SULIT 347211 Additional Mathematics Kertas 1 Sept. 2008 2 Jam JABATAN PELAJARAN NEGERI JOHOR PEPERIKSAAN PERCUBAAN SPM 2008 ADDITIONAL MATHEMATICS Kertas 1 Dua jam
JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU
1
Tu1i.r nama dun kelas anda pada
I
Untuk Kegunaan Pemeriksa Markah Markah Soalan Penuh Diperolehi 2 1
ruangan yang disediakan.
2 Kertas
soalan
ini
adalah
dalam
dw ihahasa
3 Soalan dalam bahasa 1nggeri.r mendahului soalan yang .repadan dalam haha.sa Melayu. 4. Calon dibenarkan rnenjawab keseluruhan atau sebahagian soalan sama ada dalam bahasa Inggeris atau bahasa Melayu.
5. Calon dihhendaki membaca maklumat di halarnan belakang kertus soalan ini.
347211
2008 Hak Cpra JPllll
MOZ@C
[Lihat sebelah SULIT
1
~
For examiner 'S use only
SULIT Answer all questions
Diagram 1 shows the relation between set P and set Q.
1
Rajah 1 menunjukkun hubungan antara set P dan set Q,
Set Q
Set P
Diagram 1 Rajah 1 State Nyatakan the codomain of the relation,
(a)
kodomain hubungan itu, ( b ) the type of the relation.
[2 marks]
jenis hubungan itu.
[ 2 markah]
1
Answer/ Jawapan : (a) .............................
LE1 -
( b ) ...........................
1
7 Given the inverse of function k is k-' : x -+ -, x t 2 .
2!
x-2
7 Diben,firngsi songsangan bagi k adalah k-' : x -+ -,x x-2
(a)
#
2.
Calculate the value of k(3). Hitungkan nilai bagi k(3).
(b)
State the value of x where function k is not defined. Nyatakan nilai bagi x di mana fungsi k tidak tertakriJ
[ 3 mctrks ]
[ 3 markah ]
2
Answer/ Jawapan : (a) ............................. (b) ............................
1 347211
I
MOZ@C 2008 Hnk Cipra JPNJ
SU LIT
SULIT 3
5
347211 For
Diagram 2 shows the function f that maps set A to set B and the function g
aminer rse only
that maps set B to set C. Rojnh 2 rnenunjukkan fungsi f memetakan set A kepada set B dun fungsi g rnemetaknn
set B kepada set C.
Diagram 2 Rajah 2 Given f( x ) = rnx + 1 and d ( x ) = 2 x + n. Find the values of m and n. Diberi f ( x ) = mx + 1 dun g f ( x ) = 2 x + n. Carikan nilai bagi rn dun n.
[ 3 rnarb ] [ 3 rnarkah ]
3
0 347211
2008 Hok Cipro JPNJ
MOZ@C
SULIT
For examiner use only
ULIT -
6
1 Form the quadratic equation which has the roots -5 and - . 4
d + bx + c = 0,
where a, b and c are constants. 1 Bentukkan persamaan kuadratik yang mempunyai punca- punca -5 and - . Berikan 4 jawapan anda dalam bentuk ax2 + bx + c = 0, di mana a, b dun c adalah pemalar. Give your answer in the form
[2 marks]
[ 2 markah]
4
Answer / Jawapan: .................................
i
Find the range of x for which (x + 3)(x - 4) < - 6.
Cari julat x bagi (x + 3)(x - 4) <- 6. [ 3 marks ]
[ 3 markah ]
Answer/ Jawapan : ..............................
MOZ@C 347211
2008 Hak Cipra JPNJ
SULIT
SULIT
6
7
347211
expminer 's use only
Diagram 3 shows the graph y = - 4 - (x - ic)2, where k is a constant. Rqjah 2 menunjukkan graf y = - 4 - (x - k)2, dengan keadaan k adalah pernalar. y
>x
0
(7 (6, -13)
1 3
Diagram 3
Rajah 3 Find
C.'arikan (a)
the value of k,
nilai hagi k,
(b) the equation of the axis symmetry, persamaan paksi simetri,
(c)
El
the coordinates of the maximum point. [ 3 marks ]
icoordinat titiic maksimum.
