Activitats De Regles De Derivaci2

  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Activitats De Regles De Derivaci2 as PDF for free.

More details

  • Words: 2,586
  • Pages: 4
Departament de Matemàtiques. IES Alcudia

MAT-I

Activitats de regles de derivació Activitats de les pàgines 308 i 309 Nº Funció Derivada 2 1 f ( x) = 3x − 6 x + 5 f ' ( x) = 2·3 x − 6 + 0 2 1 1 f ( x) = x + 3 x = f ' ( x) = x −1 / 2 + x − 2 / 3 2 3 = x1 / 2 + x1 / 3 3 4 5 6

f ( x) = 2 x + 3 5 x = = (2 x)1 / 2 + (5 x)1 / 3 1 f ( x) = = x−3 / 2 x x f ( x) = sin x·cos x

Derivada simplificada f ' ( x) = 6 x − 6 f ' ( x) =

1 1 f ' ( x) = (2 x) −1 / 2 ·2 + (5 x) − 2 / 3 ·5 2 3

3 f ' ( x) = − x −5 / 2 2 f ' ( x) = cos x·cos x + sin x·(− sin x)

7

f ( x) = x·e x

cos x·cos x − sin x·(− sin x) cos 2 x f ' ( x) = 1·e x + x·e x

8

f ( x) = x·2 x

f ' ( x) = 1·2 x + x·2 x ·ln 2

9

f ( x) = ( x 2 + 1)·log 2 x

f ' ( x) = 2 x·log 2 x + ( x 2 + 1)·

10

11

12

f ( x) = tg x =

f ( x) =

sin x cos x

x2 + 1 x2 − 1

x3 + 3x 2 − 5 x + 3 = x 3 = x 2 + 3x − 5 + x log x f ( x) = x f ( x) =

13

f ( x) = sin( x 2 − 5 x + 7)

14

f ( x) = (5 x + 3) 2 / 3

15 16

f ( x) = sin(3 x + 1)·cos(3x + 1) f ( x) =

log x 2 x

17 18

f ( x) = cos(3x − π )

19 20

f ( x) = x·e 2 x +1

f ( x) = 1 + 2 x

f ( x) =

sin( x 2 + 1) 1 − x2

f ' ( x) =

1 1 · ln 2 x

1 2 x

+

1 3

3 x2

1 5 + 2 x 3 3 (5 x) 2

f ' ( x) =

3

f ' ( x) = −

2 x5 f ' ( x) = cos 2 x − sin 2 x = cos 2 x 1 f ' ( x) = cos 2 x f ' ( x) = e x ·(1 + x)

f ' ( x) = 2 x ·(1 + x·ln 2) f ' ( x) = 2 x·log 2 x +

x2 + 1 x·ln 2

− 4x ( x 2 − 1) 2

2 x·( x 2 − 1) − ( x 2 + 1)·2 x ( x 2 − 1) 2 3 f ' ( x) = 2 x + 3 − 0 − 2 x

f ' ( x) =

1 1 · · x − log x·1 f ' ( x) = ln 10 x 2 x 2 f ' ( x) = cos( x − 5 x + 7)·(2 x − 5) 2 f ' ( x) = (5 x + 3) −1 / 3 ·5 3

1 − log x f ' ( x) = ln 10 2 x

f ' ( x) =

f ' ( x) = 2 x + 3 −

3 x2

f ' ( x ) = ( 2 x − 5)·cos( x 2 − 5 x + 7)

f ' ( x) =

[

10 3 5x + 3 3

f ' ( x) = cos(3x + 1)·3·cos(3x + 1) + sin(3x + 1)·(− sin(3x + 1))·3 1 1 · 2 ·2 x· x − log x 2 ·1 f ' ( x) = ln 10 x x2 f ' ( x) = − sin(3x − π )·3 1 f ' ( x) = ·2 2 1 + 2x

f ' ( x ) = 3 cos 2 (3x + 1) − sin 2 (3x + 1)

f ' ( x) = 1·e 2 x +1 + x·e 2 x+1 ·2

f ' ( x) = e 2 x+1 ·(1 + 2 x)

]

2 − log x 2 f ' ( x) = ln 10 2 x f ' ( x) = −3·sin(3 x − π ) 1 f ' ( x) = 1 + 2x f ' ( x) =

f ' ( x) = cos( x 2 + 1)·2 x· 1 − x 2 − sin( x 2 + 1)· 2

( 1− x )

