A succinct proof of the Riemann hypothesis Werner Raab The Mellin transform v(s) =
π = sin(πs)(1/2 − s)ζ(3/2 − s)
Z
∞
ts−1 w(t) dt
0
of the function w(t) =
=
=
1 2πi
Z
1/2+i∞
t−s v(s) ds =
1/2−i∞
∞ X
Ress=−k t−s v(s)
k=0
∞ ∞ X (−t)k X µ(ν) (−t)k = (1/2 + k)ζ(3/2 + k) 1/2 + k ν=1 ν 3/2+k k=0 k=0 ∞ X
µ ¶1/2+k ∞ ∞ (−t)k 2 X µ(ν) X (−1)k t √ = (1/2 + k)ν 1/2+k t ν=1 ν k=0 1 + 2k ν k=0
∞ ∞ X µ(ν) X ν=1
ν
with the M¨obius values µ(ν) is holomorphic in the complex strip: 0 < <s < 1, as Riemann conjectured, since r ∞ 2 X µ(ν) t w(t) = √ arctan = O(1) when t → 0 ν ν t ν=1 and
∞
2 X µ(ν) w(t) = − √ arctan t ν=1 ν
r
ν = O(1/t) when t
One has to observe that r arctan and that
t + arctan ν
∞ X µ(ν) ν=1
ν
1
r
= 0.
ν π = t 2
t → ∞.