[ 3 markah ]
Answer/ Jawapan : (a) ..............................
(b).................................... (c) .....................................
MOZ@C 347211
2008 Hak Cipro JPNJ
SULIT
For examiner's use
SULIT -
7
8
Given that 32"(9"-') = 1, find the value of x. Diberi 32"(9"-' ) = 1, carikan nilai x. [ 3 marks ] [ 3 markah]
Answer/ Jawapan : .............................
8
) ;7; ( - in terms of r and t. Given that log, x = r and log, y = t ,express log,
Diberi log, x = r dun log, y = t , ungkapkan log,
(;7i) -
dalam sebutan r dun t. [ 4 marks ]
[ 4 markah ]
fa 0 347211
Answer/ Jawapan : ...............................
2008 Hak Cipta JPNJ
MOZ@C
SULIT
SULIT 9
9
347211
For
exorniner use o n b
The first three terms of an arithmetic progression are h, 2h - 2 and 2h + 1. Find the value of h. Tiga sebutan pertama suatu janjang arithmetik adalah h. 2h - 2 und 2h
+ 1.
Carikan nilai bagi h . [ 2 murky ] [ 2 markah]
Answer/ Jawapan : ...................................
10
22 The sum of the first five terms of a geometric progression is 7 - and the common 27 2 ratio is - . Find the first term. 3 22 Hasil tambah lima sebutan pertama suatu janjang geometri ialah 7 - dun nisbah 27 2 sepitnyanya adalah - . Carikan nilai sebutan pertama. 3 [ 3 marks ] [ 3 markah ]
Answer/ Jawapan: ................................... .,,
347211
2008 Ifak Cipta JPNJ
MOZ@C
SULIl
9
For xaminer 's use onb
SULIT 11
10
347211
Given the arithmetic progression 5, 8, 11, .... find the term that has a value of 131 . Diberi janjang arithmetic 5, 8, 11, .... carikan sebutan ke berapakah nilainya sama dengan 13 1.
[ 2 marks] [ 2 markah ]
m
Answer/ Jawapan : .................................
12
3 3 3 Given a geometric progression 3, - - 5 ' 2 5 ' 125'"" 3 3 3 Diheri suatu janjang geometri 3 , - - 5 ' 2 5 ' 125'"" Find
Cari (a)
the common ratio
nisbah sepunya
(b)
the sum to infinity of the progression.
hasil lambah ke ~akterhinggaan janjang I ersebut. [ 4 marks ] [ 4 markah ]
iI, Answer/ Jawapan : (a) ........................... (b)
.................................
MOZ@C 347211
2008 Hak CipfaJPNJ
SULIT
SULIT
347211 I
13
Given that the variables x and y are related by the equation y = 102x-2. Diberi pembolehubah x and y dihubungkan oleh persamaan y
For examiner's m e only
= lo2'-*.
X.
0 (O,-q Diagram 4 Rajah 4 Find the value of p and q. Hirungkan nilaip dan q.
[ 3 marks ]
[ 3 markah ]
Answer/ Jawapan: p=. ....... ..q= ............
14
X Y- = 1 and passes through Find the equation of the straight line which is parallel to -+ 3 4 tlle midpoint of A(-2,3) and B(6,9) .
X +Y- = 1 dan melalui ritik tengah Cari persamaan garis Iurus yang selari dengan 3 4 A(-2,3) dan B(6,9) [3 marks]
347211
20061 Ifak Cipta JPNJ
MOZ@C
I
I
14
SULIT For examiner's 15 uYe only
12
The point A is (4, -3) and the point B is (1, -2) . The point P moves such that PA :PB = 3 :2 . Find the equation of the locus of P.
Tirik A ialah (4, -3) dun tirik B ialah (1, -2). Saru titik P bergerak dengan keadaan supaya PA : PB = 3 : 2 . Cari persamaan lokus P. [3 marks] [3 markah]
15
LiI
Answer/ Jawapan : .................................
16
Diagram 5 shows vectors
and z d r a w n on a cartesion plane.
% and @ pada safah cartesion.