2

( −2 x ) 2 1− x

cos( x 2 + 1)·4 x·(1 − x 2 ) + 2 x·sin( x 2 + 1) 2

2 (1 − x 2 ) 3

Departament de Matemàtiques. IES Alcudia

MAT-I

Activitats de les pàgines 320 i 321 Nº Funció Derivada 3 2 2 15 f ( x) = 2 x + 3x − 6 f ' ( x) = 3·2 x + 2·3x1 − 0 16 f ( x) = cos(2 x + π ) f ' ( x) = − sin( 2 x + π )·2 17 18

19

20

x + 2 3 1 f ( x) = 7x +1

1 +0 3 0 − 1·7 f ' ( x) = (7 x + 1) 2

f ( x) =

f ( x) = sin

f ( x) =

f ' ( x) =

x x + cos 2 2

x 1  x 1  f ' ( x) =  cos · −  sin · 2 2  2 2 

2 ( x + 3) 3

f ' ( x) =

0 − 2·3( x + 3) 2 ( x + 3) 6

Derivada simplificada f ' ( x) = 6 x 2 + 6 x ; f ' (1) = 12 f ' ( x) = −2 sin( 2 x + π ) ; f ' ( 0) = 0 1 17 1 f ' ( x) = ; f ' (− ) = 3 3 3 −7 f ' ( x) = ; (7 x + 1) 2 f ' (0) = −7 1 x x f ' ( x) =  cos − sin  ; 2 2 2

f ' (π ) = −1 / 2 −6 ; f ' ( x) = ( x + 3) 4

f ' (−1) = −

21

22

f ( x) =

f ( x) =

x 3 3x 2 x + − 2 2 2

f ' ( x) = 3

1 = ( x − 4) −1 / 2 x−4

f ' ( x) =

x2 3x 1 +2 − 2 2 2

−1 ( x − 4) −3 / 2 2

3x 2 1 + 3x − ; 2 2 23 f ' ( 2) = 2

f ' ( x) =

f ' ( x) =

f ' (8) =

23

f ( x ) = x·sin(π − x )

3 8

−1 2 ( x − 4) 3

;

−1 16

f ' ( x) = 1·sin(π − x ) + x cos(π − x )·(−1)

f ' ( x) = sin(π − x) − x cos(π − x);

f ' ( x) = 3·(5 x − 2) 2 ·5

f '( ) =1 2 f ' ( x) = 15(5 x − 2) 2 ;

π

24

f ( x) = (5 x − 2) 3

1 f ' ( ) = 15 5

25 26a 26b 27a 27b

f ( x) =

x+5 x−5

e x + e− x 2 2 f ( x ) = ( x − 3)3

f ( x) =

f ( x) =

f ' ( x) =

1·( x − 5) − ( x + 5)·1 ( x − 5) 2

f ' ( x) =

1 x (e + e − x ·(−1)) 2

f ' ( x) = 3·( x 2 − 3) 2 ·2 x f ' ( x) = 1 − 0

x3 − x2 = x −1 x2

f ( x) = x 2 + 1

f ' ( x) =

28a

f ( x ) = 3 ( x + 6) = ( x + 6)

