DAY 3
AIRCRAFT AS SEEN BY DIFFERENT GROUPS Stress group
Aerodynamic group
Production group
FLOW CHART OF AN A/C DESIGN Design Specification Design Criteria Basic Loads Flight Test Data
Airplane Design
Certification Test Program Approved Type Certificate
Laboratory Development Test Data
DESIGN CYCLE OF AN A/C
LOAD FACTOR LOAD FACTOR : A factor which defines load in terms of weight
L+∆ L=W+F
L=W
W ∆L = F = Az g Az ∆L + L = W 1 + g
∴
A ∆L n =1+ =1+ g W
DESIGN LOAD FACTOR (6 to 8)
(2 to 3)
WING LOAD CASES • CASE A – Large angles of attack corresponding to CLmax while reaching a load factor of nmax (steep climb)
• CASE A’ – Reaching a load factor of nmax at maximum airspeed
• CASE B – Reaching a load factor of 0.5nmax at maximum airspeed with Ailerons deflected
• CASE C – Ailerons deflected at maximum airspeed (dive)
• CASE D & D’ – Acrobatic maneuvers with a negative load factor
WING LOAD REGIONS
Region I : n=nmax Region II : 0≤ n
CONSTRUCTION OF V-n DIAGRAM L = W = C Lmax From (1)
Vs1 =
Vs12 S 296
296 W
S
………….(2)
Vsn2 S 296
………….(3)
C Lmax
nW = C Lmax
………….(1)
From (1) & (3) we get
Vsn = Vs1 n n = C Lmax
Vs2 296 W / S
………….(4)
………….(5)
V-n DIAGRAM
MANEUVERING V-n DIAGRAM
GUST V-n DIAGRAM
LIMITING LOAD FACTOR VALUES S.No
Weight of the airplane
Limiting load factor
1
< 4118
3.8
2
4118 - 50000
3
> 50000
nlim it
24, 000 = 2.1 + ( Wto + 10, 000 )
2.1
AIRCRAFT STRUCTURAL DESIGN
PHASES OF AIRCRAFT STRUCTURAL DESIGN • • • •
Specification of function and design criteria Determination of basic external loads Calculation of internal element loads Determination of allowable element strengths and margins of safety • Experimental demonstration or subtantiation test program
CLASSIFICATION • CRITICAL – ALL PRIMARY STRUCTURES FUSELAGE WING EMPENNAGE AILERON / FLAPS/STABILIZERS
• NEAR CRITICAL PARTS – TRAILING EDGE PANELS OF WINGS & EMPENNAGE – RADOME
• NON-CRITICAL PARTS – FAIRINGS / INTERIOR PANELS
CRITERIA FOR MATERIAL SELECTION • • • • • • • •
Light weight Stiffness Toughness Resistance to corrosion Fatigue Environmental heat Availability Easy to fabricate
MATERIALS • • • •
Aluminum alloy Titanium Steel Composites
SIGN CONVENTIONS
A) AXIAL FORCE
D) TORQUE
B) SHEAR FORCE
E) SHEAR FLOW
C) BENDING MOMENT
F) ANGLE & ROTATION
SIGN CONVENTIONS (REACTION LOADS)
A) AXIAL & SHEAR
B) BENDING MOMENT
C) TORQUE
