, habían

recibido poca atención por parte de los historiadores de la ciencia españoles. El olvido es debido en parte al carácter marginal de la ciencia producida en su seno, pero también a la aparente escasez de fuentes: los archivos personales e institucionales del instituto se hallan desaparecidos desde la demolición del edificio que los albergaba a principios de la década de 1980. Para reconstruir su historia, se tuvo por tanto que recurrir a la información encapsulada en las publicaciones del Laboratorio y contrastarla con artículos de prensa contemporáneos, archivos de la administración del estado y la literatura sobre radiactividad publicada en España en el primer tercio del siglo XX. Estas fuentes, además de proporcionar información sobre el laboratorio o Muñoz del Castillo, abren también nuevas perspectivas sobre la imagen pública de la radiactividad y, en particular, sobre la apropiación de la innovación científica por parte de la medicina en la España de principios de siglo XX.

LOS DESCUBRIDORES Iniciemos nuestra historia con dos personajes que serán el origen de nuestro relato sobre la radiactividad; éstos son Martin Heinrich Klaproth, científico alemán, y Joens Jakob Berzelius, químico sueco. El primero descubrió a fines del siglo XVIII el elemento uranio, y el segundo fue el descubridor del elemento tono, a principios del siglo XIX. Klaproth separó en 1789 del mineral pechblenda el uranio, que es un polvo negro. A pesar de que desde entonces se encontró que sus propiedades químicas eran muy diferentes a las de los elementos conocidos, durante mucho tiempo se le consideró, sin embargo, como un elemento de poca importancia y se utilizaba en raras ocasiones. En esa época Klaproth se impresionó profundamente con el descubrimiento del planeta Urano, por lo que bautizó el elemento recién descubierto por él con el nombre de uranio. Mucho tiempo después, en 1818, Joens Jakob Berzelius descubrió el torio al separarlo de un mineral conocido actualmente como torita. Ni Klaproth ni Berzelius sospecharon que los elementos descubiertos por ellos llegarían a ser tan importantes en el desarrollo del conocimiento de la ciencia y mucho menos que emanaran radiaciones de ellos. Este descubrimiento fue realizado en el uranio por Antoine Henri Becquerel en 1896.

Los filósofos griegos no comprobaban experimentalmente sus teorías, sino que llegaban a sus conclusiones por razonamientos sistemáticos; y en parte fue debido a esto que los escritos de Demócrito desaparecieron y sólo quedaron fragmentos de ellos. Pero hubo otra razón por la que fue olvidado, y esa razón fue la teoría de Aristóteles sobre la materia. Aristóteles creía que la materia estaba formada por sustancias básicas llamadas "elementos": fuego, aire, tierra y agua, que, a diferencia de los átomos, sí se podían ver y se podían sentir por el tacto. Las ideas de Aristóteles tuvieron más peso que las de Demócrito y gobernaron el conocimiento sobre la materia por casi 2 000 años. A mediados del siglo XVII un francés, Pierre Gassendi, pensó nuevamente en los átomos. Las ideas de Aristóteles estaban tan afianzadas en la mente de los escolásticos de esa época, que las obras de Gassendi no fueron publicadas hasta después de su muerte, cuando ya no podían causarle daño. Posteriormente, los grandes científicos europeos empezaron a creer cada vez más que toda la materia estaba formada por átomos tan pequeños que resultaban invisibles. Ya en la última década del siglo pasado se conocía el electrón, y el alemán Roentgen hacía experimentos con la luz fluorescente producida por los electrones. Construyó la pantalla fluorescente, una pieza de cartón pintada con cierto compuesto químico de bario, de alta fluorescencia. Un día Roentgen descubrió que la pantalla brillaba aun cuando los electrones en ese momento no podían llegar hasta ella. Se dio cuenta de que la fuente que tenía era el origen de otra nueva clase de rayos que penetraban el cartón; luego colgó una hoja de metal entre el tubo y la pantalla de metal y siguió observando fluorescencia, aunque menos intensa. Después metió su mano entre el tubo y la pantalla. Lo que vio debió de asustarlo sobremanera: en la pantalla se veía el esqueleto de una mano. Al mover su mano el esqueleto se movía. Roentgen estaba viendo el esqueleto de su mano en vida. Fue enorme el impacto que causó el descubrimiento de estos rayos, que él llamó X por desconocer de qué se trataban. No debe, pues, sorprendernos que en esa época mucha gente se dedicara a estudiarlos.

Previamente a la propuesta de Rutherford, los físicos aceptaban que las cargas eléctricas en un átomo tenían una distribución más o menos uniforme. Rutherford trató de ver como era la dispersión de partículas alfa por parte de los átomos de una lámina de oro muy delgada. Los ángulos deflactados por las partículas supuestamente aportarían información sobre como era la distrubución de carga en los átomos. En concreto, era de esperar que si las cargas estaban distribuidas acordemente al modelo de Thomson la mayoría de las partículas atravesarían la delgada lámina sufriendo sólo ligerísimas deflacciones en su trayectoria aproximadamente recta. Aunque esto era cierto para la mayoría de partículas alfa, un número importante de estas sufrían deflexiones de cerca de 180º, es decir, prácticamente salían rebotadas en dirección opuesta a la incidente. Rutherford apreció que esta fracción de partículas rebotadas en dirección opuesta podía ser explicada si se asumía que existían fuertes concentraciónes de cargas positivas en el átomo. La mecánica newtoniana en conjunción con la ley de Coulomb predice que el ángulo de deflexión de una partícula alfa relativamente ligera, por parte de un átomo de oro más pesado depende del parámetro de impacto o distancia a la que la partícula alfa pasaba del núcleo: La importancia del modelo de Rutherford residió en proponer la existencia de un núcleo en el átomo. Término que, paradójicamente, no aparece en sus escritos. Lo que Rutherford consideró esencial para explicar los resultados experimentales, fue "una concentración de carga" en el centro del átomo, ya que si no, no podía explicarse que algunas partículas fueran rebotadas en dirección casi opuesta a la incidente. Este fue un paso crucial en la comprensión de la materia, ya implicaba la existencia de un núcleo atómico donde se concentraba toda la carga positiva y más del 99,9% de la masa. Las estimaciones del núcleo revelaban que el átomo en su mayor parte estaba vacío. Rutherford propuso que los electrones orbitarían en ese espacio vacío alrededor de un minúsculo núcleo atómico, situado en el centro del átomo. Además se abría varios problemas nuevos que llevarían al descubrimiento de nuevos hechos y teorías al tratar de explicarlo

RUTHERFORD, sucesor de la cátedra de Thomson, Hans Geiger y Gregor Marsden, discípulos de Thomson continuan con los trabajos de Tompson pero enfocados a identificar la radiación de la urania a las que Rutherford, en 1898, llamó alfa ( ) y beta ( ). Posteriormente se identificó otro tipo de radiación a la que llamarían radiación gamma ( ), esta última identificada por Paul Villard. Los trabajos de los tres discípulos de Thomson, antes mencionados, construyeron un experimento en el que la experiencia consistía en bombardear láminas delgadas de distintas sustancias, donde los proyectiles consistían de partículas alfa ( ). Este trabajo rindió frutos, ya que en 1919 le otorgaron precisamente el premio Novel de Química. Para 1911 Ernest Rutherford realizo un experimento el cual consistía en bombardear con partículas alfa una finísima lámina de oro, las cuales eran recogidas en un pantalla de sulfuro de cinc. Un suceso importante que llamó la atención de Rutherford fue el hecho de que la mayoría de partículas atravesaban la lámina sin desviarse o desviadas en ángulos pequeños, mientras que unas cuantas partículas eran dispersadas a ángulos grandes hasta 180º. Esto llevo a Rutherfor a supones que las cargas positivas que las desviaban estaban concentradas dentro de los átomos ocupando un espacio muy pequeño, es comparación con el resto del átomo. A esta parte Rutherford le llamó núcleo.

