Alb Portico Montenegro.pdf

  • Uploaded by: Santiago Montenegro Torres
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Alb Portico Montenegro.pdf as PDF for free.

More details

  • Words: 7,334
  • Pages: 15
“AÑO DEL DIALOGO Y LA RECONCILIACIÓN NACIONAL”

UNIVERSIDAD NACIONAL “SANTIAGO ANTÚNEZ DE MAYOLO’’

FACULTAD DE INGENIERÍA CIVIL DETERMINACION MATRIZ DE RIGIDEZ LATERAL DEL EDIFICIO CURSO: ALBAÑILERIA ESTRUCTURAL

DOCENTE: ING. OLAZA HENOSTROS Hugo

ALUMNO: MONTENEGRO TORRES Carlos Santiago

Huaraz – Perú Marzo 2019

PLANO DE PLANTA, EJES A ANALIZAR RESALTADOS TANTO EN "X", COMO EN "Y".

ELEMENTO

RIGIDEZ DE MUROS- SECCION TRANSFORMADA 1. Se calculara la Rigidez de los muros Eje "D" y Eje "1" el plano se encuetra en el primer trabajo. 2. Calculo de rigidez de cada uno de los muros que contemplan el eje tanto en eje "x" e "y". 3. Luego ensamblaremos la estructura hasta 2 niveles.

CARACTERÍSTICAS MECÁNICAS DE LOS MATERIALES a. Albañilería f'b = 145.00 kg/cm2 f'm = 65.00 kg/cm2 v'm = 8.10 kg/cm2 Em = 325,000.00 T/m2 (Em = 500*f'm) Gm = 130,000.00 T/m2 (Gm = 0.40*Em) A= AREA - SECCION TRANSFORMADA b. Concreto f'c = Ec =

210.00 kg/cm2 218,819.79 kg/cm2

Factor de relación:

𝒏= n=

𝑬𝒄 𝑬𝒎 0.673 DE LA ESTRUCTURACION- SECCION TRANSFORMADA DIRECCION X-X MURO X1, X4 REVISAR LA HOJA 15 DEL MANUAL DE DISEÑO EN ALBAÑILERIA REF. RNE E070 ART. 24.6 ANALISIS ESTRUCTURAL

CALCULO DEL CENTROIDE DE LA SECCION TRANSFORMADA 𝑋𝑖 𝐴 ∗ 𝑋𝑖 ELEMENTO ANCHO LARGO AREA 1 0.72 0.12 0.09 0.06 0.005184 2 1.347 0.12 0.16 0.06 0.0096984 3 0.12 2.91 0.35 1.575 0.54999 4 1.347 0.12 0.16 3.09 0.4994676 5 0.72 0.12 0.09 3.09 0.266976 = = 0.85 1.331316

𝑋 𝑋= Ac=

𝐴 ∗ 𝑋𝑖 = 𝐴 0.378

1.575

ELEMENTO 1 2 3 4 5

b 0.72 1.347 0.12 1.347 0.72

MOMENTO DE INERCIA RESPECTO AL EJE YY 𝑑 𝐼𝑌𝑌 + 𝑑2 ∗ 𝐴 𝐼𝑌𝑌 h 0.12 0.00010368 1.515 0.371103849 0.12 0.00019397 1.515 0.801686538 2.91 0.24642171 0 0.24642171 0.12 0.00019397 -1.515 0.198501408 0.12 0.00010368 -1.515 1.940211468 𝐼𝑌𝑌 = 3.557924973 𝑚4 MURO X2,X3 REVISAR LA HOJA 15 DEL MANUAL DE DISEÑO EN ALBAÑILERIA REF. RNE E070 ART. 24.6 ANALISIS ESTRUCTURAL

ELEMENTO 1 2 3 4

0.808 0.12 1.347 0.72

0.2 2.68 0.12 0.12 =

ELEMENTO 1 2 3 4

𝑋

CALCULO DEL CENTROIDE DE LA SECCION TRANSFORMADA 𝑋𝑖 𝐴 ∗ 𝑋𝑖 ANCHO LARGO AREA 0.16 0.32 0.16 0.09 0.73

0.1 1.54 2.94 2.94 =

0.01616 0.495264 0.4752216 0.254016 1.2406616

𝑋=

MOMENTO DE INERCIA RESPECTO AL EJE YY 𝐼𝑌𝑌 𝐼𝑌𝑌 + 𝑑2 ∗ 𝐴 𝑑 b h 0.808 0.2 0.00053867 1.59665 0.412506425 0.12 2.68 0.19248832 0.15665 0.200380582 1.347 0.12 0.00019397 -1.2433 0.250074562 0.72 0.12 0.00010368 -1.2433 0.133670145 𝐼𝑌𝑌 = 0.996631714 𝑚4

Ac=

𝐴 ∗ 𝑋𝑖 = 𝐴 0.36

1.69665445

DIRECCION Y-Y MURO Y1,Y8. REVISAR HOJA 15 DEL MANUAL DE DISEÑO EN ALBAÑILERIA REF. RNE E070 ART. 24.6 ANALISIS ESTRUCTURAL

𝑌

ELEMENTO 1 2 3 4 5

CALCULO DEL CENTROIDE DE LA SECCION TRANSFORMADA 𝑌𝑖 𝐴 ∗ 𝑌𝑖 ANCHO LARGO AREA 0.808 0.2 0.16 0.1 0.01616 0.12 2.1 0.25 1.25 0.315 0.808 0.2 0.16 2.4 0.38784 0.728 0.12 0.09 2.44 0.2131584 0 0 0.00 0 0 = = 0.66 0.9321584

ELEMENTO 1 2 3 4

MOMENTO DE INERCIA RESPECTO AL EJE XX 𝐼𝑥𝑥 𝐼𝑥𝑥 + 𝑑2 ∗ 𝐴 𝑑 b h 0.808 0.2 0.00053867 1.30690413 0.27655121 0.12 2.1 0.09261000 0.15690413 0.09881396 0.808 0.2 0.00053867 -0.99309587 0.15991496 0.728 0.12 0.00010483 -1.03309587 0.09334303 𝐼𝑥𝑥 = 0.62862316 𝑚4

𝑌=

𝐴 ∗ 𝑌𝑖 = 𝐴

1.40690413

3. PROPIEDADES DE SECCION DE LAS VIGAS.

ELEMENTO 1 2

CALCULO DEL CENTROIDE DE LA SECCION TRANSFORMADA ANCHO LARGO AREA 𝑌𝑖 𝐴 ∗ 𝑌𝑖 0.12 0.3 0.04 0.15 0.0054 0.6 0.15 0.09 0.225 0.02025 = = 0.13 0.02565

ELEMENTO 1 2

𝑌 𝑌=

𝐴 ∗ 𝑌𝑖 = 𝐴

MOMENTO DE INERCIA RESPECTO AL EJE XX 𝐼𝑥𝑥 𝐼𝑥𝑥 + 𝑑2 ∗ 𝐴 𝑑 b h 0.12 0.3 0.00027000 0.05357143 0.00037332 0.6 0.15 0.00016875 -0.02142857 0.00021008 𝐼𝑥𝑥 = 0.00058339 𝑚 4