STRUCTURAL INDEX • STRUCTURAL INDEX OFFERS THE DESIGNER A GUIDE TO DESIGN THE OPTIMUM TYPE OF STRUCTURE • STRUCTURAL INDEX IS USEFUL IN DESIGN WORK BECAUSE IT CONTAINS – THE INTENSITY OF THE LOAD – DIMENSIONS, WHICH LIMIT THE SIZE OF THE STRUCTURE
STRUCTURAL INDEX
A) SHEAR
B) TORSION
E) PANEL
F) TUBE
C) COLUMN
D) WIDE COLUMN
G) WING BOX
SEQUENCE OF STRESS WORK • PRELIMINARY SIZING • PRODUCTION STRESS ANALYSIS • FORMAL STRESS ANALYSIS FOR CERTIFICATION
PRELIMINARY SIZING Step1 : Recognize the function and configuration of the component Step2 : Basic loads (static / fatigue / fail safe / crash) Step3 : Material selection (static / fatigue / fracture toughness) Step4 : Fastener and repairability Step5 : Efficient structure (Fabrication / Configuration / assembly / installation / stiffness) Step6 : Cost ( Manufacturing / assembly/ performance / market)
EQUILIBRIUM OF FORCES • THE FORCE EQUILIBRIUM EQUATIONS ARE
∑F = 0 ∑F = 0 ∑M = 0 X
Y
FREE BODY DIAGRAM L
A STRUCTURE
∑F
x
=0⇒
T = 1200 lb
∑M
B
P
C B 1200 lb 40000 lb-in
T
W=8000 lb
=0 ⇒
1200 * 10 + P * 150 −8000 * 6 = 40000 15P = 7600 P = 506
∑F
Y
=0⇒
L + P = 8000 L = 7494
TRUSS TRUSSES ARE CLASSIFIED AS - STATICALLY DETERMINATE - STATICALLY INDETERMINATE m= Number of members j= Number of joints
m = 2 j −3
m < 2j-3 Structure is unstable m > 2j-3 Structure is statically indeterminate
TRUSSES (Contd…) • Identify whether the structure is statically determinate / indeterminate P
P
C
A
A
B RBH
RAH RAV
RBV
P
P
P
B
C
D
P
ASSUMPTIONS IN TRUSS ANALYSIS • The members of the truss are straight, weightless and lie in one plane • The members of the truss meeting at a point are considered as joined together by a frictionless pin • All the members axis intersect at the centre of the pin • All the external loads are only applied to the joints and in the plane of truss
TRUSS ANALYSIS TRUSSES CAN BE ANALYSED BY - METHOD OF JOINTS FREE BODY DIAGRAM - METHOD OF SECTIONS 4000 lb STRUCTURE C 2000 lb A B A
∑M
D
R1
=0⇒
1000 * 30 + 4000 *10 + 2000 *10 = R3 * 20 R3 = 4500 lb
∑F
X
=0⇒
R1 = 2000
1000 lb
∑F
Y
=0⇒
R 2 + R3 = 5000 R 2 = 500 lb
D R2
E
G R3
H
TRUSS ANALYSIS (Contd …) JOINT D
∑F ∑F
X
= 0 ⇒ FDE = 2000
Y
= 0 ⇒ FAD = 500
2000
D
F = 0 ⇒ F Sin 45 = FAD ∑ Y AE
FAE = 707lb
F = 0 ⇒ − F Cos 45 + FAB = 2000 ∑ X AE
FAB = 2500 lb
∑F
Y
2000 lb
A
FBE = 500lb F = 0 ⇒ F Cos 45 + FDE = FEG ∑ X AE
FAB FAE
FAD =500
= 0 ⇒ FAE Sin45 = FBE
FEG = 2500 lb
FDE
500
JOINT A
JOINT E
FAD
FAE =707 FBE FEG
FDE =2000 E
TRUSS ANALYSIS (Contd …) JOINT B ∑F
= 0 ⇒ FBG Sin45 + FBE = 4000
Y
FBG = 4950lb F = 0 ⇒ F Cos 45 − FAB = FBC ∑ X BG FBC = 1000 lb