Cada sustancia del universo está formada por pequeñas partículas llamadas átomos; son estudiados por la química, que surgió en la edad media y que estudia la materia. Para comprender los átomos, cientos de científicos han anunciado una serie de teorías que nos ayudan a comprender su complejidad. Durante el renacimiento, la química fue evolucionando; a finales del siglo XVIII se descubren los elementos y en el siglo XIX se establecen leyes de la combinación y la clasificación periódica de los elementos y se potencia el estudio de la constitución de los átomos. EL MODEL ATOMICO DE THOMSON

Joseph John Thomson (1856-1940) fue un físico británico; nació cerca de Manchester, estudio en Owens College y en el Trinity College de la universidad de Cambridge, aquí enseño matemáticas y física, fue profesor de física experimental en el laboratorio de Cavendish y rector de Trinity College. También fue presidente de la sociedad Real y profesor de filosofía natural de la institución regia de Gran Bretaña. Según su modelo el átomo consistía en una esfera uniforme de materia cargada positivamente en la que se hallaban incrustados los electrones. Esto explicaba que la materia fuese eléctricamente neutra pues en los átomos de Thomson la carga positiva era neutralizada por la negativa. Calculo la relación entre la carga y la masa de los átomos realizando un experimento: hizo pasar un haz de rayos catódicos por un campo eléctrico y por uno magnético; esto llevo a Thomson a suponer que las partículas que formaban los rayos catódicos no eran átomos cargados, sino fragmentos de átomos, es decir, partículas subatomicas a las que llamo electrones.

EL MODELO ATOMICO DE RUTHERFORD Ernest Rutherford (1871-1937) nació el 30 de agosto en Nelson, Nueva Zelanda y estudio en la universidad de Nueva Zelanda y en la de Cambridge. Fue profesor de física en la universidad de McGill de Montreal, Canadá, y en la de Manchester en Inglaterra. Se convirtió en director del laboratorio Cavendish en la universidad de Cambridge y mantuvo una cátedra en la institución real de Gran Bretaña en Londres. En 1919 obtuvo el premio novel de química. Su experiencia consistió en bombardear con partículas alfa una fina lamina de oro, la partícula alfa atravesaban la lamina y eran recogidas sobre una pantalla de sulfuro de cinc; resulto que mientras que la mayoría de las partículas la atravesaban sin desviarse o solo desviándose en poco ángulos, este hecho hizo suponer que las cargas positivas que las desviaban estaban dentro de los átomos ocupando un espacio muy pequeño, esta parte positiva fue llamada núcleo. Rutherford poseía información sobre la masa, el tamaño y la carga del núcleo , pero no tenia información acerca de la distribución o posición de los electrones. En su modelo, los electrones se movían alrededor del núcleo; pero observo una contradiccion: el electrón del átomo de Rutherford modificaba su dirección lineal continuamente, ya que seguía una trayectoria circular, por tanto debería emitir radiación electromagnética y esta causaría la disminución de la energía, así que debería describir una trayectoria en espiral hasta caer en el núcleo.

En 1910 Rutherford y sus estudiantes realizaron un experimento que consistía en bombardear una fina lámina de oro con partículas alfa que son átomos de He a los que se le ha arrancado 1e-. Recogieron el resultado de este bombardeo en una placa fotográfica y lo que observaron fue que la mayoría de las partículas alfa atravesaron la lámina de oro sin desviarse y que un pequeño número rebotaba en ángulos agudos. Rutherford propuso un modelo atómico en el que la masa y la carga + se encuentran en el núcleo pequeño a comparación con el tamaño del átomo y con los e- girando en órbitas circulares como si fuese un sistema planetario. Esto permite explicar los resultados experimentales. Al ser pequeña la probabilidad de encontrar un núcleo pocas son las partículas alfa que rebotan las que no se desvían es porque pasan lejos del núcleo y aquellas que sufren una pequeña desviación es porque pasan próximas al núcleo que tiene carga +. Al estar las 2 cargadas positivamente se repelen. En este modelo atómico la fuerza de atracción entre cargas viene expresado por la ley de Coulomb. F= K (q1-q2)/d(cuadrado) Los e- están girando en órbitas concéntricas en torno al núcleo y no se caen sobre el núcleo a pesar de la atracción entre cargas distintas. La explicación de Rutherford es que los e- giran a gran velocidad lo que impide que con la atracción caigan sobre el núcleo. Otra aportación fue el cálculo del tamaño del átomo y núcleo el cual sería 10000veces más pequeño que el átomo. Diámetro núcleo ~ 10 a la menos 12 cm. Diámetro atómico ~ 10 a la menos ocho cm. Nuevas experiencias demostraron que el modelo propuesto por Rutherford era incompleto. La velocidad de la luz en el vació es distinta a la velocidad de la luz en otro medio como puede se el vidrio. Cuando la luz pasa de un medio a otro se desvía. Este hecho es ya conocido desde la época de Isaac Newton (1642-1727) quien demostró que la luz blanca estaba constituida de varios colores que van desde el rojo hasta el ultravioleta. Lo demostró haciendo incidir un haz de luz blanca sobre un prisma. Cuando los distintos componentes de la luz se recogen en una placa fotográfica se obtiene lo que se denomina espectro que está formando por una serie de líneas espectrales características de la luz que está siendo analizada. Gran parte del conocimiento de la estructura atómica llegó con la espectroscopia que es el análisis de la luz y otras radiaciones absorbidas o emitidas por diferentes sustancias. Algunos elementos cuando se calientan o cuando sus vapores son expuestos a una descarga eléctrica emiten luz de un color característico.

El átomo de Bohr Para explicar la estructura del átomo, el físico danés Niels Bohr desarrolló en 1913 una hipótesis conocida como teoría atómica de Bohr (o teoría cuántica). Bohr supuso que los electrones están dispuestos en capas definidas, o niveles cuánticos, a una distancia considerable del núcleo. La disposición de los electrones se denomina configuración electrónica. El número de electrones es igual al número atómico del átomo. Así, el hidrógeno tiene un único electrón orbital, el helio dos y el uranio 92. Las capas electrónicas se superponen de forma regular hasta un máximo de siete, y cada una de ellas puede albergar un determinado número de electrones. La primera capa está completa cuando contiene dos electrones, en la segunda cabe un máximo de ocho, y las capas sucesivas pueden contener cantidades cada vez mayores. Ningún átomo existente en la naturaleza tiene la séptima capa llena. Los electrones más externos o los últimos en añadirse a la estructura del átomo determinan el comportamiento químico del átomo. Si recordamos el ejercicio mental que hicimos antes, sobre visualizar los electrones que se desplazan alrededor del núcleo como si fueran planetas que giran en torno al Sol, y lo comparamos con la visión actual sobre el átomo, la primera resulta demasiado simple. Ahora se sabe que es imposible determinar con exactitud la posición de un electrón en el átomo sin perturbar su posición. Esta incertidumbre se expresa atribuyendo al átomo una forma de nube, en la que la posición de un electrón se define según la probabilidad de encontrarlo a una distancia determinada del núcleo. Esta visión del átomo como nube de probabilidad ha sustituido al modelo de sistema solar.