0.20357143

PORTICO EJE "D" DIRECCION X -X

CÁLCULO DE RIGIDEZ PARA LOS MUROS

PROPIEDADES MECANICAS PARA LA ALBAÑILERIA: tonf

f'm ≔ 650 ―― 2

h ≔ 2.4 m

m

tonf

E ≔ 500 ⋅ f'm = 325000 ―― 2 m tonf G ≔ 0.4 ⋅ E = 130000 ―― m2

Calculo de K1, K4, K5 y K8 : I ≔ 3.558

Ac ≔ 0.378

A ≔ 0.85

12 ⋅ E ⋅ I ϕ ≔ ―――― = 49.024 G ⋅ Ac ⋅ h 2

⎡ 12 ⋅ E ⋅ I ⎤ 6⋅E⋅I 0 ―――― ⎥ ⎢ ―――― 3 2 ( ) ( ) h ⋅ (1 + ϕ) ⎥ ⎢ h ⋅ (1 + ϕ) ⎡ 0 24078.84 ⎤ ⎢ ⎥ ⎢ 20065.7 A ⎥ E ⋅ ―― 0 0 K1 ≔ ⎢ 0 115104.167 0 ⎥=⎢ ⎥ ( ) (h) ⎢ ⎥ ⎣ 24078.84 0 510707.108 ⎦ E ⋅ I ⋅ ((4 + ϕ)) ⎥ ⎢ 6⋅E⋅I 0 ――――― ⎢ ―――― ⎥ 2 h ⋅ ((1 + ϕ)) ⎦ ⎣ h ⋅ ((1 + ϕ)) ⎡ 20065.7 0 24078.84 ⎤ ⎥ K4 ≔ K1 = ⎢ 0 115104.167 0 ⎢ ⎥ 0 510707.108 ⎦ ⎣ 24078.84 ⎡ 12 ⋅ E ⋅ I -6 ⋅ E ⋅ I -12 ⋅ E ⋅ I -6 ⋅ E ⋅ I ⎤ 0 0 ―――― ―――― ―――― ⎥ ⎢ ―――― 3 h 2 ⋅ ((1 + ϕ)) h 3 ⋅ ((1 + ϕ)) h 2 ⋅ ((1 + ϕ)) ⎥ ⎢ h ⋅ ((1 + ϕ)) ⎢ ⎥ A A E ⋅ ―― -E ⋅ ―― 0 0 0 0 ⎢ ⎥ ( ) ( ) h h ) ) ( ( ⎢ ⎥ E ⋅ I ⋅ ((4 + ϕ)) 6⋅E⋅I E ⋅ I ⋅ ((2 - ϕ)) ⎥ ⎢ -6 ⋅ E ⋅ I 0 0 ――――――――― ――――― ⎢ ―――― ⎥ h ⋅ ((1 + ϕ)) h ⋅ ((1 + ϕ)) ⎥ h 2 ⋅ ((1 + ϕ)) h 2 ⋅ ((1 + ϕ)) K5 ≔ ⎢ 6⋅E⋅I 12 ⋅ E ⋅ I 6⋅E⋅I ⎢ -12 ⋅ E ⋅ I ⎥

⎡ 20065.7 0 24078.84 ⎤ ⎥ K4 ≔ K1 = ⎢ 0 115104.167 0 ⎢ ⎥ 0 510707.108 ⎦ ⎣ 24078.84 ⎡ 12 ⋅ E ⋅ I -6 ⋅ E ⋅ I -12 ⋅ E ⋅ I -6 ⋅ E ⋅ I ⎤ 0 0 ―――― ―――― ―――― ⎥ ⎢ ―――― 3 2 3 2 ( ) ( ) ( ) h 1 + ϕ h 1 + ϕ h 1 + ϕ h ⋅ ⋅ ⋅ ⋅ ((1 + ϕ)) ⎥ ) ) ) ( ( ( ⎢ ⎢ ⎥ A A E ⋅ ―― -E ⋅ ―― 0 0 0 0 ⎢ ⎥ ( ) ( ) (h) (h) ⎢ ⎥ E ⋅ I ⋅ ((4 + ϕ)) 6⋅E⋅I E ⋅ I ⋅ ((2 - ϕ)) ⎥ ⎢ -6 ⋅ E ⋅ I 0 0 ―――― ――――― ―――― ――――― ⎢ 2 ⎥ h ⋅ ((1 + ϕ)) h ⋅ ((1 + ϕ)) ⎥ h ⋅ ((1 + ϕ)) h 2 ⋅ ((1 + ϕ)) K5 ≔ ⎢ 6⋅E⋅I 12 ⋅ E ⋅ I 6⋅E⋅I ⎢ -12 ⋅ E ⋅ I ⎥ 0 0 ―――― ―――― ―――― ⎥ ⎢ ―――― 3 2 3 2 ( ) ( ) ( ) ( ) h ⋅ 1 + ϕ h ⋅ 1 + ϕ h ⋅ 1 + ϕ h ⋅ 1 + ϕ ) ) ) ) ( ( ( ( ⎢ ⎥ A A ⎢ ⎥ -E ⋅ ―― E ⋅ ―― 0 0 0 0 ⎢ ⎥ ((h)) ((h)) ⎢ ⎥ E ⋅ I ⋅ ((2 - ϕ)) 6⋅E⋅I E ⋅ I ⋅ ((4 + ϕ)) ⎥ ⎢ -6 ⋅ E ⋅ I 0 0 ―――― ――――― ―――― ――――― ⎢ 2 ( h ⋅ ((1 + ϕ)) h ⋅ ((1 + ϕ)) ⎥⎦ h 2 ⋅ ((1 + ϕ)) ⎣ h ⋅ (1 + ϕ))

⎡ 20065.7 0 -24078.84 -20065.7 0 -24078.84 ⎤ ⎢ ⎥ 0 115104.167 0 0 -115104.167 0 ⎢ ⎥ -24078.84 0 510707.108 24078.84 0 -452917.892 ⎥ K5 = ⎢ 0 24078.84 20065.7 0 24078.84 ⎥ ⎢ -20065.7 ⎢ ⎥ 0 -115104.167 0 0 115104.167 0 ⎢⎣ -24078.84 0 -452917.892 24078.84 0 510707.108 ⎥⎦ ⎡ 20065.7 0 -24078.84 -20065.7 0 -24078.84 ⎤ ⎢ ⎥ 0 115104.167 0 0 -115104.167 0 ⎢ ⎥ -24078.84 0 510707.108 24078.84 0 -452917.892 ⎥ K8 ≔ K5 = ⎢ 0 24078.84 20065.7 0 24078.84 ⎥ ⎢ -20065.7 ⎢ ⎥ 0 -115104.167 0 0 115104.167 0 ⎢⎣ -24078.84 0 -452917.892 24078.84 0 510707.108 ⎥⎦

