Action Theory Revision in Dynamic Logic Ivan Jos´ e Varzinczak Knowledge Systems Group Meraka Institute CSIR Pretoria, South Africa
NMR’2008
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
1 / 23
Motivation
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
2 / 23
Motivation
Knowledge Base ‘A coffee is a hot drink’ ‘With a token I can buy coffee’ ‘Without a token I cannot buy’ ‘After buying I have a hot drink’ ...
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
2 / 23
Motivation
¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b b
k, t, ¬c, h b
b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
2 / 23
Motivation
Observations ‘Only coffee on the machine’ ‘After buying, I lose my token’ ‘Coffee is for free’
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
2 / 23
Motivation
Observations ‘Only coffee on the machine’ ‘After buying, I lose my token’ ‘Coffee is for free’
Need for change the laws about the behavior of actions
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
2 / 23
Motivation
¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b b
k, t, ¬c, h b
b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Need for change the laws about the behavior of actions
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
2 / 23
Motivation
¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h
Need for change the laws about the behavior of actions
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
2 / 23
Motivation
¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b b
k, t, ¬c, h b
b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Need for change the laws about the behavior of actions
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
2 / 23
Motivation
¬k, ¬t, c, h
k, ¬t, c, h b
k, t, c, h
b k, t, ¬c, h b
k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Need for change the laws about the behavior of actions
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
2 / 23
Motivation
¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b b
k, t, ¬c, h b
b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Need for change the laws about the behavior of actions
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
2 / 23
Motivation b
b
¬k, ¬t, c, h k, ¬t, c, h b b b b
k, t, c, h
b
b
k, t, ¬c, h b
b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Need for change the laws about the behavior of actions
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
2 / 23
Outline Preliminaries Action Theories in Dynamic Logic
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
3 / 23
Outline Preliminaries Action Theories in Dynamic Logic
Revision of Laws Semantics of Revision Algorithms
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
3 / 23
Outline Preliminaries Action Theories in Dynamic Logic
Revision of Laws Semantics of Revision Algorithms
Conclusion
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
3 / 23
Preliminaries
Action Theories in Dynamic Logic
Outline Preliminaries Action Theories in Dynamic Logic
Revision of Laws Semantics of Revision Algorithms
Conclusion
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
4 / 23
Preliminaries
Action Theories in Dynamic Logic
Action Theories in Dynamic Logic Dynamic Logic ◮
Well defined semantics
◮
Expressive
◮
Decidable
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
5 / 23
Preliminaries
Action Theories in Dynamic Logic
Action Theories in Dynamic Logic Dynamic Logic ◮
Well defined semantics ◮
Possible worlds models
◮
Expressive
◮
Decidable
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
5 / 23
Preliminaries
Action Theories in Dynamic Logic
Action Theories in Dynamic Logic Dynamic Logic ◮
Well defined semantics ◮
◮
Expressive ◮
◮
Possible worlds models Actions, state constraints, nondeterminism
Decidable
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
5 / 23
Preliminaries
Action Theories in Dynamic Logic
Action Theories in Dynamic Logic Dynamic Logic ◮
Well defined semantics ◮
◮
Expressive ◮
◮
Possible worlds models Actions, state constraints, nondeterminism
Decidable ◮
exptime or pspace-complete, though
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
5 / 23
Preliminaries
Action Theories in Dynamic Logic
Action Theories in Dynamic Logic Possible worlds semantics: Transition Systems M = hW , R i ◮
W : possible worlds
◮
R : accessibility relation p1 , ¬p2 M :
a2
a1
p1 , p2
a2
a1
¬p1 , p2