Hasta los últimos años del siglo XIX, el modelo aceptado del átomo se parecía a una bola de billar - una pequeña esfera sólida. En 1897, J.J. Thomson cambió dramáticamente la visión moderna del átomo con su descubrimiento del electrón. El trabajo de Thomson sugiere que el átomo no es una partícula 'indivisible' como John Dalton había sugerido, sino más bien un rompecabezas compuesto de piezas todavía más pequeñas. La noción de Thomson sobre el electrón se origina en su investigación sobre una curiosidad científica del siglo XIX: el tubo de rayo catódico. Durante años, algunos cientifícos habían tenido conocimiento del hecho que si una corriente eléctrica pasaba a través de un tubo, se podía ver un rayo de material resplandeciente. Sin embargo, nadie podía explicar el por qué. Thomson descubrió que el misterioso rayo resplandeciente se torcía hacia una placa eléctrica cargada positivamente. Thomson teorizó, y posteriormente se probó que estaba en lo cierto, que, en realidad, el rayo estaba compuesto de pequeñas partículas o pedazos de átomos que llevaban una carga negativa. Más tarde, a estas partículas se las llamó electrones. Thomson imaginó que los átomos parecían pedazos de pan con uvas pasas o una estrucura en la cual grupos de pequeños electrones cargados negativamente (las 'uvas pasas') estaban dispersas dentro de una mancha de cargas positivas (el 'pan', ya que Eugen Golstein había descubierto en 1886 que los átomos tenían cargas positivas). En 1908, Ernest Rutherord, un antiguo estudiante de Thomson, probó que la teoría del pan con uvas pasas de Thomson era incorrecta. Rutherford ejecutó una serie de experimentos con partículas alpha radioactivas. A pesar de que en ese momento no se sabía que era una partícula alpha, se sabía que era muy pequeña. Rutherford lanzó pequeñas partículas alpha hacia objetos sólidos como láminas doradas. Descubrió que la mayoría de las partículas alpha atravesaban la lámina dorada, que un reducido número de las partículas alpha atravesaban en un ángulo (como si se hubiesen chocado contra algo), y que algunas rebotaban como una pelota de tenis que golpea una pared. ¡Los experimentos de Rutherford sugirieron que las láminas doradas, y la materia en general, tenía huecos! Estos huecos permitían a la mayoría de la partículas alpha atravesar directamente, mientras que un reducido número rebotaba de vuelta porque golpeaba un objeto sólido. En 1911, Rutherford propuso una visión revolucionaria del átomo. Sugirió que el átomo consistía de un pequeño y denso núcleo de partículas cargadas positivamente en el centro (o núcleo) del átomo, rodeado de un remolino de electrones. El núcleo era tan denso que las partículas alpha rebotaban en el,

pero el electrón era tan pequeño, y se extendía a tan grande distancia que las partículas alpha atravesaban directamente esta área del átomo. El átomo de Rutherford se parecía a un pequeño sistema solar con el núcleo cargado positivamente siempre en el centro y con los electrones girando alrededor del núcleo. Las partículas cargadas positivamente en el núcleo del átomo fueron denominadas protones. Los protones contienen un número igual de cargas, pero opuesto, a los electrones. Sin embargo los protones son mucho más grandes y pesados que los electrones. En 1932, James Chadwick descubrió un tercer tipo de partícula sub-átomica a la que llamó el neutrón. Los neutrones ayudan a estabilizar los protones en el núcleo del átomo. Ya que el núcleo es una masa tan compacta, los protones cargados positivamente tienden a recharzase entre ellos. Los neutrones ayudan a reducir la repulsión entre los protones y estabilizan el núcleo átomico. Los neutrones siempre residen en el núcleo de los átomos y son aproximadamente del mismo tamaño que los protones. Sin embargo, los neutrones no tienen una carga eléctrica, más bien son eléctricamente neutrales. Los átomos son eléctricamente neutrales porque el número de protones (cargas +) es igual al número de electrones (cargas -). De esta manera se neutralizan. Si se consideran átomos más grandes, el número de protones aumenta, y también aumenta el número de electrones en el estado neutral del átomo. El enlace a la siguiente ilustración, compara los dos átomos más simples, el hidrógeno y el helio. Los átomos son extramademente pequeños. Un átomo de hidrógeno (el átomo más pequeño que se conoce) tiene aproximademente 5 x 10-8 mm de diámetro. Para poner esto en perspectiva, habría que tomar casi 20 millones de átomos de hidrógeno para hace una línea tan larga como este guión - . La mayoría del espacio ocupado por un átomo está en realidad vacío porque el electron gira a una distancia muy alejada del núcleo. Por ejemplo, si fuésemos a dibujar un átomo de hidrógeno a escala y usásemos un protón de un centímetro (más o menos del tamaño de este dibujo ), el átomo del electrón giraría a una distancia de ~0.5 km del núcleo. ¡En otras palabras, el átomo sería más grande que una cancha de football! Los átomos de diferentes elementos se distinguen entre si por el número de protones (el número de protones es constante para todos los átomos de un elemento, el número de neutrones y de electrones puede variar bajo cierta circunstancias). Para identificar esta importante característica del átomo, se usa

el término número atómico (z) para describir el número de protones en un átomo. Por ejemplo, z = 1 para el hidrógeno y z = 2 para el helio. Otra importante caractéristica del átomo es su peso o su masa atómica. El peso de un átomo está aproximadamente determinado por el número total de protones y de neutrones en el átomo. Mientras que los protones y los neutrones son más o menos del mismo tamaño, el electrón es más de 1,800 veces más pequeño que estos dos. Es así que el peso del electrón es irrelevante al determinar el peso del átomo. Es como comparar el peso de una mosca al peso de un elefante.

Evolución e historia del modelo atómico La estructura de la materia ha sido objeto de análisis y reflexión desde los albores de la civilización moderna, la palabra átomo viene de la palabra griega de igual sonido y que significaba indivisible. Es decir, la unidad mínima de la materia, masa o como lo dijeran los griegos. El significado actual de átomo proviene de su evolución del siglo XIX, y en el siglo pasado se descubrió que había partículas subatómicas y se comenzó a elaborar la estructura del átomo actual o interrelación de los tipos de partículas elementales más pequeñas que lo componen. Antes de exponer el modelo de átomo actual propuesto por la Mecánica Global, dada la importancia que tiene la evolución de los diferentes modelos atómicos desarrollados, vamos a comentar muy brevemente la historia del átomo en orden cronológico: •

450 a.c. - Modelo atómico de Demócrito. El desarrollo filosófico de Demócrito postulaba la imposibilidad de la división infinita de la materia y la consecuente necesidad de la existencia de una unidad mínima de la cual estarían compuestas todas las sustancias. Interesante el que se haya pensado durante 2500 años que Demócrito pudiera haber acertado plenamente; la verdad es que lo parecía, pero ahora uno de los postulados o principios más importantes de la Mecánica Global es precisamente lo contrario. En el modelo actual de la Teoría de la Equivalencia Global todas las sustancias forman parte de una única partícula llamada Globus, constituida por una red tridimensional reticular irrompible que se extiende por todo el universo.



1808 - Modelo atómico de Dalton. La evolución del modelo de Dalton apuntaba ya al átomo moderno pero como una sola partícula; si bien al principio no estaba muy claro si el modelo atómico de Dalton sería un átomo o una molécula.



1897 - Modelo atómico de Thomson. El siguiente paso importante en la historia del átomo actual lo añade la teoría atómica de Thomson con la división del átomo entre cargas positivas y negativas, tipo pastel de frutas o sopa de ajo, con fuerzas de atracción eléctricas.



1911 - Modelo atómico de Rutherford. El modelo de Rutherford separa el núcleo con carga positiva de los electrones con carga negativa. Los electrones estarían en órbitas circulares o elípticas alrededor del núcleo. El neutrón se añadió al modelo de Rutherford en 1920 de forma teórica y fue descubierto experimentalmente en 1932. El modelo de Rutherford es la imagen visual que todos tenemos del átomo moderno, pero tenía dos problemas: o

o



Contradecía las leyes de Maxwell del electromagnetismo por las que las partículas cargadas en movimiento deberían emitir fotones continuamente. Por ello los electrones deberían perder energía y caer al núcleo del átomo. La teoría atómica de Rutherford no explicaba los espectros atómicos.

1913 - Modelo atómico de Bohr. La teoría atómica de Bohr introduce mejoras sustanciales al modelo de Rutherford al incorporar aspectos energéticos derivados de la energía de Planck y del efecto fotoeléctrico de Einstein. Aunque una descripción detallada del modelo de Bohr es compleja, las siguientes características son relevantes en relación al modelo que va a introducir la Mecánica Global: o o

o

o

Los electrones se sitúan en órbitas circulares estables; es decir, donde no emiten energía y no todas están permitidas. Las órbitas permitidas de los electrones del modelo atómico de Bohr tienen un momento angular que es un múltiplo exacto de hbar (constante de Planck dividido por 2π) Los electrones emiten o absorben un fotón al cambiar de órbitas atómicas, cuya energía coincide con la diferencia de energía de las órbitas y no necesitan pasar por estados intermedios. En el átomo de Bohr, las órbitas de los electrones siguen las reglas de la Mecánica Clásica pero no así los cambios de órbita.