Calculo de K2, K3, K6 y K7 : I ≔ 0.9966

A ≔ 0.73124

Ac ≔ 0.36

12 ⋅ E ⋅ I = 14.418 ϕ ≔ ―――― G ⋅ Ac ⋅ h 2 ⎡ 12 ⋅ E ⋅ I ⎤ 6⋅E⋅I 0 ―――― ⎢ ―――― ⎥ 3 2 h ⋅ ((1 + ϕ)) ⎥ ⎢ h ⋅ ((1 + ϕ)) ⎡ 18235.278 0 21882.333 ⎤ A ⎢ ⎥ ⎢ ⎥ E ⋅ ―― 0 99022.083 0 K2 ≔ ⎢ 0 0 = ⎥ ⎢ ⎥ ((h)) 0 161215.05 ⎦ ⎢ ⎥ ⎣ 21882.333 ( ) 6 ⋅ E ⋅ I E ⋅ I ⋅ 4 + ϕ ) ( ⎢ ―――― 0 ―――― ⎥ ⎢⎣ h 2 ⋅ ((1 + ϕ)) h ⋅ ((1 + ϕ)) ⎥⎦ ⎡ 18235.278 0 21882.333 ⎤ ⎥ K3 ≔ K2 = ⎢ 0 99022.083 0 ⎢ ⎥ 0 161215.05 ⎦ ⎣ 21882.333 ⎡ 12 ⋅ E ⋅ I -6 ⋅ E ⋅ I -12 ⋅ E ⋅ I -6 ⋅ E ⋅ I ⎤ 0 0 ―――― ―――― ―――― ⎥ ⎢ ―――― 3 2 3 2 ( ) ( ) ( ) h 1 + ϕ h 1 + ϕ h 1 + ϕ h ⋅ ⋅ ⋅ ⋅ ((1 + ϕ)) ⎥ ) ) ) ( ( ( ⎢ ⎢ ⎥ A A 0 0 0 0 E ⋅ ―― -E ⋅ ―― ⎢ ⎥ ((h)) ((h)) ⎢ ⎥ ( ) ( ) E ⋅ I ⋅ (4 + ϕ) 6⋅E⋅I E ⋅ I ⋅ (2 - ϕ) ⎥ ⎢ -6 ⋅ E ⋅ I 0 0 ―――― ――――― ―――― ――――― ⎢ 2 ( h ⋅ ((1 + ϕ)) h ⋅ ((1 + ϕ)) ⎥ h ⋅ (1 + ϕ)) h 2 ⋅ ((1 + ϕ)) ⎥ K6 ≔ ⎢ -12 ⋅ E ⋅ I 6⋅E⋅I 12 ⋅ E ⋅ I 6⋅E⋅I ⎢ ―――― 0 0 ―――― ―――― ―――― ⎥ ⎢ h 3 ⋅ (1 + ϕ) h 2 ⋅ ((1 + ϕ)) h 3 ⋅ ((1 + ϕ)) h 2 ⋅ ((1 + ϕ)) ⎥ ) ( ⎢ ⎥ A A ⎢ ⎥ 0 0 0 0 -E ⋅ ―― E ⋅ ―― ⎢ ⎥ ((h)) ((h)) ⎢ -6 ⋅ E ⋅ I E ⋅ I ⋅ ((2 - ϕ)) 6⋅E⋅I E ⋅ I ⋅ ((4 + ϕ)) ⎥ ⎢ ―――― ⎥ 0 0 ――――― ―――― ――――― 2 h ⋅ ((1 + ϕ)) h ⋅ ((1 + ϕ)) ⎦⎥ h 2 ⋅ ((1 + ϕ)) ⎣⎢ h ⋅ ((1 + ϕ))

( ) ( ) ⎢ ⎥ E ⋅ I ⋅ ((4 + ϕ)) 6⋅E⋅I E ⋅ I ⋅ ((2 - ϕ)) ⎥ ⎢ -6 ⋅ E ⋅ I 0 0 ―――― ――――― ―――― ――――― ⎢ 2 ( h ⋅ ((1 + ϕ)) h ⋅ ((1 + ϕ)) ⎥ h ⋅ (1 + ϕ)) h 2 ⋅ ((1 + ϕ)) ⎥ K6 ≔ ⎢ -12 ⋅ E ⋅ I 6⋅E⋅I 12 ⋅ E ⋅ I 6⋅E⋅I ⎢ ―――― 0 0 ―――― ―――― ―――― ⎥ ⎢ h 3 ⋅ (1 + ϕ) h 2 ⋅ ((1 + ϕ)) h 3 ⋅ ((1 + ϕ)) h 2 ⋅ ((1 + ϕ)) ⎥ ) ( ⎢ ⎥ A A ⎢ ⎥ 0 0 0 0 -E ⋅ ―― E ⋅ ―― ⎢ ⎥ ((h)) ((h)) ⎢ -6 ⋅ E ⋅ I E ⋅ I ⋅ ((2 - ϕ)) 6⋅E⋅I E ⋅ I ⋅ ((4 + ϕ)) ⎥ ⎢ ―――― ⎥ 0 0 ――――― ―――― ――――― ⎢⎣ h 2 ⋅ ((1 + ϕ)) h ⋅ ((1 + ϕ)) h ⋅ ((1 + ϕ)) ⎥⎦ h 2 ⋅ ((1 + ϕ))

⎡ 18235.278 0 -21882.333 -18235.278 0 -21882.333 ⎤ ⎢ ⎥ 0 99022.083 0 0 -99022.083 0 ⎢ ⎥ -21882.333 0 161215.05 21882.333 0 -108697.45 ⎥ K6 = ⎢ 0 21882.333 18235.278 0 21882.333 ⎥ ⎢ -18235.278 ⎢ ⎥ 0 -99022.083 0 0 99022.083 0 ⎢⎣ -21882.333 0 -108697.45 21882.333 0 161215.05 ⎥⎦ ⎡ 18235.278 0 -21882.333 -18235.278 0 -21882.333 ⎤ ⎢ ⎥ 0 99022.083 0 0 -99022.083 0 ⎢ ⎥ -21882.333 0 161215.05 21882.333 0 -108697.45 ⎥ K7 ≔ K6 = ⎢ 0 21882.333 18235.278 0 21882.333 ⎥ ⎢ -18235.278 ⎢ ⎥ 0 -99022.083 0 0 99022.083 0 ⎢⎣ -21882.333 0 -108697.45 21882.333 0 161215.05 ⎥⎦ CÁLCULO DE RIGIDEZ PARA LAS VIGAS