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
6 / 23
Preliminaries
Action Theories in Dynamic Logic
Action Theories in Dynamic Logic Describing Laws
In RAA: 3 types of laws ◮
Static Laws: ϕ ◮
Ex.: p1 ∨ p2
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
7 / 23
Preliminaries
Action Theories in Dynamic Logic
Action Theories in Dynamic Logic Describing Laws
In RAA: 3 types of laws ◮
Static Laws: ϕ ◮
◮
Ex.: p1 ∨ p2
Executability Laws: ϕ → hai⊤ ◮
Ex.: p2 → ha2 i⊤
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
7 / 23
Preliminaries
Action Theories in Dynamic Logic
Action Theories in Dynamic Logic Describing Laws
In RAA: 3 types of laws ◮
Static Laws: ϕ ◮
◮
Executability Laws: ϕ → hai⊤ ◮
◮
Ex.: p1 ∨ p2
Ex.: p2 → ha2 i⊤
Effect Laws: ϕ → [a]ψ ◮
Ex.: p1 → [a1 ]p2
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
7 / 23
Preliminaries
Action Theories in Dynamic Logic
Action Theories in Dynamic Logic Formulas that hold in M p1 , ¬p2 M :
a2
a1
p1 , p2
a2
a1
¬p1 , p2
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
◮
p1 ∨ p2
◮
p1 → [a1 ]p2
◮
p2 → ha2 i⊤
◮
¬p1 → ha1 i⊤
NMR’2008
8 / 23
Preliminaries
Action Theories in Dynamic Logic
Action Theories in Dynamic Logic Formulas that hold in M p1 , ¬p2 M :
a2
a1
p1 , p2
a2
a1
¬p1 , p2
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
"
◮
p1 ∨ p2
◮
p1 → [a1 ]p2
◮
p2 → ha2 i⊤
◮
¬p1 → ha1 i⊤
NMR’2008
8 / 23
Preliminaries
Action Theories in Dynamic Logic
Action Theories in Dynamic Logic Formulas that hold in M p1 , ¬p2 M :
a2
a1
p1 , p2
a2
a1
¬p1 , p2
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
"
◮
p1 ∨ p2
◮
p1 → [a1 ]p2
◮
p2 → ha2 i⊤
◮
¬p1 → ha1 i⊤
"
NMR’2008
8 / 23
Preliminaries
Action Theories in Dynamic Logic
Action Theories in Dynamic Logic Formulas that hold in M p1 , ¬p2 M :
a2
a1
p1 , p2
a2
a1
¬p1 , p2
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
"
◮
p1 ∨ p2
◮
p1 → [a1 ]p2
◮
p2
◮
¬p1 → ha1 i⊤
" → ha i⊤ " 2
NMR’2008
8 / 23
Preliminaries
Action Theories in Dynamic Logic
Action Theories in Dynamic Logic Formulas that hold in M p1 , ¬p2 M :
a2
a1
p1 , p2
a2
a1
p1 ∨ p2
◮
p1 → [a1 ]p2
◮
¬p1 , p2
Ivan Jos´ e Varzinczak (KSG - Meraka)
◮
Action Theory Revision
"
◮
" p → ha i⊤ " ¬p → ha i⊤ % 2
2
1
1
NMR’2008
8 / 23
Preliminaries
Action Theories in Dynamic Logic
Action Theories in Dynamic Logic In our exemple ◮
Static Law:
◮
coffee → hot
◮
Executability Law:
◮
token → hbuyi⊤
◮
Effect Law:
◮
¬coffee → [buy]coffee
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
9 / 23
Preliminaries
Action Theories in Dynamic Logic
Action Theories in Dynamic Logic In our exemple ◮
Static Law:
◮
coffee → hot
◮
Executability Law:
◮
token → hbuyi⊤
◮
Effect Law:
◮
¬coffee → [buy]coffee
¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b b
k, t, ¬c, h b
b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
9 / 23
Revision of Laws
Semantics of Revision
Outline Preliminaries Action Theories in Dynamic Logic
Revision of Laws Semantics of Revision Algorithms
Conclusion
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
10 / 23
Revision of Laws
Semantics of Revision
Intuitions About Model Revision Revision by laws ¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b b
k, t, ¬c, h b
b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
11 / 23
Revision of Laws
Semantics of Revision
Intuitions About Model Revision Revision by hot → coffee ¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b b
k, t, ¬c, h b
b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
11 / 23
Revision of Laws
Semantics of Revision
Intuitions About Model Revision Revision by hot → coffee ¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
11 / 23
Revision of Laws
Semantics of Revision
Intuitions About Model Revision Revision by hot → coffee ¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
11 / 23
Revision of Laws
Semantics of Revision
Intuitions About Model Revision Revision by laws ¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b b
k, t, ¬c, h b
b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
11 / 23
Revision of Laws
Semantics of Revision
Intuitions About Model Revision Revision by token → [buy]¬token ¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b b
k, t, ¬c, h b
b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
11 / 23
Revision of Laws
Semantics of Revision
Intuitions About Model Revision Revision by token → [buy]¬token ¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b b