Al margen del gran acierto de este modelo en muchos aspectos, el problema del modelo de Bohr y de toda la Mecánica Cuántica es que se van añadiendo supuestos a lo largo de la historia, pero sin explicar las razones que los justifican, únicamente que funcionan y explican mejor la realidad; lo cual, no estando nada mal, no ayuda mucho a la comprensión de la realidad si se apoyan en principios físicos despistantes.

Para variar, podrían haber intentado una explicación plausible. •

1916 - Modelo atómico de Sommerfeld. Con la evolución, en el modelo de Sommerfeld se incluyen subniveles dentro de la estructura del átomo de Bohr, se descartan las órbitas circulares y se incorpora en cierta medida la Teoría de la Relatividad de Einstein. El modelo de Sommerfeld también configura los electrones como corriente eléctrica y no explica por qué las órbitas han de ser elípticas, yo creo que son elipsoides y que Sommerfeld lleva razón en que el electrón es un tipo especial de onda electromagnética, al que la Mecánica Global denomina ondón.



1926 - Modelo de Schrödinger o modelo actual según Wikipedia. El modelo de Schrödinger cambia la filosofía de las órbitas, seguramente por las nuevas aportaciones a la teoría atómica de De Broglie sobre la naturaleza ondulatoria de la masa en 1924, y describe a los electrones con funciones de onda. Dicha configuración permite obtener la probabilidad de que el electrón se encuentre en un determinado punto del espacio. De esta forma, se obtienen orbitales de densidad espacial de probabilidad de encontrar un electrón. Este modelo de átomo de Schrödinger se ajusta mucho mejor a las observaciones; pero, al abandonar la visión anterior sobre la forma de las órbitas se aleja de una explicación intuitiva de las causas de esas órbitas tan caprichosas. Al mismo tiempo, Schrödinger se adentra en el mundo de las probabilidades y de la abstracción matemática que, en grandes dosis, podría llegar a ser muy perjudicial o negativa.

Introducción histórica. El primer indicio que llevaría al establecimiento de la existencia del núcleo atómico fue el descubrimiento de la radiactividad por Antoine Henri Becquerel en 1896. Éste observó que las sales de Uranio emitían unas radiaciones que eran capaces de velar placas fotográficas en la oscuridad e incluso atravesar placas de Aluminio y Cobre. Los esposos Curie descubren otros elementos que también son emisores radiactivos, aún más activos que el Uranio, como son el Polonio y el Radio. Más tarde, en 1900, Ernest Rutherford y Paul U. Villard identifican en las radiaciones emitidas tres componentes distintos: unas partículas positivas a, unas negativas b o electrones, ya descubiertos anteriormente por J. J. Thomson y una radiación electromagnética sin carga eléctrica, con una corta longitud de onda. Todos estos hechos llevan a Marie Curie a escribir en 1903: " El átomo, indivisible desde el punto de vista químico, es divisible en este caso (refiriéndose a los procesos radiactivos), y los subátomos se encuentran en movimiento. La materia radiactiva experimenta, pues, una transformación química que es fuente de la energía radiada; pero no es una transformación química ordinaria, porque las transformaciones químicas dejan al átomo invariable ". Empieza por lo tanto a tomar cuerpo la idea de un átomo divisible, y por lo tanto compuesto de distintos " subátomos ", distintas partes dentro del átomo. Rutherford, que con la ayuda de Frederick Soddy esboza las familias radiactivas, y tras recibir el premio Nobel de Química en 1908, es quien establece la existencia del núcleo del átomo. Sus dos colaboradores, Hans Geiger y Ernst Marsden, bombardean en 1911 una fina lámina de oro con partículas a, observando que algunas partículas sufrían grandes desviaciones angulares, mientras que la mayoría de ellas atravesaban la lámina sin desviarse. Estas desviaciones se atribuyen a campos repulsivos muy intensos existentes en el átomo. La existencia de estos campos tan intensos desacredita el modelo de átomo propuesto por el descubridor del electrón, J. J. Thomson, que proponía un átomo donde la carga positiva estuviera expandida por todo el átomo y sobre ella estaría situada la carga negativa, en forma de electrones. Una carga extendida por todo el átomo en una nube difusa produciría un campo repulsivo más débil, no capaz de dar los resultados experimentales ya citados. Veamos en una animación un ejemplo de este experimento. Comprobad como la mayoría de las partículas alfa no se desvían. Ernest Rutherford propone un átomo que tenga un núcleo, donde esté concentrada la mayor parte de la masa del átomo y se encuentre la carga positiva, rodeado de electrones. El tamaño de este núcleo sería el de una diezmilésima parte del tamaño del átomo. Henry Moseley, ayudante de Rutherford, demostró experimentalmente en 1913 que el número de electrones atómicos y el número de cargas positivas que existen en el núcleo son iguales al número atómico ( Z ) del elemento en la tabla periódica.

Niels Bohr en ese mismo año ya sitúa la radiactividad en el núcleo del átomo mientras que responsabiliza a los electrones de las reacciones químicas. Fue de nuevo Rutherford quien, en 1919, propuso que en los núcleos había protones (o lo que él llamaba partículas primeras) identificándolos con núcleos de Hidrógeno. Llegó a esta conclusión tras bombardear con partículas alfa átomos ligeros, de número atómico bajo, como el Boro, Flúor, Sodio, Aluminio, Fósforo y nitrógeno, y comprobar que en todos los procesos era capaz de arrancar núcleos de Hidrógeno, que por lo tanto eran constituyentes comunes de esos núcleos. De esta forma fue como Rutherford llevó a cabo en 1919 las primeras reacciones nucleares o transmutaciones de un núcleo en otro, utilizando partículas alfa naturales. Bombardeando con éstas núcleos de Nitrógeno obtuvo un nuevo núcleo, que identificó como un isótopo del Oxígeno, a la vez que en la reacción se desprendían protones. También bombardeos con partículas alfa, en este caso sobre átomos de Berilio, fueron los que condujeron al descubrimiento del neutrón por James Chadwick en 1932. En estos bombardeos con partículas alfa provenientes del Polonio se produce una radiación neutra y muy penetrante, que muchos físicos confundieron con radiación gamma. El omnipresente Rutherford había propuesto un núcleo con protones y otras partículas neutras, mientras que la generalidad de los químicos se decantaba por un núcleo con un número A (número másico) de protones y A-Z electrones, teoría que principalmente se apoyaba en la emisión electrónica beta del núcleo. Chadwick asoció estas partículas neutras predichas por Rutherford a la radiación neutra penetrante. Diversos experimentos posteriores corroboraron su teoría e incluso se pudó medir su masa (entre 1,005 y 1,008 veces la del protón) en 1932. La construcción de los primeros aceleradores de partículas, a partir de 1931, permitió disponer de partículas aceleradas a altas velocidades. Fue así, como Frédéric e Irene Joliot – Curie descubren la radiactividad artificial, pues bombardeando con partículas alfa núcleos de aluminio encontraron que se producía un nuevo elemento, que además era radiactivo. Se llega por primera vez así al descubrimiento de nuevos elementos obtenidos de forma artificial. Heisenberg, en 1932, propone que el núcleo está formado por dos tipos de partículas: los protones y los neutrones (llamados colectivamente nucleones). Los protones tienen carga positiva e, igual y opuesta a la del electrón, y los neutrones son neutros eléctricamente. Si Z es el número atómico de un elemento, hay Z electrones en la corteza de su átomo y su núcleo tiene N neutrones, siendo A = Z + N el número de nucleones, también llamado número másico. Los nucleones tienen estructura interna y su diámetro es casi de 2 fermis. Su masa es casi la misma (1,672.10-27 kg para los protones y 1,675.10-27 kg para los neutrones). Ambas partículas son fermiones, partículas con spin semientero. Recordemos que el spin es una característica cuántica de las partículas, que podemos asimilar al giro sobre sí mismo de la partícula.