PROPIEDADES MECANICAS DEL CONCRETO: f'c ≔ 210

kgf ―― cm 2

h ≔ 2.4 m

tonf E ≔ 150000 ⋅ ‾‾‾ f'c = 2173706.512 ―― 2 m

para la viga K9, K12 a ≔ 1.58

b ≔ 1.70

L≔1

⎡ 12 ⋅ E ⋅ I 6⋅E⋅I 12 ⋅ E ⋅ I ⋅a ―――― ―――+ ―――― ⎢ L3 L2 L3 ⎢ ⎢ 6⋅E⋅I 12 ⋅ E ⋅ I 4⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I ⋅a ⋅ a2 ⎢ ―――+ ―――― ―――+ ―――⋅ ((2 ⋅ a)) + ―――― L ⎢ L2 L3 L2 L3 K≔⎢ -12 ⋅ E ⋅ I -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I ⎢ - ―――― ⋅a ―――― ―――― ⎢ L3 L2 L3 ⎢ 6⋅E⋅I 12 ⋅ E ⋅ I 2⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I ⎢ ―――+ ―――― ⋅ b ―――+ ―――⋅ ((a + b)) + ―――― ⋅a⋅b ⎢⎣ L L2 L3 L2 L3

I ≔ 0.000583392857142857 ⎤ -12 ⋅ E ⋅ I 6⋅E⋅I 12 ⋅ E ⋅ I ⋅b ―――― ―――+ ―――― ⎥ L3 L2 L3 ⎥ ⎥ -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I 2⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I - ―――― ⋅ a ―――+ ―――⋅ ((a + b)) + ―――― ⋅a⋅b⎥ ―――― L ⎥ L2 L3 L2 L3 ⎥ 12 ⋅ E ⋅ I -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I ⎥ - ―――― ⋅b ―――― ―――― 3 2 3 ⎥ L L L ⎥ -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I 4⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I 2 ⎥ ( ) - ―――― ⋅b ⋅b ―――― ―――+ ―――⋅ (2 b) + ―――― ⎥⎦ L L2 L3 L2 L3

⎡ 15217.498 31652.396 -15217.498 33478.496 ⎤ ⎢ 31652.396 67105.109 -31652.396 68367.147 ⎥ K9 ≔ K = ⎢ ⎥ ⎢ -15217.498 -31652.396 15217.498 -33478.496 ⎥ ⎣ 33478.496 68367.147 -33478.496 74920.816 ⎦ ⎡ 15217.498 31652.396 -15217.498 33478.496 ⎤ ⎢ 31652.396 67105.109 -31652.396 68367.147 ⎥ K12 ≔ K = ⎢ ⎥ ⎢ -15217.498 -31652.396 15217.498 -33478.496 ⎥ ⎣ 33478.496 68367.147 -33478.496 74920.816 ⎦

para la viga 11 y 14 a ≔ 1.3

b ≔ 1.58

L ≔ 1.0

⎡ 12 ⋅ E ⋅ I 6⋅E⋅I 12 ⋅ E ⋅ I ⋅a ―――― ―――+ ―――― ⎢ L3 L2 L3 ⎢ ⎢ 6⋅E⋅I 12 ⋅ E ⋅ I 4⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I ⋅a ⋅ a2 ⎢ ―――+ ―――― ―――+ ―――⋅ ((2 ⋅ a)) + ―――― L ⎢ L2 L3 L2 L3 K≔⎢ -12 ⋅ E ⋅ I -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I ⎢ - ―――― ⋅a ―――― ―――― ⎢ L3 L2 L3 ⎢ 6⋅E⋅I 12 ⋅ E ⋅ I 2⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I ⎢ ―――+ ―――― ⋅ b ―――+ ―――⋅ ((a + b)) + ―――― ⋅a⋅b 2 3 2 3 ⎢ L

⎤ -12 ⋅ E ⋅ I 6⋅E⋅I 12 ⋅ E ⋅ I ⋅b ―――― ―――+ ―――― ⎥ L3 L2 L3 ⎥ ⎥ -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I 2⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I - ―――― ⋅ a ―――+ ―――⋅ ((a + b)) + ―――― ⋅a⋅b⎥ ―――― 2 3 2 3 L ⎥ L L L L ⎥ 12 ⋅ E ⋅ I -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I ⎥ - ―――― ⋅b ―――― ―――― ⎥ L3 L2 L3 ⎥ -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I 4⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I 2 ⎥ ( ) - ―――― ⋅b ⋅b ―――― ―――+ ―――⋅ (2 b) + ―――― 2 3 2 3 ⎥ L

⎡ 12 ⋅ E ⋅ I 6⋅E⋅I 12 ⋅ E ⋅ I ⋅a ―――― ―――+ ―――― ⎢ L3 L2 L3 ⎢ ⎢ 6⋅E⋅I 12 ⋅ E ⋅ I 4⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I ⋅a ⋅ a2 ⎢ ―――+ ―――― ―――+ ―――⋅ ((2 ⋅ a)) + ―――― L ⎢ L2 L3 L2 L3 K≔⎢ -12 ⋅ E ⋅ I -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I ⎢ - ―――― ⋅a ―――― ―――― ⎢ L3 L2 L3 ⎢ 6⋅E⋅I 12 ⋅ E ⋅ I 2⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I ⎢ ―――+ ―――― ⋅ b ―――+ ―――⋅ ((a + b)) + ―――― ⋅a⋅b ⎢⎣ L L2 L3 L2 L3

⎤ -12 ⋅ E ⋅ I 6⋅E⋅I 12 ⋅ E ⋅ I ⋅b ―――― ―――+ ―――― ⎥ L3 L2 L3 ⎥ ⎥ -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I 2⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I - ―――― ⋅ a ―――+ ―――⋅ ((a + b)) + ―――― ⋅a⋅b⎥ ―――― L ⎥ L2 L3 L2 L3 ⎥ 12 ⋅ E ⋅ I -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I ⎥ - ―――― ⋅b ―――― ―――― 3 2 3 ⎥ L L L ⎥ -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I 4⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I - ―――― ⋅b ⋅ b2 ⎥ ―――― ―――+ ―――⋅ ((2 b)) + ―――― 2 3 2 3 ⎥⎦ L L L L L

⎡ 15217.498 27391.497 -15217.498 31652.396 ⎤ ⎢ 27391.497 50572.819 -27391.497 55706.189 ⎥ K11 ≔ K = ⎢ ⎥ ⎢ -15217.498 -27391.497 15217.498 -31652.396 ⎥ ⎣ 31652.396 55706.189 -31652.396 67105.109 ⎦

⎡ 15217.498 27391.497 -15217.498 31652.396 ⎤ ⎢ 27391.497 50572.819 -27391.497 55706.189 ⎥ K14 ≔ K = ⎢ ⎥ ⎢ -15217.498 -27391.497 15217.498 -31652.396 ⎥ ⎣ 31652.396 55706.189 -31652.396 67105.109 ⎦

para la viga 10 y 13 a ≔ 1.30

b ≔ 1.70

L ≔ 2.45

⎡ 12 ⋅ E ⋅ I 6⋅E⋅I 12 ⋅ E ⋅ I ⋅a ―――― ―――+ ―――― ⎢ L3 L2 L3 ⎢ ⎢ 6⋅E⋅I 12 ⋅ E ⋅ I 4⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I ⋅a ⋅ a2 ⎢ ―――+ ―――― ―――+ ―――⋅ ((2 ⋅ a)) + ―――― L ⎢ L2 L3 L2 L3 K≔⎢ -12 ⋅ E ⋅ I -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I ⎢ - ―――― ⋅a ―――― ―――― ⎢ L3 L2 L3 ⎢ 6⋅E⋅I 12 ⋅ E ⋅ I 2⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I ⎢ ―――+ ―――― ⋅ b ―――+ ―――⋅ ((a + b)) + ―――― ⋅a⋅b ⎢⎣ L L2 L3 L2 L3