28b

f ( x ) = sin x

2

2/3

1 2

·2 x

2 x +1 2 f ' ( x) = ( x + 6) −1/ 3 3 1 f ' ( x) = ·cos x 2 sin x

− 10 ; f ' (3) = − 5 2 ( x − 5) 2 1 f ' ( x) = (e x − e − x ) 2 f ' ( x) =

f ' ( x) = 6 x·( x 2 − 3) 2 f ' ( x) = 1

f ' ( x) =

x 2

x +1 2 f ' ( x) = 3 3 x+6 cos x f ' ( x) = 2 sin x

Departament de Matemàtiques. IES Alcudia

Nº 29a

Funció f ( x) =

−3

= −3(1 − x 2 ) −1/ 2

2

1− x

29b 30a

f ( x ) = 7 x +1 ·e − x 1 x f ( x) = + 3x 3

30b

f ( x) = ln 3x + e

31a

 x  f ( x) =  2  1+ x  f ( x ) = e 2 x ·tg x

31b 32a 32b 33a

33b 34a 34b

f ( x) =

f ( x) =

x3 x2 − 4 3

 x f ( x) =   ·e1− x 2 3π f ( x) = sin = −1 2 x2 f ( x ) = log 3− x

35b

f ( x) = ln x

37a

37b

f ' ( x) =

x2 3

f ( x ) = arctg ( x 2 + 1) f ( x ) = arccos

1 x

f ( x ) = arctg

x 2

Derivada simplificada

−1 ·(−3)·(1 − x 2 ) −3 / 2 ·( −2 x ) 2

f ' ( x ) = 7 x +1 ·ln 7·e − x + 7 x+1 ·e − x ·(−1) −1 1 f ' ( x) = 2 + 3x 3 1 1 f ' ( x) = ·3 + e x · 3x 2 x 2  x  1·(1 + x ) − x·2 x  f ' ( x) = 2 ·  2   2 2  1 + x   (1 + x )  1 f ' ( x) = e 2 x ·2·tg x + e 2 x · 2 cos x

3 x 2 ·( x − 1) 2 − x 3 ·2( x − 1) ( x − 1) 4

f ' ( x ) = 2 cos x·(− sin x ) + e sin x ·cos x 1

f ' ( x) = 2

x3 x2 − 4 2

 3 x 2 ( x 2 − 4) − x 3 ·2 x  ·  ( x 2 − 4) 2   3

f ' ( x) =

− 3x (1 − x 2 )3

f ' ( x) = 7 x +1 ·e − x ·(ln 7 − 1) −1 1 f ' ( x) = 2 + 3x 3 1 e x f ' ( x) = + x 2 x

f ' ( x) =

2 x (1 − x 2 ) (1 + x 2 )3

1   f ' ( x ) = e 2 x · 2·tg x +  cos 2 x   x 2 ( x − 3) f ' ( x) = ( x − 1)3 f ' ( x ) = − sin 2 x + e sin x ·cos x

f ' ( x) =

x 4 − 12 x 2 2 x 3 ( x 2 − 4) 3 2

3

 x 1  x f ' ( x) = 3  · ·e1− x +   e1− x ·( −1) 2 2 2 f ' ( x) = 0

3 x  x f ' ( x) =   e1− x −   e1− x 22 2 f ' ( x) = 0

1 1  2 x·(3 − x) − x 2 ·(−1)  · 2 ·  ln 10 x  (3 − x ) 2  3− x 2 1 f ' ( x) = 3 tg x 2 · 2 2 ·2 x cos x 1 1 f ' ( x) = · 2 ln x x 1 2x f ' ( x) = · 2  x2  3 1 −    3 1 f ' ( x) = ·2 x 1 + ( x 2 + 1) 2 −1  −1 f ' ( x) = · 2  2 1  x  1−    x 1 1 f ' ( x) = · 2  x  2·2 x  1 +    2 

f ' ( x) =

f ' ( x) =

(

3

f ( x) = arcsin

Derivada

f ' ( x) =

f ( x ) = cos 2 x + e sin x

f ( x) = (tg x 2 )

36b

2

x3 ( x − 1) 2

35a

36a

x

MAT-I

)

6−x ln 10· x·(3 − x)

tg 2 x 2 cos 2 x 2 1 f ' ( x) = 2 x ln x 2x f ' ( x) = 9 − x4

f ' ( x) = 6 x·

f ' ( x) = f ' ( x) =

f ' ( x) =

2x x + 2x2 + 2 1 4

x x2 −1

1 x ·( x + 4)

Departament de Matemàtiques. IES Alcudia

Nº 38a

f ( x) = arctg x

38b

f ( x) = arccos e − x

39a 39b

Funció

f ( x) = x + x f ( x) = arctg

1− x 1+ x

MAT-I

Derivada 1 1 f ' ( x) = · 2 2 arctg x 1 + x f ' ( x) = f ' ( x) = f ' ( x) =

−1

( )

1 − e−x

2

·e − x ·( −1)

1   ·1 +  2 x+ x  2 x  1

 − 1·(1 + x) − (1 − x )·1  ·  (1 + x) 2 1− x    1+   1+ x  1

2

Derivada simplificada f ' ( x) = f ' ( x) =

1 1 · 2 2 arctg x 1 + x e− x 1 − e −2 x

1   ·1 +  2 x+ x  2 x  −1 f ' ( x) = 1 + x2

f ' ( x) =

1

Related Documents

Regles-de-ponctuation
August 2019 7
Regles
May 2020 13
Activitats
November 2019 25
Activitats
December 2019 48