Hoy se sabe que estos protones y neutrones no son partículas elementales al poder descomponerse en otras entidades más elementales, los denominados quarks. Estas partículas que tienen carga fraccionaria y spin ½ se combinan para dar lugar a los distintos protones y neutrones. Los protones y neutrones del núcleo se encuentran en un espacio muy reducido, a distancias muy cortas unos de otros. A estas distancias tan cortas es muy grande la repulsión electromagnética entre protones, que de acuerdo a la ley de Coulomb es inversamente proporcional al cuadrado de la distancia y directamente proporcional a la magnitud de las cargas. La fuerza que vence a esta repulsión electromagnética y es capaz de mantener el núcleo unido es otra de las 4 interacciones fundamentales conocidas, la fuerza nuclear fuerte. Es una fuerza atractiva y muy intensa, por lo que domina a la repulsión culombiana de los protones, pero tiene un muy corto alcance, sólo del orden de poco más de un fermi. Las características de este tipo de fuerza son que es una fuerza saturada (cada partícula sólo es capaz de interaccionar con un pequeño número de otras partículas), dirigida (depende de la orientación de los espines) e independiente de la carga ( la fuerza entre dos protones es igual que la existente entre dos neutrones o entre protón y neutrón ). Pese a la interacción fuerte, un núcleo puede ser inestable y desintegrarse por radiactividad, e incluso fisionándose, rompiéndose en fragmentos. Núcleos pesados, como por ejemplo el del Uranio, son capaces de hacerlo naturalmente. Como bien conocemos, el proceso de fisión también puede darse por la acción de neutrones sobre núcleos de determinados elementos, lo que produce una gran liberación de energía, aprovechada en las centrales nucleares de fisión. La radiactividad es un proceso estrictamente nuclear, es un proceso de desintegración espontánea del núcleo. La estabilidad nuclear es el equilibrio entre las fuerzas de repulsión eléctrica de los protones y la fuerza atractiva nuclear de corto alcance, que experimentan los protones y neutrones del núcleo. La relación entre el número de protones(Z) y neutrones(N) es por lo tanto clave para la estabilidad del núcleo.

Demócrito pensó en la idea de que todos los cuerpos materiales son agregados de innumerables partículas tan pequeñas que no son visibles por los ojos humanos , los llamaron átomos (del griego indivisibles). Creía que había cuatro clases diferentes de átomos: los átomos de la piedra, pesados y secos; los átomos de agua, pesados y húmedos; los átomos de aire, fríos y ligeros, y los átomos de fuego, fugitivos y calientes.

Por una combinación en estas cuatro clases de átomos se suponía que están hechas todas las materias conocidas. El suelo seria una combinación de átomos de piedra y agua. Los de una planta serian átomos de piedra y agua, procedentes del suelo y átomos de fuego procedentes del sol. Por esta causa los troncos de madera seca que han perdido átomos de agua pueden arder, desprendiendo átomos de fuego (llamas) y dejando átomos de piedra(cenizas). Esta teoría que propuso Leucipo y Demócrito no tubo gran aceptación entre los filósofos griegos y romanos, así que el átomo fue olvidado ya que la teoría de que el universo estaba compuesto por cuatro elementos (tierra, agua, fuego y aire), resulto mucho más popular, aceptada y propagada por “eruditos”, como Aristóteles.

Física nuclear La física nuclear es una rama de la física moderna que estudia las propiedades y el comportamiento de los núcleos atómicos. La física nuclear es conocida mayoritariamente por la sociedad en su papel en la energía nuclear en centrales nucleares y en el desarrollo de armas nucleares, tanto de fisión como de fusión nuclear. En un contexto más amplio, se define la física nuclear y física de partículas como la rama de la física que estudia la estructura fundamental de la materia y las interacciones entre las partículas subatómicas.

Primeros experimentos La radiactividad fue descubierta en las sales de uranio por el físico francés Henri Becquerel en 1896. En 1898, los científicos Marie y Pierre Curie descubrieron dos elementos radiactivos existentes en la naturaleza, el polonio (84Po) y el radio (88Ra). En 1913 Niels Bohr publica su modelo de átomo, consistente en un núcleo central compuesto por partículas que concentran la práctica mayoría de la masa del átomo (neutrones y protones), rodeado por varias capas de partículas cargadas casi sin masa (electrones). Mientras que el tamaño del átomo resulta ser del orden del angstrom (10-10 m), el núcleo puede medirse en fermis (10-15 m), o sea, el núcleo es 100.000 veces menor que el átomo. Ernest Rutherford en el año 1918 definió la existencia de los núcleos de hidrógeno. Rutherford sugirió que el núcleo de hidrógeno, cuyo número atómico se sabía que era 1, debía ser una partícula fundamental. Se adoptó para esta nueva partícula el nombre de protón sugerido en 1886 por Goldstein para definir ciertas partículas que aparecían en los tubos catódicos. Durante la década de 1930, Irène y Jean Frédéric Joliot-Curie obtuvieron los primeros nucleidos radiactivos artificiales bombardeando boro (5B) y aluminio (13Al) con partículas α para formar isótopos radiactivos de nitrógeno (7N) y fósforo (15P). Algunos isótopos de estos elementos presentes en la naturaleza son estables. Los isótopos inestables se encuentran en proporciones muy bajas. En 1932 James Chadwick realizó una serie de experimentos con una radiactividad especial que definió en términos de corpúsculos, o partículas que formaban esa radiación. Esta nueva radiación no tenía carga eléctrica y poseía una masa casi idéntica a la del protón. Inicialmente se postuló que fuera resultado de la unión de

un protón y un electrón formando una especie de dipolo eléctrico. Posteriores experimentos descartaron esta idea llegando a la conclusión de que era una nueva partícula procedente del núcleo a la que se llamó neutrones. Los científicos alemanes Otto Hahn y Fritz Strassmann descubrieron la fisión nuclear en 1938. Cuando se irradia uranio con neutrones, algunos núcleos se dividen en dos núcleos con números atómicos. La fisión libera una cantidad enorme de energía y se utiliza en armas y reactores de fisión nuclear. Los conceptos de fisión y fusión nuclear difieren en las características de formación de cada uno. De esta forma se encuentra que la fisión (utilizada en las bombas y reactores nucleares) consiste en el "bombardeo" de partículas subatómicas al uranio (o a cualquier elemento transuránico, siempre y cuando sus características lo permitan), trayendo como consecuencia la fisión (de allí su nombre) del átomo y con esto la de los demás átomos adyacentes al bombardeado en reacción en cadena. Mientras que, la fusión es la unión bajo ciertas condiciones (altas presiones, altas temperaturas, altas cargas, etc.) de dos o más átomos y genera mucha más energía que la fisión.

Un poco de historia Cinco siglos antes de Cristo, los filósofos griegos se preguntaban si la materia podía ser dividida indefinidamente o si llegaría a un punto que tales partículas fueran indivisibles. Es así, como Demócrito formula la teoría de que la materia se compone de partículas indivisibles, a las que llamó átomos (del griego atomos, indivisible). En 1803 el químico inglés John Dalton propone una nueva teoría sobre la constitución de la materia. Según Dalton toda la materia se podía dividir en dos grandes grupos: los elementos y los compuestos. Los elementos estarían constituidos por unidades fundamentales, que en honor a Demócrito, Dalton denominó átomos. Los compuestos se constituirían de moléculas, cuya estructura viene dada por la unión de átomos en proporciones definidas y constantes. La teoría de Dalton seguía considerando el hecho de que los átomos eran partículas indivisibles. Hacia finales del siglo XIX, se descubrió que los átomos no son indivisibles, pues se componen de varios tipos de partículas elementales. La primera en ser descubierta fue el electrón en el año 1897 por el investigador Sir Joseph Thomson, quién recibió el Premio Nobel de Física en 1906. Posteriormente, Hantaro Nagaoka (1865-1950) durante sus trabajos realizados en Tokio, propone su teoría según la cual los electrones girarían en órbitas alrededor de un cuerpo central cargado positivamente, al igual que los planetas alrededor del Sol. Hoy día sabemos que la carga positiva del átomo se concentra en un denso núcleo muy pequeño, en cuyo alrededor giran los electrones. El núcleo del átomo se descubre gracias a los trabajos realizados en la Universidad de Manchester, bajo la dirección de Ernest Rutherford entre los años 1909 a 1911. El experimento utilizado consistía en dirigir un haz de partículas de cierta energía contra una plancha metálica delgada, de las probabilidades que tal barrera desviara la trayectoria de las partículas , se dedujo la distribución de la carga eléctrica al interior de los átomos.