⎤ -12 ⋅ E ⋅ I 6⋅E⋅I 12 ⋅ E ⋅ I ⋅b ―――― ―――+ ―――― ⎥ L3 L2 L3 ⎥ ⎥ -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I 2⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I - ―――― ⋅ a ―――+ ―――⋅ ((a + b)) + ―――― ⋅a⋅b⎥ ―――― L ⎥ L2 L3 L2 L3 ⎥ 12 ⋅ E ⋅ I -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I ⎥ - ―――― ⋅b ―――― ―――― ⎥ L3 L2 L3 ⎥ -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I 4⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I - ―――― ⋅b ⋅ b2 ⎥ ―――― ―――+ ―――⋅ ((2 b)) + ―――― 2 3 2 3 ⎥⎦ L L L L L

⎡ 1034.773 2612.801 -1034.773 3026.71 ⎤ ⎢ 2612.801 7114.925 -2612.801 7124.842 ⎥ K10 ≔ K = ⎢ ⎥ ⎢ -1034.773 -2612.801 1034.773 -3026.71 ⎥ 7124.842 -3026.71 9370.73 ⎦ ⎣ 3026.71 ⎡ 1034.773 2612.801 -1034.773 3026.71 ⎤ ⎢ 2612.801 7114.925 -2612.801 7124.842 ⎥ K13 ≔ K = ⎢ ⎥ ⎢ -1034.773 -2612.801 1034.773 -3026.71 ⎥ 7124.842 -3026.71 9370.73 ⎦ ⎣ 3026.71

CÁLCULO DE LA MATRIZ A ⎡1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0⎤ A1 ≔ ⎢ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎥ ⎢ ⎥ ⎣0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0⎦ ⎡1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0⎤ A2 ≔ ⎢ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎥ ⎢ ⎥ ⎣0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0⎦ ⎡1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0⎤ A3 ≔ ⎢ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ⎥ ⎢ ⎥ ⎣0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0⎦ ⎡1 A4 ≔ ⎢ 0 ⎢ ⎣0 ⎡1 ⎢0 ⎢ 0 A5 ≔ ⎢ ⎢0 ⎢0 ⎢⎣ 0

0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0⎤ 0⎥ ⎥ 0⎦ 0⎤ 0⎥ ⎥ 0⎥ 0⎥ 0⎥ 0 ⎥⎦

⎡1 A4 ≔ ⎢ 0 ⎢ ⎣0 ⎡1 ⎢0 ⎢ 0 A5 ≔ ⎢ ⎢0 ⎢0 ⎢⎣ 0

0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0⎤ 0⎥ ⎥ 0⎦ 0⎤ 0⎥ ⎥ 0⎥ 0⎥ 0⎥ 0 ⎥⎦

⎡1 ⎢0 ⎢ 0 A6 ≔ ⎢ ⎢0 ⎢0 ⎢⎣ 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0⎤ 0⎥ ⎥ 0⎥ 0⎥ 0⎥ 0 ⎥⎦

⎡1 ⎢0 ⎢ 0 A7 ≔ ⎢ ⎢0 ⎢0 ⎢⎣ 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0⎤ 0⎥ ⎥ 0⎥ 0⎥ 0⎥ 0 ⎥⎦

⎡1 ⎢0 ⎢ 0 A8 ≔ ⎢ ⎢0 ⎢0 ⎢⎣ 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0⎤ 0⎥ ⎥ 0⎥ 0⎥ 0⎥ 1 ⎥⎦

⎡0 ⎢0 A9 ≔ ⎢ ⎢0 ⎣0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0⎤ 0⎥ ⎥ 0⎥ 0⎦

⎡0 ⎢0 A10 ≔ ⎢ ⎢0 ⎣0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0⎤ 0⎥ ⎥ 0⎥ 0⎦

⎡0 ⎢0 A11 ≔ ⎢ ⎢0 ⎣0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0⎤ 0⎥ ⎥ 0⎥ 0⎦

⎡0 ⎢0 A12 ≔ ⎢ ⎢0 ⎣0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0⎤ 0⎥ ⎥ 0⎥ 0⎦

⎡0 ⎢0 A13 ≔ ⎢ ⎢0 ⎣0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0⎤ 0⎥ ⎥ 0⎥ 0⎦

⎡0 ⎢0 A14 ≔ ⎢ ⎢0 ⎣0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0⎤ 0⎥ ⎥ 0⎥ 1⎦

CÁLCULO DE LA MATRIZ DEL PORTICO EN EL EJE X-X

CÁLCULO DE LA MATRIZ DEL PORTICO EN EL EJE X-X Ki ≔ 1 i ≔ 1 14 T K ((portico)) ≔ ∑ Ai ⋅ Ki ⋅ Ai i

KG ≔ A1 T ⋅ K1 ⋅ A1 + A2 T ⋅ K2 ⋅ A2 + A3 T ⋅ K3 ⋅ A3 + A4 T ⋅ K4 ⋅ A4 + A5 T ⋅ K5 ⋅ A5 + A6 T ⋅ K6 ⋅ A6 + A7 T ⋅ K7 ⋅ A7 + A8 T ⋅ K8 ⋅ A8 + A9 T ⋅ K9 ⋅ A9 + A10 T ⋅ K10 ⋅ A10 + A11 T ⋅ K11 ⋅ A11 + A12 T ⋅ K12 ⋅ A12 + A

⎡ 153203.912 ⎢ -76601.956 ⎢ 0 ⎢ ⎢ 0 ⎢ 0 ⎢ 0 ⎢ 0 ⎢ ⎢ 0 ⎢ 0 KG = ⎢ 0 ⎢ ⎢ 0 ⎢ -24078.84 ⎢ 0 ⎢ ⎢ -21882.333 ⎢ 0 ⎢ ⎢ -21882.333 ⎢ 0 ⎢ -24078.84 ⎣

-76601.956 76601.956 0 24078.84 0 21882.333 0 21882.333 0 24078.84 0 24078.84 0 21882.333 0 21882.333 0 24078.84

0 0 245425.832 31652.396 -15217.498 33478.496 0 0 0 0 -115104.167 0 0 0 0 0 0 0

0 24078.84 31652.396 1088519.326 -31652.396 68367.147 0 0 0 0 0 -452917.892 0 0 0 0 0 0