k, t, ¬c, h b
k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
11 / 23
Revision of Laws
Semantics of Revision
Intuitions About Model Revision Revision by token → [buy]¬token ¬k, ¬t, c, h
k, ¬t, c, h b
k, t, c, h
b k, t, ¬c, h b
k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
11 / 23
Revision of Laws
Semantics of Revision
Intuitions About Model Revision Revision by laws ¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b b
k, t, ¬c, h b
b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
11 / 23
Revision of Laws
Semantics of Revision
Intuitions About Model Revision Revision by ¬token → hbuyi⊤ ¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b b
k, t, ¬c, h b
b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
11 / 23
Revision of Laws
Semantics of Revision
Intuitions About Model Revision Revision by ¬token → hbuyi⊤ ¬k, ¬t, c, h
k, ¬t, c, h b
b
k, t, c, h
b
b
b
k, t, ¬c, h b
b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
11 / 23
Revision of Laws
Semantics of Revision
Intuitions About Model Revision b
Revision by ¬token → hbuyi⊤ b
¬k, ¬t, c, h k, ¬t, c, h b b b b
k, t, c, h
b
b
k, t, ¬c, h b
b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
11 / 23
Revision of Laws
Semantics of Revision
Principles of Theory Change (Dalal, 1988) ◮
Irrelevance of Syntax
◮
Maintenance of Consistency
◮
Primacy of New Information
◮
Persistence of Prior Knowledge
◮
Fairness
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
12 / 23
Revision of Laws
Semantics of Revision
Principles of Theory Change (Dalal, 1988) ◮
Irrelevance of Syntax
◮
Maintenance of Consistency
◮
Primacy of New Information
◮
Persistence of Prior Knowledge
◮
Fairness
Ivan Jos´ e Varzinczak (KSG - Meraka)
+−
" " " "
Action Theory Revision
NMR’2008
12 / 23
Revision of Laws
Semantics of Revision
Minimal Change Choosing models ◮
Distance between models ◮ ◮
Prefer models closest to the original one Hamming/Dalal distance, etc
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
13 / 23
Revision of Laws
Semantics of Revision
Minimal Change Choosing models ◮
Distance between models ◮ ◮
◮
Prefer models closest to the original one Hamming/Dalal distance, etc
Distance dependent on the type of law to make valid ◮ ◮
Static law: look at the set of possible states (worlds) Action laws: look at the set of arrows
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
13 / 23
Revision of Laws
Semantics of Revision
Minimal Change Choosing models ◮
Distance between models ◮ ◮
◮
Prefer models closest to the original one Hamming/Dalal distance, etc
Distance dependent on the type of law to make valid ◮ ◮
Static law: look at the set of possible states (worlds) Action laws: look at the set of arrows
Definition Let M = hW , R i. M ′ = hW ′ , R ′ i is as close to M as M ′′ = hW ′′ , R ′′ i iff ˙ ′ ⊆ W −W ˙ ′′ ◮ either W −W ˙ ′ = W −W ˙ ′′ and R −R ˙ ′ ⊆ R −R ˙ ′′ ◮ or W −W Notation: M ′ M M ′′ Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
13 / 23
Revision of Laws
Semantics of Revision
Minimal Change Choosing models: revising by ϕ
Definition Let M = hW , R i. M ′ = hW ′ , R ′ i ∈ Mϕ⋆ iff: ◮
W ′ = (W \ val(¬ϕ)) ∪ val(ϕ)
◮
R′ ⊆ R
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
14 / 23
Revision of Laws
Semantics of Revision
Minimal Change Choosing models: revising by ϕ
Definition Let M = hW , R i. M ′ = hW ′ , R ′ i ∈ Mϕ⋆ iff: ◮
W ′ = (W \ val(¬ϕ)) ∪ val(ϕ)
◮
R′ ⊆ R
Definition revise(M , ϕ) =
S
min{Mϕ⋆ , M }
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
14 / 23
Revision of Laws
Semantics of Revision
Minimal Change Choosing models: revising by hot → coffee
¬k, ¬t, c, h
k, ¬t, c, h
¬k, ¬t, c, h
b b
k, t, c, h
b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h
Ivan Jos´ e Varzinczak (KSG - Meraka)
k, ¬t, c, h
¬k, t, c, h
b
M
b
k, t, c, h
b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h
Action Theory Revision
NMR’2008
15 / 23
Revision of Laws
Semantics of Revision
Minimal Change Choosing models: revising by ϕ → [a]ψ
Definition ⋆ Let M = hW , R i. M ′ = hW ′ , R ′ i ∈ Mϕ→[a]ψ iff: ◮
W′ = W
◮
R′ ⊆ R
◮
If (w , w ′ ) ∈ R \ R ′ , then |=w ϕ
◮
|= ϕ → [a]ψ
M
M′
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
16 / 23
Revision of Laws
Semantics of Revision
Minimal Change Choosing models: revising by ϕ → [a]ψ
Definition ⋆ Let M = hW , R i. M ′ = hW ′ , R ′ i ∈ Mϕ→[a]ψ iff: ◮
W′ = W
◮
R′ ⊆ R
◮
