Afnita Sandini (16029054) Tugas 10 Metode Secant.docx

  • Uploaded by: Afnita sandini
  • 0
  • 0
  • September 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Afnita Sandini (16029054) Tugas 10 Metode Secant.docx as PDF for free.

More details

  • Words: 1,586
  • Pages: 9
TUGAS 10 METODE SECANT oleh AFNITA SANDINI 16029054

Dari fungsi 1a sampai 1f kerjakan dengan metode secant? Penyelesaian : a.

f ( x)  x  cos( x)

1. Iterasi 1 Ambil x0  1 dan x1  0 f  1  1  cos( 1)  0,4597 f 0   0  cos(0)  1

x n 1  x n 

x n 1  0 

f ( x n )( x n  x n 1 ) f ( x n )  f ( x n 1 )

(1)(0  (1))  0,68507 1  (1)

2. Iterasi 2 Ambil x1  0 dan x2  0,68507 f 0  0  cos(0)  1 f  0,68507   (0,68507)  cos( 0,68507)  0,089299

x n 1  x n 

f ( x n )( x n  x n 1 ) f ( x n )  f ( x n 1 )

x n 1  (0,68507) 

(0,089299)(( 0,68507)  0)  0,75225 0,089299  1

3. Iterasi 3 Ambil x2  0,68507 dan x3  0,75225 f 0  (0,68507)  cos( 0,68507)  0,089299 f 0  (0,75225)  cos( 0,75225)  0,02209

x n 1  x n 

f ( x n )( x n  x n 1 ) f ( x n )  f ( x n 1 )

x n 1  (0,75225) 

(0,02209)(( 0,75225)  (0,68507))  0,73892 (0,02209)  (0,089299)

Tabel iterasi :

f xn1 

f  xn 

Iterasi

x n 1

1

-1

-0.4597

0

1

2

0

1

-0.68507

0.089299

3

-0.68507

0.089299

-0.75225

-0.02209

4

-0.75225

-0.02209

-0.73892

0.000268

b.

f ( x)  x 2  sin( x  2) 1. Iterasi 1 Ambil x0  2 dan x1  1

f  2  2 2  sin( 2  2)  4,756802 f  1  12  sin( 1  2)  0,85888

xn

x n 1  x n 

f ( x n )( x n  x n 1 ) f ( x n )  f ( x n 1 )

x n 1  1 

(0.85888)( 1  (2))  0,77966 (0,85888)  (4,756802)

2. Iterasi 2 Ambil x1  1 dan x2  0,77966

f  1  12  sin( 1  2)  0,85888 f  0,77966  0,77966 2  sin( 0,77966  2)  0,25378 x n 1  x n 

f ( x n )( x n  x n 1 ) f ( x n )  f ( x n 1 )

x n 1  0,77966 

(0,25378)( 0,77966  (1))  0,68724 (0,25378)  (0,85888)

3. Iterasi 3 Ambil x 2  0,77966 dan x3  0,68724

f  0,77966  0,77966 2  sin( 0,77966  2)  0,25378 f  0,68724  0,68724 2  sin( 0,68724  2)  0,033429 x n 1  x n 

f ( x n )( x n  x n 1 ) f ( x n )  f ( x n 1 )

x n 1  0,68724 

(0,033429)(( 0,68724)  (0,77966))  0,68724 (0,033429)  (0,25378)

Tabel iterasi :

f xn1 

xn

f  xn 

-2

4.756802

-1

0.85888

2

-1

0.85888

-0.77966

0.25378

3

-0.77966

0.25378

-0.68724

0.033429

4

-0.68724

0.033429

-0.67323

0.001802

Iterasi

x n 1

1

c.

f ( x)  e  x  sin( x) 1. Iterasi 1

Ambil x0  3 dan x 1  4

f 3  e 3  sin( 3)  0,190907 f 4  e 4  sin( 4)  0,73849 x n 1  x n  x n 1  4 

f ( x n )( x n  x n 1 ) f ( x n )  f ( x n 1 )

(0,73849)( 4  3)  3,20541 (0,73849)  (0,190907)

2. Iterasi 2 Ambil x1  4 dan x2  3,20541

f 4  e 4  sin( 4)  0,73849 f 3,20541  e 3, 20541  sin( 3,20541)  0,02323 x n 1  x n 

f ( x n )( x n  x n 1 ) f ( x n )  f ( x n 1 )

x n 1  3,20541 

(0,02323)(3,20541  4)  3,179601 (0,02323)  (0,73849)

3. Iterasi 3 Ambil x2  3,20541 dan x3  3,20541

f 3,20541  e 3, 20541  sin( 3,20541)  0,02323 f 3,179601  e 3,179601  sin( 3,179601)  0,003603

xn1  xn 

f ( xn )( xn  xn1 ) f ( xn )  f ( xn1 )

xn1  3,20541 

(0,003603)(3,179601  3,20541)  3.183066 (0,003603)  (0,02323)

Tabel iterasi :

f xn1 

f  xn 

Iterasi

x n 1

1

3

0.190907

4

-0.73849

2

4

-0.73849

3.20541

-0.02323

3

3.20541

-0.02323

3.179601

0.003603

4

3.179601

0.003603

3.183066

-3.4E-06

d.