Radiactividad a) Radiactividad Natural.

En Febrero de 1896, el físico francés Henri Becquerel investigando con cuerpos fluorescentes (entre ellos el Sulfato de Uranio y el Potasio), halló una nueva propiedad de la materia a la que posteriormente Marie Curie llamó "Radiactividad". Se descubre que ciertos elementos tenían la propiedad de emitir radiaciones semejantes a los rayos X en forma espontánea. Tal radiación era penetrante y provenía del cristal de Uranio sobre el cual se investigaba.

Marie y Pierre Curie al proseguir los estudios encontraron fuentes de radiación natural bastante más poderosas que el Uranio original, entre estos el Polonio y el Radio. La radiactividad del elemento no dependía de la naturaleza física o química de los átomos que lo componen, sino que era una propiedad radicada en el interior mismo del átomo. Hoy en día se conocen más de 40 elementos radiactivos naturales, que corresponden a los elementos más pesados. Por arriba del número atómico 83, todos los núcleos naturales son radiactivos. b) Desintegraciones Alfa, Beta, Gamma. La radiactividad es un fenómeno que se origina exclusivamente en el núcleo de los átomos radiactivos. La causa que los origina probablemente se debe a la variación en la cantidad de partículas que se encuentran en el núcleo. Cuando el núcleo atómico es inestable a causa del gran número de protones que

posee (ocurre en los elementos más pesados, es decir con Z = 83 o superior), la estabilidad es alcanzada, con frecuencia, emitiendo una partícula alfa, es decir, un núcleo de Helio (2He4 ) formado por dos protones y dos neutrones. Cuando la relación de neutrones/protones en un núcleo atómico es elevada, el núcleo se estabiliza emitiendo un neutrón, o bien como ocurre con frecuencia, emitiendo una partícula beta, es decir, un electrón. Cuando la relación de neutrones/protones es muy pequeña, debe ocurrir una disminución en el número de protones o aumentar el número de neutrones para lograr la estabilidad del núcleo. Esto ocurre con la emisión de un electrón positivo o positrón, o bien absorbiendo el núcleo un electrón orbital. Los rayos gamma son ondas electromagnéticas de gran energía, muy parecidos a los rayos X, y en ciertas ocasiones se presentan cuando ocurre una desintegración de partículas beta, o bien una emisión de positrones. Por lo tanto, la radiación gamma no posee carga eléctrica y su naturaleza ondulatoria permite describir su energía en relación a su frecuencia de emisión. c) Radiactividad Artificial. Al bombardear diversos núcleos atómicos con partículas alfa de gran energía, se pueden transformar en un núcleo diferente, por lo tanto, se transforma en un elemento que no existe en la naturaleza. Los esposos Irene Curie y Frédéric Joliot, experimentando con tales procesos descubren la radiactividad artificial, pues se percatan que al bombardear ciertos núcleos con partículas procedentes de fuentes radiactivas estos se vuelven radiactivos. Si la energía de las partículas es adecuada, entonces puede penetrar en el núcleo generando su inestabilidad y por ende, induciendo su desintegración radiactiva. Desde el descubrimiento de los primeros elementos radiactivos artificiales, el hombre ha logrado en el tiempo obtener una gran cantidad de ellos. Es clave en este proceso la aparición de los llamados aceleradores de partículas y de los reactores nucleares. Estos últimos son fuente importante de neutrones que son utilizados para producir gran variedad de radioisótopos.

Niels Henrik David Bohr, tímido físico teórico danés; nacido en Copenhague el 7 de octubre de 1885. Estudió en la Universidad de su ciudad natal, doctorándose en 1911. Ese mismo año marchó a Inglaterra a estudiar con una beca en el Cavendish Laboratory de Cambridge, donde pasó seis meses bajo la dirección de sir Joseph John Thomson, con la esperanza de ver traducida del danés al inglés su exhaustiva tesis de su doctorado sobre los electrones. Cuando Thomson mostró poco interés en el ensayo de Bohr, en 1912 se encaminó a la Universidad. de Manchester, donde trabajó en la investigación de la radiactividad y de modelos del átomo con Ernest Rutherford, con la idea de enseñar esos temas cuando regresara a Dinamarca. En Manchester, Bohr y Rutherford iniciaron una improbable amistad que duró toda la vida. Los dos hombres formaban una extraña pareja. La retumbante voz de Rutherford reverberaba fuertemente en los laboratorios donde trabajaba. Bohr nunca hablaba más alto que un susurro. Sin embargo, el hablar era esencial para su ser. No sólo hablaba tres idiomas sino que, batallaba con las palabras, rectificando y corrigiéndose a sí mismo, luchando con las paradojas, repitiéndose, buscando las frases exactamente correctas. Si hablar era difícil, escribir resultaba un tormento: Escribía borradores incluso en tarjetas postales, y revisaba lo que escribía media docena de veces, distrayendo a sus colaboradores. La complejidad de su vida intelectual puede que mejorara la receptividad de Bohr al átomo que Rutherford había elaborado, un átomo que tenía sentido experimentalmente pero que no podía existir bajo las leyes de la física clásica. En un atrevido movimiento, el joven físico dio un rodeo al problema declarando simplemente que los movimientos dentro de los átomos están gobernados por otras leyes. En particular, afirmó que los electrones no irradian energía cuando se hallan en ciertos «estados estacionarios». En 1913 Bohr reveló su visión del átomo en tres ensayos que aparecieron en el Philosophical Magazine británico, utilizando la constante de Planck y las emisiones espectrales del átomo de hidrógeno como pincel y tela. En esos ensayos describió tres postulados: 1) Cuantificación de las orbitas permitidas para un electrón: un electrón sólo puede girar alrededor de su núcleo en ciertas órbitas circulares para las que el momento cinético del electrón es un múltiplo entero de h/21T (h, constante de Planck). 2) El electrón gira alrededor de su núcleo en órbitas fijas, sin radiar ni absorber energía. 3) La radiación o absorción de energía sólo tiene lugar cuando un electrón pasa de una órbita de mayor (menor) energía a una de menor (mayor), que se encuentra más cercana (alejada) al núcleo. La frecuencia f de la radiación emitida o absorbida viene determinada por la relación: E1-

E2=hf, donde E1 y E2 son las energías correspondientes a las órbitas de tránsito del electrón. Esto explicaba por qué, por ejemplo, los átomos de hidrógeno ceden distintivas longitudes de onda de luz, que aparecen en el espectro del hidrógeno como una distribución fija de líneas de luz conocida como serie de Balmer: Los átomos emiten energía solamente en ciertas cantidades exactamente calibradas.

ÁTOMO DE BOHR La mayoría de los científicos establecidos se sintieron desconcertados ante el átomo de Bohr y sus implicaciones con respecto a la teoría clásica. Pero Rutherford cantó sus alabanzas, llamándole «el tipo más inteligente que jamás he conocido». Ese apoyo implicó que varios jóvenes físicos siguieran el camino de Bohr. En Inglaterra y Alemania, así como en los Países Bajos, Dinamarca y Suecia, una nueva generación de investigadores empezó a desarrollar poderosas evidencias en apoyo de las ideas de Bohr. La nueva teoría comenzó a ser aplicada con gran éxito al átomo de hidrógeno. El modelo de Bohr fue generalizado posteriormente, a átomos de elementos superiores, por A. Sommerfeld; no obstante, la teoría atómica de Bohr. se considera como la base de la física atómica y nuclear modernas. Bohr permaneció en Manchester hasta 1916, año en que volvió a Copenhague al ser nombrado profesor de física teórica en la universidad de dicha ciudad. En 1920, y gracias al respeto que había alcanzado, pudo reunir los fondos necesarios para la creación de un nuevo centro llamado el Instituto para la Física Teórica. Junto con las universidades alemanas de Munich y Göttingen, el instituto emergió como un líder en la teoría atómica. Pronto los físicos enzarzados en acalorados debates empezaron a viajar de uno a otro de los tres centros de intelectualidad. Posteriormente marchó a los EE.UU. trabajando en el Instituto de Estudios Avanzados de Princeton (Nueva Jersey), donde, en colaboración con J. A. Wheler, enunció una teoría sobre la fisión nuclear que dio lugar a la investigación conducente a la realización de la primera bomba atómica. Volvió a su país, del que fue obligado a salir por su origen judío en 1943 durante la ocupación nazi.