0 0 -15217.498 -31652.396 214296.438 -30865.695 -1034.773 3026.71 0 0 0 0 -99022.083 0 0 0 0 0

0 21882.333 33478.496 68367.147 -30865.695 404465.841 -2612.801 7124.842 0 0 0 0 0 -108697.45 0 0 0 0

0 0 0 0 -1034.773 -2612.801 214296.438 24364.786 -15217.498 31652.396 0 0 0 0 -99022.083 0 0 0

0 21882.333 0 0 3026.71 7124.842 24364.786 382373.649 -27391.497 55706.189 0 0 0 0 0 -108697.45 0 0

0 0 0 0 0 0 -15217.498 -27391.497 245425.832 -31652.396 0 0 0 0 0 0 -115104.167 0

0 24078.84 0 0 0 0 31652.396 55706.189 -31652.396 1088519.326 0 0 0 0 0 0 0 -452917.892

0 0 -115104.167 0 0 0 0 0 0 0 130321.665 31652.396 -15217.498 33478.496 0 0 0 0

-24078.84 24078.84 0 -452917.892 0 0 0 0 0 0 31652.396 577812.218 -31652.396 68367.147 0 0 0 0

0 0 0 0 -99022.083 0 0 0 0 0 -15217.498 -31652.396 115274.354 -30865.695 -1034.773 3026.71 0 0

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ … ⎥⎦

CÁLCULO DE LA MATRIZ LATERAL DEL PORTICO EN EL EJE X-X KL ≔ KLL - KLO ⋅ KOO -1 ⋅ KOL ⎡ 153203.912 -76601.956 ⎤ KLL ≔ ⎢ ⎣ -76601.956 76601.956 ⎥⎦ ⎡0 0 0 0 0 0 0 0 0 -24078.84 0 -21882.333 0 -21882.333 0 -24078.84 ⎤ KLO ≔ ⎢ ⎣ 0 24078.84 0 21882.333 0 21882.333 0 24078.84 0 24078.84 0 21882.333 0 21882.333 0 24078.84 ⎥⎦ ⎡ 0 ⎢ 0 ⎢ 0 ⎢ 0 ⎢ ⎢ 0 ⎢ 0 ⎢ 0 ⎢ 0 ⎢ KOL ≔ ⎢ 0 ⎢ -24078.84 ⎢ 0 ⎢ ⎢ -21882.333 ⎢ 0 ⎢ -21882.333 ⎢ 0 ⎢ ⎢⎣ -24078.84 ⎡ 245425.832 ⎢ 31652.396 ⎢ ⎢ -15217.498 ⎢ 33478.496 ⎢ 0 ⎢ 0 ⎢ 0 ⎢ ⎢ 0 KOO ≔ ⎢ ⎢ -115104.167 0 ⎢ ⎢ 0 ⎢ 0 ⎢ 0 ⎢ ⎢ 0 ⎢ 0 ⎢ 0 ⎣

⎤ 0 24078.84 ⎥ ⎥ 0 ⎥ 21882.333 ⎥ ⎥ 0 21882.333 ⎥ ⎥ 0 ⎥ 24078.84 ⎥ ⎥ 0 24078.84 ⎥ ⎥ 0 ⎥ 21882.333 ⎥ ⎥ 0 21882.333 ⎥ ⎥ 0 ⎥ 24078.84 ⎥⎦

31652.396 1088519.326 -31652.396 68367.147 0 0 0 0 0 -452917.892 0 0 0 0 0 0

-15217.498 -31652.396 214296.438 -30865.695 -1034.773 3026.71 0 0 0 0 -99022.083 0 0 0 0 0

33478.496 68367.147 -30865.695 404465.841 -2612.801 7124.842 0 0 0 0 0 -108697.45 0 0 0 0

0 0 -1034.773 -2612.801 214296.438 24364.786 -15217.498 31652.396 0 0 0 0 -99022.083 0 0 0

0 0 3026.71 7124.842 24364.786 382373.649 -27391.497 55706.189 0 0 0 0 0 -108697.45 0 0

0 0 0 0 -15217.498 -27391.497 245425.832 -31652.396 0 0 0 0 0 0 -115104.167 0

0 0 0 0 31652.396 55706.189 -31652.396 1088519.326 0 0 0 0 0 0 0 -452917.892

-115104.167 0 0 0 0 0 0 0 130321.665 31652.396 -15217.498 33478.496 0 0 0 0

⎡ 146013.117 -67033.577 ⎤ -1 KL ≔ KLL - KLO ⋅ KOO ⋅ KOL = ⎢ ⎥ ⎣ -67033.577 60549.83 ⎦

0 -452917.892 0 0 0 0 0 0 31652.396 577812.218 -31652.396 68367.147 0 0 0 0

0 0 -99022.083 0 0 0 0 0 -15217.498 -31652.396 115274.354 -30865.695 -1034.773 3026.71 0 0

0 0 0 -108697.45 0 0 0 0 33478.496 68367.147 -30865.695 243250.791 -2612.801 7124.842 0 0

0 0 0 0 -99022.083 0 0 0 0 0 -1034.773 -2612.801 115274.354 24364.786 -15217.498 31652.396

0 0 0 0 0 -108697.45 0 0 0 0 3026.71 7124.842 24364.786 221158.599 -27391.497 55706.189

