!
!
!
$
#
"
.4
6+
, 2 23
1 10 ( + )* () '&
+
@ C;< = B EF B E @ BD < ABC
?@
>
;<=
7
9 8 :
5
. /
@ <= I > JB
@ <= I > E B @ G @ ? = B ?G @ H F
ML )+ * O &
*L
6O
(
*L
&N4
ML M
M
) K 4
E @ B < ?<= <
#
? ;
Y
X
W
;
I @
=
B
@ H
EF@
>
?@
G
@
P
?G
<=
<
H
X0
, ( )* () '& ?G
Xn+1 = f (Xn , ξn+1 )
X0 % <
W U TUV S R Q
n∈N • Xn =
(ξi ).
• ξ1 , ξ 2 , . . . ∈ F
• f : E × F →E,
F R, Rn •E
_
_
[Z
^]
\
#
X
X
X
f (x, ξ) = ξ ⇔ Xn = ξn
f (x, ξ) = f (x) ⇔ Xn+1 = f (Xn )
!
!
!
_
_
[Z
^]
\
!
!
!
!
E = Rd
E
E
#
"
#
#
_
_
[Z
^]
\
"
#
#
#
x+ = max{x, 0}
Xn+1 = (Xn − 1)+ + ξn+1
ξn+1 =
n
]n, n + 1]. Xn =
=
n, X0 = 0. E=N
X
_
_
[Z
^]
\
#
M
6
O
N
O
L
.
L
*
O
)O
M
M
.4
+ &
E B
;<=
5
7
9:8
5
-
()
K
*L L . & *
I ; E C
5
@ G P @ ? @ C CP > F C
= @
A@
#
< I<= ;
P @ ? @ C CP > F C
H
) ρ < 1 ⇔ E(T0 ) < ∞ (⇔
(Xn )) ρ ≤ 1 ⇔ P(T0 < ∞) = 1 (⇔
, ,
1
,
M
L
10
2
2
6+
ρ = E(ξ1 )
4
L
O
M4
L
X
!
E(T0 ) = ∞
T0 < ∞
ρ=1
T0 = ∞ ⇔
T0 < ∞ ⇔
•T0 = inf{n ≥ 1 : Xn = 0}
_
_
[Z
^]
\
limn→∞ Xn = ∞
L L
5
Xn+1 ≥ (Xn − 1) + ξn+1
6 6 )* M O
L
M4L
=ρ−1 n
−n
i=1
i=1 ξi
Xn ≥ limn→∞ lim inf n→∞ n
i=1
ξi − n = Xn ≥ X 0 +
Pn
ξi − n n X n X
(i) ρ > 1 ⇒
_
_
[Z
^]
\
n≥1
Xn+1 = (Xn − 1) + ξn+1
{T0 = ∞} ⊂ {∀n ≥ 1 Xn =
i=1
ξi − n ≥ 1} ⊂ {
Pn
i=1 ξi
n
−n
≥ 0}
limn→∞
n X
Pn
i=1 ξi
n
−n
=ρ−1<0
P(T0 = ∞) = 0.
T0 = ∞
(ii) ρ < 1 ⇒
_
_
[Z
^]
\
!
$
W
"
Xn+1 = ξn+1 ◦ Xn
# W
F.
ξi
Xn . F ⊂E
ξn+1 n+1
X0 = e =
{1, . . . 52} 52! E = S52
_
_
[Z
^]
\
5 4 3 2 1 6 7 . . . 52 X1 = ξ1 = 2 1 3 4 5 6 7 . . . 52 X2 = ξ2 ◦ X1 = 2 1 5 4 3 6 7 . . . 52 X3 = ξ3 ◦ X2 = 3 4 5 1 2 6 7 . . . 52
L
L 6 5
ξ3 =
1 2 5 4 3 6 7 . . . 52
ξ2 =
2 1 3 4 5 6 7 . . . 52
ξ1 =
_
_
[Z
^]
\
X
"
"
!
!
Y
X
!
!
∀x ∈ F P(ξi = x) > 0
n
k + 1, . . . , 52. 1, 2, . . . , k
52 1
F. x = s1 ◦ . . . ◦ s l
x∈E
} F ={
F
_
_
[Z
^]
\
K *L K
I ; E C
? = B I = ?
?
B
AB
=
<E
) ) L .
+
ML
(
L
I E
H
> H
? =
@
@
@ IC @ >I @ C
E(Te ) = 52! ∼ 8, 065.1067 P A@ B
Te = inf{n ≥ 1 : Xn = e}
;<= I
= ; > = C; >
I
H
@ > < G;
@C @
; F
C
5
3 ( +
+
+
K
)* )
M
6
1 Nn (x) = limn→∞ n 52!
k=1
Nn (x) =
n. x
1{Xk =x} n X
x ∈ E,
_
_
[Z
^]
\
Y
Y
#
L
M4L
W #
$
#
#
K
+
*L
.