Regresó a los EE.UU. y trabajó como asesor científico para el proyecto Manhattan, en el laboratorio de Los Álamos (Nuevo México). En 1945 volvió a Dinamarca donde reasumió la dirección del Instituto de Física Teórica. Bohr fue galardonado, en 1922, con el Premio Nobel de Física por sus trabajos sobre la estructura atómica y la radiación. También fue el primero que recibió, en 1958, el premio Átomos para la Paz. En 1958 publicó otra obra famosa: Atomic theory and the human knowledge (Física Atómica y el Conocimiento Humano). Murió en Copenhague el 18 de noviembre de 1962.

Considerado por muchos el segundo mejor científico del siglo XX después de Einstein, Bohr es sin duda una figura esencial en el desarrollo de la física de átomos y moléculas. El propio Einstein reconocía en él a "uno de los más grandes investigadores científicos de nuestro tiempo". "El punto esencial de todo lo que nos ha enseñado el desarrollo de la física atómica estriba en habernos hecho reconocer la característica de totalidad que el quantum de acción confiere a los procesos atómicos". Su entusiasmo por el nuevo mundo atómico desvelado por la física del siglo XX estuvo de manifiesto en su trabajo y en todas sus intervenciones públicas. "Nuestra penetración en el mundo de los átomos – dice en uno de sus ensayos – es sin duda una aventura comparable a los grandes viajes de los navegantes en busca de nuevas tierras y a las denodadas exploraciones de los astrónomos en las profundidades del espacio celeste." Los nuevos hallazgos de la física suponían un «cambio radical» en la actitud hacia la descripción de la naturaleza y permitieron un conocimiento profundo y acelerado de las propiedades físicas y químicas de la materia en la primera mitad de siglo. Si se tuviese que indicar una cualidad característica de Bohr sería, probablemente, la lentitud de su penetración intelectual. Su amigo el físico soviético, nacionalizado americano, George Gamow, cuenta gran cantidad

de anécdotas en las que se ponen de manifiesto estas características de Bohr; no obstante ha sido uno de los padres de la física moderna.

El núcleo atómico El núcleo del átomo se encuentra formado por nucleones, los cuales pueden ser de dos clases: • •

Protones: Partícula de carga eléctrica positiva igual a una carga elemental, y 1,67262 × 10–27 kg y una masa 1837 veces mayor que la del electrón Neutrones: Partículas carentes de carga eléctrica y una masa un poco mayor que la del protón (1,67493 × 10–27 kg)

El núcleo más sencillo es el del hidrógeno, formado únicamente por un protón. El núcleo del siguiente elemento en la tabla periódica, el helio, se encuentra formado por dos protones y dos neutrones. La cantidad de protones contenidas en el núcleo del átomo se conoce como número atómico, el cual se representa por la letra Z y se escribe en la parte inferior izquierda del símbolo químico. Es el que distingue a un elemento químico de otro. Según lo descrito anteriormente, el número atómico del hidrógeno es 1 (1H), y el del helio, 2 (2He). La cantidad total de nucleones que contiene un átomo se conoce como número másico, representado por la letra A y escrito en la parte superior izquierda del símbolo químico. Para los ejemplos dados anteriormente, el número másico del hidrógeno es 1(1H), y el del helio, 4(4He). Existen también átomos que tienen el mismo número atómico, pero diferente número másico, los cuales se conocen como isótopos. Por ejemplo, existen tres isótopos naturales del hidrógeno, el protio (1H), el deuterio (2H) y el tritio (3H). Todos poseen las mismas propiedades químicas del hidrógeno, y pueden ser diferenciados únicamente por ciertas propiedades físicas. Otros términos menos utilizados relacionados con la estructura nuclear son los isótonos, que son átomos con el mismo número de neutrones. Los isóbaros son átomos que tienen el mismo número másico. Debido a que los protones tienen cargas positivas se deberían repeler entre sí, sin embargo, el núcleo del átomo mantiene su cohesión debido a la existencia de otra fuerza de mayor magnitud, aunque de menor alcance conocida como la interacción nuclear fuerte.

Historia de la teoría atómica El concepto de átomo existe desde la Antigua Grecia propuesto por los filósofos griegos Demócrito, Leucipo y Epicuro, sin embargo, no se generó el concepto por medio de la experimentación sino como una necesidad filosófica que explicara la realidad, ya que, como proponían estos pensadores, la materia no podía dividirse indefinidamente, por lo que debía existir una unidad o bloque indivisible e indestructible que al combinarse de diferentes formas creara todos los cuerpos macroscópicos que nos rodean. El siguiente avance significativo se realizó hasta en 1773 el químico francés Antoine-Laurent de Lavoisier postuló su enunciado: "La materia no se crea ni se destruye, simplemente se transforma."; demostrado más tarde por los experimentos del químico inglés John Dalton quien en 1804, luego de medir la masa de los reactivos y productos de una reacción, y concluyó que las sustancias están compuestas de átomos esféricos idénticos para cada elemento, pero diferentes de un elemento a otro. Luego en 1811 Amedeo Avogadro, físico italiano, postuló que a una temperatura, presión y volumen dados, un gas contiene siempre el mismo número de partículas, sean átomos o moléculas, independientemente de la naturaleza del gas, haciendo al mismo tiempo la hipótesis de que los gases son moléculas poliatómicas con lo que se comenzó a distinguir entre átomos y moléculas. El químico ruso Dmítri Ivánovich Mendeléyev creó en 1869 una clasificación de los elementos químicos en orden creciente de su masa atómica, remarcando que existía una periodicidad en las propiedades químicas. Este trabajo fue el precursor de la tabla periódica de los elementos como la conocemos actualmente. La visión moderna de su estructura interna tuvo que esperar hasta el experimento de Rutherford en 1911 y el modelo atómico de Bohr. Posteriores descubrimientos científicos, como la teoría cuántica, y avances tecnológicos, como el microscopio electrónico, han permitido conocer con mayor detalle las propiedades físicas y químicas de los átomos.

Modelo de Rutherford [editar]

Modelo atómico de Rutherford Este modelo fue desarrollado por el físico Ernest Rutherford a partir de los resultados obtenidos en lo que hoy se conoce como el experimento de Rutherford en 1911. Representa un avance sobre el modelo de Thomson, ya que mantiene que el átomo se compone de una parte positiva y una negativa, sin embargo, a diferencia del anterior, postula que la parte positiva se concentra en un núcleo, el cual también contiene virtualmente toda la masa del átomo, mientras que los electrones se ubican en una corteza orbitando al núcleo en órbitas circulares o elípticas con un espacio vacío entre ellos. A pesar de ser un modelo obsoleto, es la percepción más común del átomo del público no científico. Rutherford predijo la existencia del neutrón en el año 1920, por esa razón en el modelo anterior (Thomson), no se habla de éste. Por desgracia, el modelo atómico de Rutherford presentaba varias incongruencias: •



Contradecía las leyes del electromagnetismo de James Clerk Maxwell, las cuales estaban muy comprobadas mediante datos experimentales. Según las leyes de Maxwell, una carga eléctrica en movimiento (en este caso el electrón) debería emitir energía constantemente en forma de radiación y llegaría un momento en que el electrón caería sobre el núcleo y la materia se destruiría. Todo ocurriría muy brevemente. No explicaba los espectros atómicos.