Rqjuh 5 menunjukkan vekror
Y 3.. P
'
-3 -2 -1
I
-1-
;
cx
Diagram 5 Rajah 5 (a)
Express
5 in the form
Ungkapkan 16
(b)
tI
.
dalarn bentuk
.
(f z. z.
Find the unit vector in the direction of Cari vektor unit dalam arah
Answer/ Jawupan : (a) .............................
(b) ..................................
MOZ@C 347211
2008 Hak Cipm JPNJ
SULI?
SULIT 17
347211
13
The points A , B and C are collinear. It is given that
OC = [:).Find
?%=
[:I, (:) OB =
E'o r raminer S only
and
the value of k.
Titik- titik A, B dun C adalah segaris. Diberi
=
(')% ('1 =
dun
z=
.I:(
C'arikan nilai k.
[ 4 marks ]
[ 4 markah ]
17
1 Answer/ Jawapan: .........................
18
Solve the equation 8 cos2 x + 2sin x - 5 = 0 for 0' I 6 5 360'.
Selesaikanpersamaan 8cos2x + 2sin x - 5 = 0 bagi 0' I 6 I 360'. [ 4 marks
:
[ 4 markah ]
3 Answer/ Jawapan:
MOZ@C 347211
2008 Hak Cipro JPNJ
.............................
0
14
SULIT For examiner's use only
19
Diagram 6 shows a circle with centre 0. Rajah 6 menunjukkan suatu bulatan berpusat 0.
Diagram 6 Rajah 6
Given that the length of the minor arc AB is 12.57 cm, find the length, in cm, of the radius. (use
~r = 3.142 )
Diberi panjang lengkok minor AB ialah 12.57 cm, caripanjang, dalam cm, jejari bulatan itu. [ 3 marks ] [ 3 markah]
Answer/ Jawapan : .................................
( 2 -~1)'
Diberi f (.r) = , carikan f ' ( x ) .
[3 marks]
x -1
[ 3 markah]
Answer/ Jawapan:
2008 Hak Cipra JPNJ
MOZ@C
........................... SULIT
SULIT 21
15
347211 ).'or exorniner :s use only
-2 d~ Given that p = 2x - 5 and y = 7 , find the value of - when x = 2. dx P
Diberi p = 2x - 5 dun y
=
-2
, carikan nilai
d~
- apabila x = 2. dx
P
[3 marks]
[ 3 markah ]
21
Answer1 Jawapan :.........................
Given that ig(x)dx = 5. Find the value of k if
2g(x)
-b
dx = - 18.
I
I 3
3
Diberi ig(x)dx = 5 . Carikan nilai k j i b I
I-
3
3
22
I- 2g(x) - b dx
=
- 18.
I
[4 marks] [ 4 markah ]
22
Answer/ Jawapan : k =
347211
2008 Hak Cipta JPNJ
MOZ@C
....................... SULIT
0
For -I examiner '3 use only
SULIT 23
16
347211
Given six digits 1, 3 , 4 , 5, 6 and 8. A digit number is to be formed using four of these digits. Find Diberi enam digif 1, 3, 4, 5, 6 dun 8. Suafu nombor empaf digit hendak dibenfuk dengan mengpinakan empaf daripada digit tersebut.Curi
(a)
the number of different four -digit numbers that can be formed, bilungun nombor empar digit yang berlainan yang dapat dibentuk
(b)
the number of different four-digit odd numbers which are greater than 6000. bilungun nornbor empat digir yang ganjil dun berlainan yung melebihi 6000. [ 4 marks ] [ 4 markah ]
Answer / Jawapan: ( a )
.........................
(b) ................................
24
Given two bags P and Q, each contains blue and red marbles. Bag P contains 3 blue marbles and 4 red marbles. Bag Q contains 3 blue marbles and 5 red marbles. A bag is chosen at random and a marble is picked from it. Find the probability that Diberi dua beg, musing- musing mengandungi guli berwcrrna biru dun merah. Beg P mengandzingi 3 biji guli biru dun 4 biji guli merah. Bag Q mengandungi 3 biji guli biru dun 5 biji gull merah. Sebuah beg dipilih secara rawak dun sebiji guli akan dikeluurkan dari beg tersebut. Carikan kebarangkalian bahawa (a)
a red marble from bag Q is chosen. sebiji guli merah dari beg Q dipilih.