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ …⎦

PORTICO EJE "1" DIRECCION Y -Y

CÁLCULO DE RIGIDEZ PARA LOS MUROS

PROPIEDADES MECANICAS PARA LA ALBAÑILERIA: tonf

f'm ≔ 650 ―― 2

h ≔ 2.4 m

m

tonf

E ≔ 500 ⋅ f'm = 325000 ―― 2 m tonf G ≔ 0.4 ⋅ E = 130000 ―― m2

Calculo de K1, K2, K3 y K4 : I ≔ 0.628623

Ac ≔ 0.3

A ≔ 0.66

12 ⋅ E ⋅ I ϕ ≔ ―――― = 10.914 G ⋅ Ac ⋅ h 2

⎡ 12 ⋅ E ⋅ I ⎤ 6⋅E⋅I 0 ―――― ⎥ ⎢ ―――― 3 2 ( ) ( ) h ⋅ (1 + ϕ) ⎥ ⎢ h ⋅ (1 + ϕ) ⎡ 0 17863.214 ⎤ ⎢ ⎥ ⎢ 14886.012 A ⎥ E ⋅ ―― 0 0 K1 ≔ ⎢ 0 89375 0 ⎥=⎢ ⎥ ( ) (h) ⎢ ⎥ ⎣ 17863.214 0 106561.888 ⎦ E ⋅ I ⋅ ((4 + ϕ)) ⎥ ⎢ 6⋅E⋅I 0 ――――― ⎢ ―――― ⎥ 2 h ⋅ ((1 + ϕ)) ⎦ ⎣ h ⋅ ((1 + ϕ)) ⎡ 14886.012 0 17863.214 ⎤ ⎥ K2 ≔ K1 = ⎢ 0 89375 0 ⎢ ⎥ 0 106561.888 ⎦ ⎣ 17863.214 ⎡ 12 ⋅ E ⋅ I -6 ⋅ E ⋅ I -12 ⋅ E ⋅ I -6 ⋅ E ⋅ I ⎤ 0 0 ―――― ―――― ―――― ⎥ ⎢ ―――― 3 h 2 ⋅ ((1 + ϕ)) h 3 ⋅ ((1 + ϕ)) h 2 ⋅ ((1 + ϕ)) ⎥ ⎢ h ⋅ ((1 + ϕ)) ⎢ ⎥ A A E ⋅ ―― -E ⋅ ―― 0 0 0 0 ⎢ ⎥ ( ) ( ) h h ) ) ( ( ⎢ ⎥ E ⋅ I ⋅ ((4 + ϕ)) 6⋅E⋅I E ⋅ I ⋅ ((2 - ϕ)) ⎥ ⎢ -6 ⋅ E ⋅ I 0 0 ――――――――― ――――― ⎢ ―――― ⎥ h ⋅ ((1 + ϕ)) h ⋅ ((1 + ϕ)) ⎥ h 2 ⋅ ((1 + ϕ)) h 2 ⋅ ((1 + ϕ)) K3 ≔ ⎢ 6⋅E⋅I 12 ⋅ E ⋅ I 6⋅E⋅I ⎢ -12 ⋅ E ⋅ I ⎥

⎡ 14886.012 0 17863.214 ⎤ ⎥ K2 ≔ K1 = ⎢ 0 89375 0 ⎢ ⎥ 0 106561.888 ⎦ ⎣ 17863.214 ⎡ 12 ⋅ E ⋅ I -6 ⋅ E ⋅ I -12 ⋅ E ⋅ I -6 ⋅ E ⋅ I ⎤ 0 0 ―――― ―――― ―――― ⎥ ⎢ ―――― 3 2 3 2 ( ) ( ) ( ) h 1 + ϕ h 1 + ϕ h 1 + ϕ h ⋅ ⋅ ⋅ ⋅ ((1 + ϕ)) ⎥ ) ) ) ( ( ( ⎢ ⎢ ⎥ A A E ⋅ ―― -E ⋅ ―― 0 0 0 0 ⎢ ⎥ ( ) ( ) (h) (h) ⎢ ⎥ E ⋅ I ⋅ ((4 + ϕ)) 6⋅E⋅I E ⋅ I ⋅ ((2 - ϕ)) ⎥ ⎢ -6 ⋅ E ⋅ I 0 0 ―――― ――――― ―――― ――――― ⎢ 2 ⎥ h ⋅ ((1 + ϕ)) h ⋅ ((1 + ϕ)) ⎥ h ⋅ ((1 + ϕ)) h 2 ⋅ ((1 + ϕ)) K3 ≔ ⎢ 6⋅E⋅I 12 ⋅ E ⋅ I 6⋅E⋅I ⎢ -12 ⋅ E ⋅ I ⎥ 0 0 ―――― ―――― ―――― ⎥ ⎢ ―――― 3 2 3 2 ( ) ( ) ( ) ( ) h ⋅ 1 + ϕ h ⋅ 1 + ϕ h ⋅ 1 + ϕ h ⋅ 1 + ϕ ) ) ) ) ( ( ( ( ⎢ ⎥ A A ⎢ ⎥ -E ⋅ ―― E ⋅ ―― 0 0 0 0 ⎢ ⎥ ((h)) ((h)) ⎢ ⎥ E ⋅ I ⋅ ((2 - ϕ)) 6⋅E⋅I E ⋅ I ⋅ ((4 + ϕ)) ⎥ ⎢ -6 ⋅ E ⋅ I 0 0 ―――― ――――― ―――― ――――― ⎢ 2 ( h ⋅ ((1 + ϕ)) h ⋅ ((1 + ϕ)) ⎥⎦ h 2 ⋅ ((1 + ϕ)) ⎣ h ⋅ (1 + ϕ))

⎡ 14886.012 0 -17863.214 -14886.012 0 -17863.214 ⎤ ⎢ ⎥ 0 89375 0 0 -89375 0 ⎢ ⎥ -17863.214 0 106561.888 17863.214 0 -63690.174 ⎥ K3 = ⎢ 0 17863.214 14886.012 0 17863.214 ⎥ ⎢ -14886.012 ⎢ ⎥ 0 -89375 0 0 89375 0 ⎢⎣ -17863.214 0 -63690.174 17863.214 0 106561.888 ⎥⎦ ⎡ 14886.012 0 -17863.214 -14886.012 0 -17863.214 ⎤ ⎢ ⎥ 0 89375 0 0 -89375 0 ⎢ ⎥ -17863.214 0 106561.888 17863.214 0 -63690.174 ⎥ K4 ≔ K3 = ⎢ 0 17863.214 14886.012 0 17863.214 ⎥ ⎢ -14886.012 ⎢ ⎥ 0 -89375 0 0 89375 0 ⎢⎣ -17863.214 0 -63690.174 17863.214 0 106561.888 ⎥⎦ CÁLCULO DE RIGIDEZ PARA LAS VIGAS

PROPIEDADES MECANICAS DEL CONCRETO: f'c ≔ 210

kgf ―― cm 2

h ≔ 2.4 m

tonf E ≔ 150000 ⋅ ‾‾‾ f'c = 2173706.512 ―― 2 m

para la viga K5, K6 a ≔ 1.10

b ≔ 1.10

L ≔ 3.15

⎡ 12 ⋅ E ⋅ I 6⋅E⋅I 12 ⋅ E ⋅ I ⋅a ―――― ―――+ ―――― ⎢ L3 L2 L3 ⎢ ⎢ 6⋅E⋅I 12 ⋅ E ⋅ I 4⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I ⋅a ⋅ a2 ⎢ ―――+ ―――― ―――+ ―――⋅ ((2 ⋅ a)) + ―――― L ⎢ L2 L3 L2 L3 K≔⎢ -12 ⋅ E ⋅ I -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I ⎢ - ―――― ⋅a ―――― ―――― ⎢ L3 L2 L3 ⎢ 6⋅E⋅I 12 ⋅ E ⋅ I 2⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I ⎢ ―――+ ―――― ⋅ b ―――+ ―――⋅ ((a + b)) + ―――― ⋅a⋅b ⎢⎣ L L2 L3 L2 L3

⎤ -12 ⋅ E ⋅ I 6⋅E⋅I 12 ⋅ E ⋅ I ⋅b ―――― ―――+ ―――― ⎥ L3 L2 L3 ⎥ ⎥ -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I 2⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I - ―――― ⋅ a ―――+ ―――⋅ ((a + b)) + ―――― ⋅a⋅b⎥ ―――― L ⎥ L2 L3 L2 L3 ⎥ 12 ⋅ E ⋅ I -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I ⎥ - ―――― ⋅b ―――― ―――― ⎥ L3 L2 L3 ⎥ -6 ⋅ E ⋅ I 12 ⋅ E ⋅ I 4⋅E⋅I 6⋅E⋅I 12 ⋅ E ⋅ I - ―――― ⋅b ⋅ b2 ⎥ ―――― ―――+ ―――⋅ ((2 b)) + ―――― ⎥⎦ L L2 L3 L2 L3