If (w , w ′ ) ∈ R \ R ′ , then |=w ϕ
◮
|= ϕ → [a]ψ
M
M′
Definition revise(M , ϕ → [a]ψ) =
Ivan Jos´ e Varzinczak (KSG - Meraka)
S
⋆ min{Mϕ→[a]ψ , M }
Action Theory Revision
NMR’2008
16 / 23
Revision of Laws
Semantics of Revision
Minimal Change Choosing models: revising by token → [buy]¬token
¬k, ¬t, c, h
k, ¬t, c, h b
k, t, c, h
¬k, ¬t, c, h
k, ¬t, c, h
b k, t, ¬c, h b
M
k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Ivan Jos´ e Varzinczak (KSG - Meraka)
k, t, c, h
k, t, ¬c, h
k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Action Theory Revision
NMR’2008
17 / 23
Revision of Laws
Semantics of Revision
Minimal Change Choosing models: revising by ϕ → hai⊤
Definition ⋆ Let M = hW , R i. M ′ = hW ′ , R ′ i ∈ Mϕ→hai⊤ iff: ◮
W′ = W
◮
R ⊆ R′
◮
If (w , w ′ ) ∈ R ′ \ R , then w ′ ∈ RelTarget(w , ¬(ϕ → [a]⊥))
◮
|= ϕ → hai⊤
M′
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
18 / 23
Revision of Laws
Semantics of Revision
Minimal Change Choosing models: revising by ϕ → hai⊤
Definition ⋆ Let M = hW , R i. M ′ = hW ′ , R ′ i ∈ Mϕ→hai⊤ iff: ◮
W′ = W
◮
R ⊆ R′
◮
If (w , w ′ ) ∈ R ′ \ R , then w ′ ∈ RelTarget(w , ¬(ϕ → [a]⊥))
◮
|= ϕ → hai⊤
M′
Definition revise(M , ϕ → hai⊤) =
Ivan Jos´ e Varzinczak (KSG - Meraka)
S
⋆ min{Mϕ→hai⊤ , M }
Action Theory Revision
NMR’2008
18 / 23
Revision of Laws
Semantics of Revision
Minimal Change Choosing models: revising by ¬token → hbuyi⊤ b
b
b
b
¬k, ¬t, c, h k, ¬t, c, h b b b
¬k, ¬t, c, h k, ¬t, c, h b b b b b b b b k, t, c, h k, t, ¬c, h k, t, c, h k, t, ¬c, h b Mb b b b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
19 / 23
Revision of Laws
Algorithms
Outline Preliminaries Action Theories in Dynamic Logic
Revision of Laws Semantics of Revision Algorithms
Conclusion
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
20 / 23
Revision of Laws
Algorithms
Quick look: Correctness of the Algorithms ◮
T an action theory
◮
Φ a law
We have defined algorithms that revise T by Φ, giving T ′
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
21 / 23
Revision of Laws
Algorithms
Quick look: Correctness of the Algorithms ◮
T an action theory
◮
Φ a law
We have defined algorithms that revise T by Φ, giving T ′ ◮
ϕ a static law
◮
S ⊆ T set of static laws in T
Definition (Herzig & Varzinczak, AiML 2005) T is modular iff for every static law ϕ, if T |=PDLϕ, then S |=CPLϕ
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
21 / 23
Revision of Laws
Algorithms
Quick look: Correctness of the Algorithms ◮
T an action theory
◮
Φ a law
We have defined algorithms that revise T by Φ, giving T ′ ◮
ϕ a static law
◮
S ⊆ T set of static laws in T
Definition (Herzig & Varzinczak, AiML 2005) T is modular iff for every static law ϕ, if T |=PDLϕ, then S |=CPLϕ
Theorem Under modularity, the algorithms are correct w.r.t. our semantics
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
21 / 23
Conclusion
Conclusion Contribution ◮
Semantics for action theory revision ◮ ◮
Distance between models Minimal change
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
22 / 23
Conclusion
Conclusion Contribution ◮
Semantics for action theory revision ◮ ◮
◮
Distance between models Minimal change
Syntactic operators (algorithms) ◮
Correct w.r.t. the semantics
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
22 / 23
Conclusion
Conclusion Ongoing research and future work ◮
Action theory contraction ◮
Invalidating formulas in a model (see talk at KR’08)
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
23 / 23
Conclusion
Conclusion Ongoing research and future work ◮
Action theory contraction ◮
◮
Invalidating formulas in a model (see talk at KR’08)
Postulates for action theory revision
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
23 / 23
Conclusion
Conclusion Ongoing research and future work ◮
Action theory contraction ◮
Invalidating formulas in a model (see talk at KR’08)
◮
Postulates for action theory revision
◮
Revision of general formulas ◮
not only ϕ, ϕ → hai⊤, ϕ → [a]ψ
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
23 / 23
Conclusion
Conclusion Ongoing research and future work ◮
Action theory contraction ◮
Invalidating formulas in a model (see talk at KR’08)
◮
Postulates for action theory revision
◮
Revision of general formulas ◮
◮
not only ϕ, ϕ → hai⊤, ϕ → [a]ψ
Applications in Description Logics ◮
ontology evolution/debugging
Ivan Jos´ e Varzinczak (KSG - Meraka)
Action Theory Revision
NMR’2008
23 / 23