1449/2 Matematics Kertas 2 Sept. 2008
.JABATAN PELAJARAN NEGERI JOHOR
PEPERIKSAAN PERCUBAAN SPM TAIFL. 2008
SKEMA PEMARKAHAN
Pv]
MATEMATICS
Kertas 2 Duajam tiga puluh minit
144912
0 Hak Cipta .lPNJ 2008
SULIT
SKEMA PERMARKAHAN MATEMATIK TAMBAIUN KERTAS 2 PEPERIKSAAN PERCURAAN SPM TAHUN 2008
x=y-2
Sub Marks P1
y 2+ 2 y + ( y - 2 y = 9
K1
Solution and mark scheme
Number
I
Full Marks
2y2 - 2 y - 5 = 0 Y=
-(2)
+ J-40(-5)
N1 N1
x =0.158,-3.158 =
J(2x3 - dx)dr
KI
1
Kl
=-x4 -2x2 2 v = - 1x - 2 (b)
4
-2x
2
+C
+-7
M ,= -
N1
P1 P1
2 2y=x+3
N1
x-= -64 -=$
NI
8 ,
G x 2 = 580
/?
5
2
m, = 2(113-4(1) = -2 1
3(a)
KI
2(2)
6
P1
o = -= 2.9155
(b)
- ---2.9 1 55 on, -
4 = 0.7289
N1 K1 N1
5
6(a)
tan28 + 1 tan B sec2B tan B sec B cos ec8
N1
N1 for Sin shape
N1 for 1 periodic and max = 2 N1 for modulus N1 for
K1 for straight line Number of solutions = 3
Number
Solution and mark scheme
7
Sub Marks
Full Marks
NI NI logy = log a + x2 log h log a = 0.19(+0.0 1) a = 1.55 0.889 - 0.493 log b = - = 0.0792 9-4
P1 Kl N1 KI NI
Graph: K I for uniform scale on both axes N 1 for a1l correct points N I for best fit line 8(a>(i>
JG=Io m=8
(ii)
10 KI NI
K1 N1
(b) K1 L
= --(10!+l
3
l-j )
N1
K1 N1
(c>(i>
(i i)
I
K1 0,P and T are collinear.
N1
10
Number 9ja)
Solution and mark scheme sin LBEO = 0.5 :. LBEO = 30° = 0.5237rads
Sub Marks K1 N1
Perimeter of shaded region =AB+BD+AD = 5j1.572) + 1 O(0.5237) + 3.6602 =16.7522~~
Area of the shaded region = ABEO + sector AOB - sector BED
K1 for any correct formula used N1 for any correct answer
K 1 for all correct operation
Full Marks
1
-
-
Solution and mark scheme
--
-7Full Marks
--
Sub Marks
1 1 (a)
K1
N1
K1 for
I K1 for
ncrprqn-r
operation N1
K1 for x-P
z=-
LT
Nl
K1 for x-P
z=-LT
KI
NI
. . . p p -
Number
Solution and mark scheme
--Full Marks Sub Marks K1
v,,,, = 3(2)' - 12(2) + 9 = -3 m/s
K1 for formula I
21 100 = 140 15
I,, =--x
-
Solution and mark scheme
Number -
sin LQRP --sin 30'
9.5 5.8 LQRP = 125'1' LPRS = 180'-125'11= 54'59'
Sub -Marks K1
NI NI Kl NI
1 2
- (6.322)(1 1.2)sin LSPT
= 25
SPT = 44'55' LQPR = 24'59' Area APQS 1 1 = -(9.5)(5.8) sin 24'59'+-(5.9)(7.5)sin 54O59' 2 2 = 11.6359+18.12 = 29.7559cm2
KI N1
P1 K1
N1
Full Marks
Solution and mark scheme
Sub Marks
Full Marks
K1 N1
K1 Kl N1
I :100x+400y28000 II : 1 OOx + 200y I 9000
10
N1 Nl N1
III : x < y refer to the graph: K 1 for uniform scale on both axes K I for any one correct straight line drawn N 1 for correct region R
K1 K1 N1
(i) 16
PI
(ii) 1 2 x 4 9 =~ 180 ,(30,30) Maximum profit = 30(RM12) + 30(RM9) = RM630
N1 K1 for k=ax+by N1
10
~