⎡ 486.868 1302.373 -486.868 1302.373 ⎤ ⎢ 1302.373 3886.427 -1302.373 3081.268 ⎥ K5 ≔ K = ⎢ ⎥ 486.868 -1302.373 ⎥ ⎢ -486.868 -1302.373 ⎣ 1302.373 3081.268 -1302.373 3886.427 ⎦ ⎡ 486.868 1302.373 -486.868 1302.373 ⎤ ⎢ 1302.373 3886.427 -1302.373 3081.268 ⎥ K6 ≔ K = ⎢ ⎥ 486.868 -1302.373 ⎥ ⎢ -486.868 -1302.373 ⎣ 1302.373 3081.268 -1302.373 3886.427 ⎦

CÁLCULO DE LA MATRIZ A

I ≔ 0.000583392857142857

⎡ 486.868 1302.373 -486.868 1302.373 ⎤ ⎢ 1302.373 3886.427 -1302.373 3081.268 ⎥ K6 ≔ K = ⎢ ⎥ 486.868 -1302.373 ⎥ ⎢ -486.868 -1302.373 ⎣ 1302.373 3081.268 -1302.373 3886.427 ⎦

CÁLCULO DE LA MATRIZ A ⎡1 0 0 0 0 0 0 0 0 0⎤ A1 ≔ ⎢ 0 0 1 0 0 0 0 0 0 0 ⎥ ⎢ ⎥ ⎣0 0 0 1 0 0 0 0 0 0⎦ ⎡1 A2 ≔ ⎢ 0 ⎢ ⎣0 ⎡1 ⎢0 ⎢ 0 A3 ≔ ⎢ ⎢0 ⎢0 ⎢⎣ 0

0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

0⎤ 0⎥ ⎥ 0⎦ 0⎤ 0⎥ ⎥ 0⎥ 0⎥ 0⎥ 0 ⎥⎦

⎡1 ⎢0 ⎢ 0 A4 ≔ ⎢ ⎢0 ⎢0 ⎢⎣ 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0⎤ 0⎥ ⎥ 0⎥ 0⎥ 0⎥ 1 ⎥⎦

⎡0 ⎢0 A5 ≔ ⎢ ⎢0 ⎣0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0⎤ 0⎥ ⎥ 0⎥ 0⎦

⎡0 ⎢0 A6 ≔ ⎢ ⎢0 ⎣0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0⎤ 0⎥ ⎥ 0⎥ 1⎦

CÁLCULO DE LA MATRIZ DEL PORTICO EN EL EJE X-X Ki ≔ 1 i ≔ 1 14 T ( ) K (portico) ≔ ∑ Ai ⋅ Ki ⋅ Ai i

KG ≔ A1 T ⋅ K1 ⋅ A1 + A2 T ⋅ K2 ⋅ A2 + A3 T ⋅ K3 ⋅ A3 + A4 T ⋅ K4 ⋅ A4 + A5 T ⋅ K5 ⋅ A5 + A6 T ⋅ K6 ⋅ A6 ⎡ 59544.048 -29772.024 0 0 0 0 0 -17863.214 0 -17863.214 ⎤ ⎢ -29772.024 29772.024 0 17863.214 0 17863.214 0 17863.214 0 17863.214 ⎥ ⎢ ⎥ 0 0 179236.868 1302.373 1302.373 0 0 0 -486.868 -89375 ⎢ ⎥ -63690.174 0 17863.214 1302.373 217010.204 -1302.373 3081.268 0 0 0 ⎢ ⎥ ⎢ ⎥ -486.868 -1302.373 179236.868 -1302.373 -89375 0 0 0 0 0 KG = ⎢ -63690.174 ⎥ 0 17863.214 1302.373 3081.268 -1302.373 217010.204 0 0 0 ⎢ ⎥ -89375 -486.868 0 0 0 0 0 89861.868 1302.373 1302.373 ⎥ ⎢ ⎢ -17863.214 -63690.174 17863.214 0 0 0 1302.373 110448.315 -1302.373 3081.268 ⎥ ⎢ -89375 -486.868 -1302.373 0 0 0 0 0 89861.868 -1302.373 ⎥ ⎢ ⎥ 17863.214 0 0 0 1302.373 3081.268 -1302.373 110448.315 ⎦ -63690.174 ⎣ -17863.214

CÁLCULO DE LA MATRIZ LATERAL DEL PORTICO EN EL EJE X-X KL ≔ KLL - KLO ⋅ KOO -1 ⋅ KOL ⎡ 59544.048 -29772.024 ⎤ KLL ≔ ⎢ ⎣ -29772.024 29772.024 ⎥⎦

⎡ 59544.048 -29772.024 ⎤ KLL ≔ ⎢ ⎣ -29772.024 29772.024 ⎥⎦ ⎡0 0 0 0 0 -17863.214 0 -17863.214 ⎤ KLO ≔ ⎢ ⎣ 0 17863.214 0 17863.214 0 17863.214 0 17863.214 ⎥⎦ ⎡ ⎤ 0 0 ⎢ 0 17863.214 ⎥ ⎢ ⎥ 0 0 ⎢ ⎥ 0 17863.214 ⎥ ⎢ KOL ≔ ⎢ ⎥ 0 0 ⎢ -17863.214 17863.214 ⎥ ⎢ ⎥ 0 0 ⎢ ⎥ ⎣ -17863.214 17863.214 ⎦ ⎡ 179236.868 1302.373 ⎤ -486.868 1302.373 -89375 0 0 0 ⎢ 1302.373 217010.204 -1302.373 3081.268 ⎥ 0 -63690.174 0 0 ⎢ ⎥ 0 0 -89375 0 ⎢ -486.868 -1302.373 179236.868 -1302.373 ⎥ 1302.373 3081.268 -1302.373 217010.204 0 0 0 -63690.174 ⎥ ⎢ KOO ≔ ⎢ -89375 0 0 0 89861.868 1302.373 -486.868 1302.373 ⎥ ⎢ 0 -63690.174 0 0 1302.373 110448.315 -1302.373 3081.268 ⎥ ⎢ ⎥ 0 0 -89375 0 -486.868 -1302.373 89861.868 -1302.373 ⎥ ⎢ 0 0 0 -63690.174 1302.373 3081.268 -1302.373 110448.315 ⎦ ⎣

⎡ 52819.354 -21098.431 ⎤ -1 KL ≔ KLL - KLO ⋅ KOO ⋅ KOL = ⎢ ⎥ ⎣ -21098.431 15684.085 ⎦

Related Documents

Alb
November 2019 40
Alb
April 2020 25
Predi Portico
December 2019 4
Cartas De Claudina Portico
October 2019 20

More Documents from ""