Addmaths Johor Spm2008 P2 Answer

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Addmaths Johor Spm2008 P2 Answer as PDF for free.

More details

  • Words: 586
  • Pages: 13
1449/2 Matematics Kertas 2 Sept. 2008

.JABATAN PELAJARAN NEGERI JOHOR

PEPERIKSAAN PERCUBAAN SPM TAIFL. 2008

SKEMA PEMARKAHAN

Pv]

MATEMATICS

Kertas 2 Duajam tiga puluh minit

144912

0 Hak Cipta .lPNJ 2008

SULIT

SKEMA PERMARKAHAN MATEMATIK TAMBAIUN KERTAS 2 PEPERIKSAAN PERCURAAN SPM TAHUN 2008

x=y-2

Sub Marks P1

y 2+ 2 y + ( y - 2 y = 9

K1

Solution and mark scheme

Number

I

Full Marks

2y2 - 2 y - 5 = 0 Y=

-(2)

+ J-40(-5)

N1 N1

x =0.158,-3.158 =

J(2x3 - dx)dr

KI

1

Kl

=-x4 -2x2 2 v = - 1x - 2 (b)

4

-2x

2

+C

+-7

M ,= -

N1

P1 P1

2 2y=x+3

N1

x-= -64 -=$

NI

8 ,

G x 2 = 580

/?

5

2

m, = 2(113-4(1) = -2 1

3(a)

KI

2(2)

6

P1

o = -= 2.9155

(b)

- ---2.9 1 55 on, -

4 = 0.7289

N1 K1 N1

5

6(a)

tan28 + 1 tan B sec2B tan B sec B cos ec8

N1

N1 for Sin shape

N1 for 1 periodic and max = 2 N1 for modulus N1 for

K1 for straight line Number of solutions = 3

Number

Solution and mark scheme

7

Sub Marks

Full Marks

NI NI logy = log a + x2 log h log a = 0.19(+0.0 1) a = 1.55 0.889 - 0.493 log b = - = 0.0792 9-4

P1 Kl N1 KI NI

Graph: K I for uniform scale on both axes N 1 for a1l correct points N I for best fit line 8(a>(i>

JG=Io m=8

(ii)

10 KI NI

K1 N1

(b) K1 L

= --(10!+l

3

l-j )

N1

K1 N1

(c>(i>

(i i)

I

K1 0,P and T are collinear.

N1

10

Number 9ja)

Solution and mark scheme sin LBEO = 0.5 :. LBEO = 30° = 0.5237rads

Sub Marks K1 N1

Perimeter of shaded region =AB+BD+AD = 5j1.572) + 1 O(0.5237) + 3.6602 =16.7522~~

Area of the shaded region = ABEO + sector AOB - sector BED

K1 for any correct formula used N1 for any correct answer

K 1 for all correct operation

Full Marks

1

-

-

Solution and mark scheme

--

-7Full Marks

--

Sub Marks

1 1 (a)

K1

N1

K1 for

I K1 for

ncrprqn-r

operation N1

K1 for x-P

z=-

LT

Nl

K1 for x-P

z=-LT

KI

NI

. . . p p -

Number

Solution and mark scheme

--Full Marks Sub Marks K1

v,,,, = 3(2)' - 12(2) + 9 = -3 m/s

K1 for formula I

21 100 = 140 15

I,, =--x

-

Solution and mark scheme

Number -

sin LQRP --sin 30'

9.5 5.8 LQRP = 125'1' LPRS = 180'-125'11= 54'59'

Sub -Marks K1

NI NI Kl NI

1 2

- (6.322)(1 1.2)sin LSPT

= 25

SPT = 44'55' LQPR = 24'59' Area APQS 1 1 = -(9.5)(5.8) sin 24'59'+-(5.9)(7.5)sin 54O59' 2 2 = 11.6359+18.12 = 29.7559cm2

KI N1

P1 K1

N1

Full Marks

Solution and mark scheme

Sub Marks

Full Marks

K1 N1

K1 Kl N1

I :100x+400y28000 II : 1 OOx + 200y I 9000

10

N1 Nl N1

III : x < y refer to the graph: K 1 for uniform scale on both axes K I for any one correct straight line drawn N 1 for correct region R

K1 K1 N1

(i) 16

PI

(ii) 1 2 x 4 9 =~ 180 ,(30,30) Maximum profit = 30(RM12) + 30(RM9) = RM630

N1 K1 for k=ax+by N1

10

~

Related Documents