FAB =2500
F = 0 ⇒ F Cos 45 − FEG = FGH ∑ X BG
Y
G 4500
= 0 ⇒ FBG Sin 45 + FCG = 4500
FCG = 1000lb
JOINT H
F = 0 ⇒ F Sin 45 = 1000 ∑ Y CH
FCH = 1414lb
FCG FGH
FEG =2500
FGH = 1000 lb
∑F
FBC
B FBE =500 FBG =4950
JOINT G
4000 lb
FCH
1000 lb
FGH =1000 H
TRUSS ANALYSIS (METHOD OF SECTIONS) 4000 lb 2000 lb A
C
B
1000 lb R1 D
E R2
G
G R3=4500
H
TRUSS ANALYSIS (METHOD OF SECTIONS) ∑M
4000 lb 2000 lb A
B
FBC
G
=0⇒
− 2000 * 10 + 4000 * 10 − 500 * 20 = FBC * 10 FBC = 1000 lb
∑F
Y
FBG R1=2000 lb D R2 =500 lb
E
=0⇒
FBG Sin 45 = 4000 − 500 FBG = 4950 lb
FEG G
∑F
X
=0⇒
FEG = FBGCos 45 − 2000 + 2000 − 1000 FEG = 2500 lb
TRUSS ANALYSIS (METHOD OF SECTIONS) ∑M
B
=0⇒
4500 * 10 − 1000 * 20 = FEG *10 FEG = 2500 lb
∑F
Y
FBG = 4950 lb X
=0⇒
FBC = FBGCos 45 − FEG FBC = 1000 lb
C 1000 lb
=0⇒
FBG Sin 45 = 4500 − 1000
∑F
FBC B FBG
FEG
G R3=4500
H
TRUSS WITH MEMBERS IN BENDING 100 lb A
RAX
200 lb
RBX1
RBY1 =100 lb RAY =100 lb 200 lb RBX1 RCX RBY2 =100 lb
RCY =100 lb
200 lb
100 lb
B
C
E D
TRUSS WITH MEMBERS IN BENDING ∑F
Y
=0⇒
200 lb B F BC FAB
FCE Sin30 = 100
100 lb FCE = 200 lb FBC C
∑F
X
FBC = FCE Cos30
FCE
Y
100 lb FAX
A FAB FAE
∑F
=0⇒
FBE = 200 lb X
FAB = FBC = 173.2 lb
FBE =200 lb FCE =200 lb FAE =200 lb
FBC = 173.2 lb
∑F
=0⇒
Y
FBE
=0⇒
∑F
E
FED
=0⇒
FAE Sin30 = 100
FED = F CE + FAE Cos 60 + FBE Cos 60
FAE = 200 lb
FED = 400 lb
∑F
X
FED
=0⇒
FAX = FAB + FAE Cos 30 FAX = 346.4 lb
FD
D
FD = FED = 400 lb
FINITE ELEMENT METHOD • A GENRALIZED MATHEMATICAL PROCEDURE FOR CONTINUUM PROBLEMS POSED BY MATHEMATICALLY DEFINED STATEMENTS 10 9
11
9 9
7
8
1
5 2
4
5
6
10 11 6 5
3 1
12 7 6
4 2
3
8
TRUSS ELEMENT Y
x1
x2 U1
U2 r=1
r=-1
Natural coordinate system r Global coordinate system X 2
2
X = ∑ hi X i
U = ∑ hiU i
1 h1 = (1 − r ) 2 1 h2 = (1 + r ) 2
1 h1 = (1 − r ) 2 1 h2 = (1 + r ) 2
1
1
X
TRUSS ELEMENT (Contd…) dU dU dr ε= = dX dr dX dU 1 = dr 2 dX 1 L = ( X 2 − X1 ) = dr 2 2 ( U 2 − U1 ) ε= L 1 B = [ − 1 1] L
1
K = ∫ BDBT dX −1
1 1 − 1 K = ∫ [ − 1 1] AE L L 1 −1 1
Jdr
1 − 1 L AE K = 2 ∫ [ − 1 1] dr L −1 1 2 - 1 AE 1 K= 1 L - 1
STATIC ANALYSIS KU = F K-STIFFNESS MATRIX U–DISPLACEMENT VECTOR F- FORCE VECTOR SOLUTION METHODS A) SPARSE DECOMPOSITION B) CHOLESKEY FACTORIZATION C) PCG METHOD D) FRONTAL SOLVER
PRACTICEWORK Prob. 1 : Solve the given truss using method of joints, method of sections and compare
PRACTICEWORK 2. Solve the given aircraft structure using method of joints, method of sections and compare