xn

f ( x)  1  x  e 2 x

1.Iterasi 1 Ambil x0  1 dan x1  2

f 1  1  1  e 2*1  0,13534 f 2  1  2  e 2*2  1,01832 xn1  xn  xn1  2 

f ( xn )( xn  xn 1 ) f ( xn )  f ( xn 1 )

(1,01832)( 2  1)  0,846729 (1,01832)  (0,13534)

2.Iterasi 2 Ambil x1  2 dan x2  0,846729

f 2  1  2  e 2*2  1,01832 f 0,846729  1  0,846729  e 2*0,846729  0,03061

xn1  xn 

f ( xn )( xn  xn1 ) f ( xn )  f ( xn1 )

xn1  0,846729 

(0,03061)(0,846729  2)  0,810986 (0,03061)  (1,01832)

3.Iterasi 3 Ambil x2  0,846729 dan x3  0,810986

f 0,846729  1  0,846729  e 2*0,846729  0,03061 f 0,810986  1  0,810986  e 2*0,810986  0,00849 xn1  xn 

f ( xn )( xn  xn1 ) f ( xn )  f ( xn1 )

xn1  0,810986 

(0,00849)(0,810986  0,846729)  0,797257 (0,00849)  (0,03061)

Tabel iterasi

f xn1 

f  xn 

Iterasi

x n 1

1

1

-0.13534

2

-1.01832

2

2

-1.01832

0.846729

-0.03061

3

0.846729

-0.03061

0.810986

-0.00849

4

0.810986

-0.00849

0.797257

-0.00026

e.

f ( x)  2 x  tan x

1.Iterasi 1 Ambil x0  1,9 dan x1  1,8 f  1,9  2(1,9)  tan( 1,9)  0,8729 f  1,8  2(1,8)  tan( 1,8)  0,686262

xn

xn1  xn 

f ( xn )( xn  xn 1 ) f ( xn )  f ( xn1 )

xn1  1,8 

(0,686262)(( 1,8)  (1,9))  1,84401 (0,686262)  (0,8729)

2.Iterasi 2 Ambil x1  1,8 dan x2  1,84401 f  1,8  2(1,8)  tan( 1,8)  0,686262 f  1,84401  2(1,84401)  tan( 1,84401)  0,11948

xn1  xn 

f ( xn )( xn  xn1 ) f ( xn )  f ( xn1 )

xn1  1,84401 

(0,11948)(( 1,84401)  (1,8))  1,83749 (0,11948)  (0,686262)

3.Iterasi 3 Ambil x2  1,84401 dan x3  1,83749 f  1,84401  2(1,84401)  tan( 1,84401)  0,11948 f  1,83749  2(1,83749)  tan( 1,83749)  0,01465

xn1  xn 

f ( xn )( xn  xn1 ) f ( xn )  f ( xn1 )

xn1  1,83749 

(0,01465)(( 1,83749)  (1,84401))  1,83658 (0,01465)  (0,11948)

Tabel iterasi iterasi

x n 1

f xn1 

xn

1

-1.9

-0.8729

-1.8

0.686262

2

-1.8

0.686262

-1.84401

-0.11948

3

-1.84401

-0.11948

-1.83749

-0.01465

f  xn 

-1.83749

4

f.

-0.01465

-1.83658

0.00035

f ( x)  2 x 2  e  x

1.Iterasi 1 Ambil x0  2 dan x1  1 xn 1  xn 

f ( xn )( xn  xn1 ) f ( xn )  f ( xn 1 )

xn 1  (1) 

(0,71828)(( 1)  (2))  1,54038 f  2  2(2) 2  e  ( 2)  0,610944 (0,71828)  (0,610944) f  1  2(1) 2  e ( 1)  0,71828

2.Iterasi 2 Ambil x1  1 dan x2  1,54038

f  1  2(1) 2  e ( 1)  0,71828 f  1,54038  2(1,54038) 2  e ( 1,54038)  0,079172 xn1  xn 

f ( xn )( xn  xn1 ) f ( xn )  f ( xn1 )

xn1  (1,54038) 

(0,079172)(( 1,54038)  (1))  1,48673 (0,079172)  (0,71828)

3.Iterasi 3 Ambil x2  1 dan x3  1,54038

f  1,54038  2(1,54038) 2  e ( 1,54038)  0,079172 f  1,48673  2(1,48673) 2  e ( 1, 48673)  0,00188

xn1  xn 

f ( xn )( xn  xn1 ) f ( xn )  f ( xn1 )

xn1  (1,48673) 

(0,00188)(( 1,48673)  (1,54038))  1,48797 (0,00188)  (0,079172)

Table iterasi

f xn1 

xn

-2

0.610944

-1

-0.71828

2

-1

-0.71828

-1.54038

0.079172

3

-1.54038

0.079172

-1.48673

-0.00188

4

-1.48673

-0.00188

-1.48797

1.65E-05

iterasi

x n 1

1

f  xn 

Related Documents


More Documents from "Made Yoga Pradnyana"