Modelo atómico de Thomson

Representación esquemática del modelo de Thompson. El modelo atómico de Thomson, también conocido como el pastel de pasas, es una teoría sobre la estructura atómica propuesta en 1904 por Joseph John Thomson, descubridor del electrón, antes del descubrimiento del protón y del neutrón. En dicho modelo, el átomo está compuesto por electrones de carga negativa en un átomo positivo, como pasas en un puding. Se pensaba que los electrones se distribuían uniformemente alrededor del átomo. En otras ocasiones, en lugar de una sopa de carga positiva se postulaba con una nube de carga positiva.En 1906 Thompson recibio el premio nobel de fisica por este descubrimiento. Dado que el átomo no deja de ser un sistema material que contiene una cierta cantidad de energía interna, ésta provoca un cierto grado de vibración de los electrones contenidos en la estructura atómica. Desde este punto de vista, puede interpretarse que el modelo atómico de Thompson es un modelo dinámico como consecuencia de la movilidad de los electrones en el seno de la citada estructura. Si hacemos una interpretación del modelo atómico desde un punto de vista más macroscópico, puede definirse una estructura estática para el mismo dado que los electrones se encuentran inmersos y atrapados en el seno de la masa que define la carga positiva del átomo. Dicho modelo fue superado luego del experimento de Rutherford, cuando se descubrió el núcleo del átomo. El modelo siguiente fue el modelo atómico de Rutherford.

Núcleo atómico

Representación aproximada del átomo de Helio. en el núcleo los protones están representados en rojo y los neutrones en azul. En la realidad el núcleo también es simétricamente esférico.

El núcleo atómico es la parte central de un átomo, donde se concentra aproximadamente el 99.99% de la masa total y tiene carga positiva. Está formado por protones y neutrones (denominados nucleones) que se mantienen unidos por medio de la interacción nuclear fuerte. La cantidad de protones en el mismo determina el elemento químico al que pertenece. Los núcleos atómicos con el mismo número de protones pero distinto número de neutrones se denominan isótopos. La existencia del núcleo atómico fue deducida del experimento de Rutherford.

Historia El descubrimiento de los electrones fue la primera indicación de la estructura interna de los átomos. A comienzos del siglo XX el modelo aceptado del átomo era el de JJ Thomson's "pudín de pasas" modelo en el cual el átomo era una gran bola de carga positiva con los

pequeños electrones cargados negativamente incrustado dentro de la misma. Por aquel entonces, los físicos habían descubierto también tres tipos de radiaciones procedentes de los átomos : alfa, beta y radiación gamma. Los experimentos de 1911 realizados por Lise Meitner y Otto Hahn, y por James Chadwick en 1914 mostraron que el espectro de decaimiento beta es continuo y no discreto. Es decir, los electrones son expulsados del átomo con una gama de energías, en vez de las cantidades discretas de energía que se observa en rayos gamma y decaimiento alfa. Esto parecía indicar que la energía no se conservaba en estos decaimiento. Posteriormente se descubrió que la energía sí se conserva, con el descubrimiento de los neutrinos. En 1906 Ernest Rutherford publicó "La radiación de las partículas α de Radium en pasar por Matter", en Philosophical Magazine (12, p. 134-46). Hans Geiger amplió este trabajo en una comunicación a la Royal Society (Proc. Roy. Soc. 17 de julio de 1908) con experimentos y Rutherford se había hecho pasar aire a través de las partículas α, papel de aluminio y papel de aluminio dorado. Geiger y Marsden publicaron trabajos adicionales en 1909 (Proc. Roy. Soc. A82 p. 495-500) y ampliaron aún más el trabajo en la publicación de 1910 por Geiger (Proc. Roy. Soc. Febrero 1, 1910). En 1911-2 Rutherford explicó ante la Royal Society los experimentos y propuso la nueva teoría del núcleo atómico. Por esas mismas fechas (1909) Ernest Rutherford realizó un experimento en el que Hans Geiger y Ernest Marsden, bajo su supervisión dispararon partículas alfa (núcleos de helio) en una delgada lámina de oro. El modelo atómico de Thomson predecía que la de las partículas alfa debían salir de la lámina con pequeñas desviaciones de sus trayectorias están. Sin embargo, descubrió que algunas partículas se dispersan a grandes ángulos, e incluso completamente hacia atrás en algunos casos. Este descubrimiento en 1911, llevó a el modelo atómico de Rutherford, en que el átomo esta constituido por protones y electrones. Así, el átomo del nitrógeno-14 estaría constituido por 14 protones y 7 electrones. El modelo de Rutherford funcionó bastante bien hasta que los estudios llevadas a cabo por Franco Rasetti, en el Institute of Technology de California en 1929. En 1925 se sabía que los protones y electrones tiene un espín de 1 / 2, y en el modelo de Rutherford nitrógeno 14 los 14 protones y seis de los electrones deberían cancelar sus contribuciones al espín total, estimándose un espín total de 1 / 2. Rasetti descubierto, sin embargo, que el nitrógeno - 14 tiene un espín total unidad. En 1930 Wolfgang Pauli no pudo asistir a una reunión en Tubinga, y en su lugar envió una carta famoso con la clásica introducción "Queridos Señoras y señores radiactivos ". En su carta Pauli sugirió que tal vez existía una tercera partícula en el núcleo, que la bautizó con el nombre de "neutrones". Sugirió que era más ligero que un electrón y sin carga eléctrica, y que no interactuaba fácilmente con la materia (y por eso todavía no se le había detectado). Esta hipótesis permitía resolver tanto el problema de la conservación de la energía en la desintegración beta y el espín de nitrógeno - 14, la primera porque los neutrones llevaban la energía no detectada y el segundo porque un electrón extra se acoplaba con el electrón sobrante en el núcleo de nitrógeno - 14 para proporcionar un espín de 1. Enrico Fermi redenominó en 1931 los neutrones de Pauli como neutrinos (en italiano pequeño neutral) y

unos treinta años después se demostró finalmente que un neutrinos realmente se emiten en el decaimiento beta. En 1932 James Chadwick se dio cuenta de que la radiación que de que había sido observado por Walther Bothe, Herbert L. Becker, Irène y Jean Frédéric Joliot-Curie era en realidad debido a una partículas que él llamó el neutrón. En el mismo año Dimitri Ivanenko sugirió que los neutrones eran, de hecho partículas de espín 1 / 2, que existían en el núcleo y que no existen electrones en el mismo, y Francis Perrin sugirió que los neutrinos son partículas nucleares, que se crean durante el decaimiento beta. Fermi publicó 1934 una teoría de los neutrinos con una sólida base teórica. En el mismo año Hideki Yukawa propuso la primera teoría importante de la fuerza para explicar la forma en que el núcleo mantiene junto.

PROBLEMÁTICA; En algunas escuelas de nivel medio superior se quiere empezar a trabajar en nuevos experimentos que se producen a la velocidad de la luz o valores cercanos a ella cuyas escalas especiales son del orden del tamaño del átomo. Pero se tiene muy poco conocimiento del tema ya que en los temarios de sus materias manejan muy simplificado ese tema y por consecuencia no tienen dominio de él y no pueden empezar a trabajar en algunos de estos fenómenos y por lo tanto se pretenden implementar cursos de física nuclear para adentrar mas a los alumnos en estos temas.

JUSTIFICACION; Para la selección del contenido de estos cursos se requiere tener un gran conocimiento de física nuclear tanto en su historia como en sus avances para poder cubrir la mayor parte de información importante y los alumnos puedan trabajar.

OBJETIVO GENERAL; Adquirir conocimiento sobre física nuclear para poderlo mostrar en los cursos.

OBJETIVO ESPECIFICO; 1° Recopilar las fuentes de información. 2° Verificar la veracidad de las fuentes de información. 3° Clasificar la información recabada. 4° Presentar informe.

MARCO TEORICO; Marco contextual;

DEFINICION; El termino física nuclear se asocia a menudo con el de energía nuclear y bombas nucleares debido en parte a la popularidad que tuvieron en los años 60 durante la guerra fría.

CLASIFICACION; 1° HISTORIA DE LA FISICA NUCLEAR 2°AVANCES DE LA FISICA NUCLEAR

IMPLEMENTACION; Cursos escolares o una revista escolar para conocer mas el tema y tener una mejor cultura.

DESARROLLO ACTUAL; Enrico Fermi fue un físico italiano conocido por el desarrollo del primer reactor nuclear y sus contribuciones al desarrollo de la teoría cuántica, la física nuclear y de partícula, y la mecánica estadística.

INSTITUTO TECNOLOGICO DE LA PIEDAD

INGENIERIA EN ELECTRONICA

TALLER DE INVESTIGACION I

M.A. CLAUDIA RODRIGUEZ CORREA

ALFREDO VARGAS AGUIRRE

“4E”

23/06/09

Related Documents