(b)
the marble is blue.
[ 3 marks ]
[ 3 markah ]
Answer/Jawapan : (a) .............................. (b) ....................................
347211
2008 Hak Cipra JPNJ
MOZ@C
SULIT
SULIT
25
347211
Diagram 7 shows a standard normal distribution graph.
For examiner 's use only
Rajah 7 menunjukkan graf taburan normal piawai.
Given the probability represented by the area of the shaded region is 0.7019. Diheri keharangkalian yang diwakili oleh luas kawasan berlorek ialah 0.7019.
(a)
Find the value of k. Carikan nilai k.
(b)
Xis a random variable of a normal distribution with a mean of 45 and a variance of 25. Find the value o f X when the Z-score is k.
X ialah pemboleh ubah rawak suatu taburan normal dengan min 45 dun varians 25. Cari nilai X jika skor-Z ialah k.
END OF QUESTION PAPER
MOZ@C 347211
2008 Hak Cipfa JPNJ
SULIT
SlJLIT
INFORMATION FOR CANDIDATES MAKL UMA T UNTUK CALON 1. This question paper consists of 25 questions.
Kertas .voalan ini mengandungi 25 soalun.
2. Answer all questions. J U W Lsemua I~ soalan. 3. Give only one answer for each question. Bugi seliup s o a l ~ ~berikan n satu jawapan sahaja..
4. Write your answers clearly in the spaces provided in the question paper. Jawupan hendaklah ditulis dengan jelas dalam ruang yang disediakan dalam kertas soalcrn.
5 . Show your working. It may help you to get marks. Tzinjukkcrn langkah-langkah penting dalam kerja mengira andu. Ini boleh membantu undu unruk mendapatkan markah. 6 . If you wish to change your answer, cross out the work that you have done. Then write down the new answer. Sekircrnya anda hendak menukar jawapan, batalkan kerja mengira ylrng teluh dibuat. Kemudi~lntulis jawupan yang baru.
7 . The diagrams in the questions provided are not drawn to scale unless stated. Rojah yang rnengiringi soalan tidak dilukis mengikut skala kecuali dinyatakan. 8. Thc marks allocated for each question are shown in brackets. Alurkah yang diperuntukkan hagi set@ soalan ditunjukkan dalarn kurungan.
9. A list of formulae is provided on pages 2 to 3. Sutu senarai rlrmus disediakan di halaman 2 hingga 3. 10. You may use a non - programmable scientific calculator. .4nJ~rdihenarkan rnenggunakan kalkulator saintlfik yang tidak holeh diprogram. 1 1 . Hand in this question paper to the invigilator at the end of the examination.
k'err~lssoulun ini hendaklah diserahkan di akhir peperiksaan.
MOZ@C 347211
2008 IIuk Cipra JPNJ
SlJLIT
347211 Additional Mathematics Kertas 1 Sept. 2008 2 Jam
JABATAN PELAJARAN NEGERI JOHOR KEMENTERIAN PELAJARAN MALAYSIA PEPEPUKSAAN PERCUBAAN SPM 2008
ADDITIONAL MATHEMATICS I
I
Kertas 1 SKEMA PEMARKAHAN
Skema pemarkahan ini mengandungi 7 halaman bercetak
347211
MOZ@C Hak Cipta JPNJ 2008
MARKING SCHEME PEPERllKSAAN PERCUBAAN SPM 2008 MATEMATIK TAMBAHAN ,KERTAS 1
Num 7 Solution and mark scheme
I
Sub marks
Full marks
( 4 { 2,4,6,8, 10 I (b) many to many
(b) x = 0
-5
3
-2<~<3 (x-3)(x+2) < O
3
+=++
B2 : factorize and try to solve
6
(a) k = 3 (b) x = 3 (c) ( 3, - 4
MOZ@C
B2
MOZ@C
MOZ@C
MOZ@C
--
Solution and mark scheme
- - ---
-
Sub
marks
MOZ@C
Full marks
MOZ@C