L
K
O
.
K
+
ML
(
( M
M
≥0⇒ )+
!
1 Nn (e) i = limi→∞ i = . limn→∞ n T E(T1 )
Nn (e) = i
T
T i+1
i Nn (e) ≤ i ≤ n T i
T i ≤ n < T i+1 . i n∈N
n T
T i = ∆1 + . . . + ∆ i .
i+1 Ti T1 0
∆i
i (i − 1) ∆i = e. T 0 = 0
Ti ∆1 + . . . + ∆ i = limi→∞ = E(∆1 ). limi→∞ i i
_
_
[Z
^]
\
x
#
1 Nn (x) 1 + Nn (e) = limn→∞ = limn→∞ n n E(T1 )
Nn (x) = n. X
#
x
52! Nn (x) 1 = ⇒ E(T limn→∞ ) = 52!. n E(T1 ) X
x
n. x x+ Nn (x)
x 6= e
_
_
[Z
^]
\
6
(
)
) O
L
4
*
L
*L
N
KL
+
K
4
N
&L
6 5
)
)
)
(
( +
.
L
O
ML4
5
5
5
#
#
K
L
* 5
2
2
()
' K
L
L
O
6
)M O
Tx = inf{n ≥ 1 : Xn = x}
⇒ ∃α > 0 ∀y P(∃n ≥ 1 : Xn = y) ≥ α > 0
P(Tx = ∞) = P(X1 6= x, . . . , Xn 6= x, Xn+1 6= x, . . .) X
=
y6=x
X
=
y6=x
≤
P(X1 6= x, . . . , Xn−1 6= x, Xn = y, ξn+1 ◦ y 6= x, ξn+2 ◦ ξn+1 ◦ y 6= x . . .)
P(X1 6= x, . . . , Xn−1 6= x, Xn = y)P(ξn+1 6= x◦y −1 , ξn+2 ◦ξn+1 6= x◦y −1 . . .)
X
y6=x
P(X1 6= x, . . . , Xn−1 6= x, Xn = y)(1 − α)→n→∞ P(Tx = ∞)(1 − α)
P(Tx = ∞) ≤ (1 − α)P(Tx = ∞)
P(Tx = ∞) = 0.
_
_
[Z
^]
\
=
@
@ B ;
I@
@ > < G;
@C @
; F
C
(
(
K *L O . L & .
@ > I E @E @ =
@ G
5
dn ≤ Cρn .
( +
+
+
K
)* )
M
5
E@
<
=
G
@
I
P
?=
I
=
?
I
C>0
x∈E
K
.
L
)+
( L
+
)
N K )O
) 4
Y
L
M4L
W
ρ K )O
C
F 0≤ρ<1
1X 1 | ≤ 1. dn = |P(Xn = x) − 2 52!
_
_
[Z
^]
\
!
I @ = BCP
@ G
@> ? >I ;<
@ =C = B D @ G = I E>
<
>I
C
<
@
?
0
W
n=7
+
&
+
L
.
L
N4
*
(
1
n > 8. dn ∼ 0 n<7 dn ∼ 1
n ≤ 2500...
@CA
E
;
B
?G
>I
<
?
dn ∼ 1
52 7
_
_
[Z
^]
\
Zd .
#
#
ξ1 , ξ 2 , . . .
Rd . e1 , . . . , e d
Zd .
Xn+1 = Xn + ξn+1 , X0 = 0
{e1 , . . . , ed , −e1 , . . . , −ed }.
W
#
, 3 ,
O
6+
7
8
-
_
_
[Z
^]
\
r
r
r
r
Z
r
r
r
r
Zd .
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
Z2 .
_
_
[Z
^]
\
2 , 3 , O
&
+
L
6+
M
E(T0 ) = ∞
I = @ E @E @
;C >
P(T0 < ∞) < 1.
I
8
P(T0 < ∞) = 1.
= @
@ C;< = B EF B @ P
BC
E B
; >
C; >
7
-
#
M +
M4L
L
4 5
!
d≤2
d ≥ 3,
(Xn ) 2 d=1
Zd .
T0 = inf{n ≥ 1 : Xn = 0}
_
_
[Z
^]
\
#
(
K +
+
*
ON
)* M (
N
Xn+1 = AXn + B→X ∗ = AX ∗ + B
W
#
||A(i)|| < 1. A(i), i = 1, . . . , k,
{B(1), . . . , B(k)} {A(1), . . . , A(k)}
k > 1, •
k=1 •
{1, . . . , k}, (ξn )
Xn+1 = A(ξn+1 )Xn + B(ξn+1 ) ∈ Rd
_
_
[Z
^]
\
L
A(1) =
0.839 −0.303 0.383
0.924
B(1) =
, A(2) =
0.232 −0.080
−0.161 −0.136 0.138
, B(2) =
0.921 0.178
−0.182
,
m(1) = m(2) = 12 .
6O
M
) 5 K
(L
P(ξn = i) = m(i)
ξn
•m =
_
_
[Z
^]
\
0 0.16
, A(2) =
−0.15 0.28
0.2
−0.26
0.23
0.22
, A(4) =
0.85
,
0.04
,
−0.04 0.85 0 0 0 0 B(1) = , B(2) = , B(3) = , B(4) = 0 1.6 0.44 1.6 0.26
0.24
m(1) = 0.01, m(2) = 0.07, m(3) = 0.07, m(4) = 0.85
L
A(3) =
0
6
6
) L4
(L
0
A(1) =
_
_
[Z
^]
\
(
) ) ( M
)M
3 (
+ * K O * L . L N * O
? ; < PB= E <
B ?@
> I = @
CI >
?@
H H
@ > E @E @ =
y
+ )* ()
M
+
O
L . (L O
N
I
C E @> AB
B A
@ G @ <= I > ?@
> I = @
P @ < C B=
@ G
?@
@ > E @E @ =
I ? B G
P(Xn+1 = xn+1 |X0 = x0 , . . . , Xn = xn ) = Q(xn , xn+1 )
'&
(Xn ) Q
E %
E,
Q(x, y) = 1. X
Q : E × E→[0, 1],
•E
#
Y X
.4
6+
, 2 23
1
*
+
10 (
) ()
+
+
K
*
+
'&
)
(
)
M
@ ? = @ C CP > F C @ <= I > @ = ; >
5
7
8
. /
5
A ;
BC
@ G ?@
B P
?@
> I = @ @ C;< = B EF
L
M4L
P(Xn+1 = y|X0 = x0 , . . . , Xn = x) = P(f (x, ξn+1 ) = y) := Q(x, y)
B
Xn+1 = f (Xn , ξn+1 ).
Xn .
(X0 , X1 , . . . , Xn ) Xn+1
#
q(y) x = 0, = y|Xn = x) = q(y − x + 1) x ≥ 1
Q(x, y) = P(Xn+1
"
(ξn )
#
Xn+1 = ξn+1 ◦ Xn ,
m.
Q(x, y) = P(ξn+1 ◦ x = y) = m(ξ ∈ E : ξ ◦ x = y) = m(y ◦ x−1 ).
"
Z.
{−1, 1}.
|x − y| = 1
0
1 2
Q(x, y) = P(x + ξn+1 = y) =
(ξn )
#
Xn+1 = Xn + ξn+1 ,
.
"
q
(ξn )
Xn+1 = (Xn − 1)+ + ξn+1 ,
& 5 &" %# %* &
#
#
3
)4
)
-$
-%
&+
$
2)
#)
-+ *
/
0 #1 % % $ "/
6
- , . )
# )*
&+
% '
&"
"#$
%#
!
(
) "* ,
F
8
E
9J 9 9
H9 G
>D
D
X P Q PW
TUV
Q P S
QR NOP
?
I
L K M
:
A @ B
E : . C
=
>9
<
9
<9;
78
\
] N Z [
X P NO
[ V
[
R P
T P O RZ VY
^_
J
`^
78
y
y
µn (y)Q(y, x). P(Xn+1 = x|Xn = y)P(Xn = y) = µn+1 (x) = P(Xn+1 = x) =
(Xn )
X X
Xn , i.e µn (x) = P(Xn = x). µn Q
µ(x)Q(x, y). µQ(y) =
x∈E
X
Q E µ
µn+1 = µn Q
x rx
w lv npu
y y
hts
rq
r
ij hgf
mlnok
p
rq
e
ed c
ab
z
{
z
*
%+( &% " $ (
(
(
$)
'(
$
(
%+( * %$)
+0
&%
&% " &! & $ (
%+( ! *$
"* $) (
'( %&! #$
"!
-
/.
'(
'(
#$
"!
%&!
,
,
(Xn ) •
(Xn ) •
x rx
w lv npu
y y
hts
rq
r
ij hgf
mlnok
p
rq
e
ed c
ab
z
1
^ D ; ^;
I
%
# /
'
)
-+
-)
4
/
0 #1 % % $ "/ - , . )
)
$ *
3
&+
% 2* & -$ # # )*
)#
)
)4
*$ * $ &+
-+ "
,
,
5
)#
)
)4
$* * $ &+
,
5 )
*$ )*
2+
4 ) +
-+ "
-+ ,
0
$
&"
0
)
1
$
0 0
$ 1
)
# " %(
(
5
)#
b
) +
$
+
5
) $ * -1 &+ *
-)
# *
-$
% 2* &
# # )
)*
-$
%
/
&$ % &"
1
*$ )*
)
43
"
4
)$
2 &
Xn+1 = Xn (1 − Vn+1 ) + (1 − Xn )Un+1
E > _
>9
;
;
<; < E
=
>D 8
`^ H :
E^
%
l = 1.
l
z
1 0 b 6= 0
1 b
% %
&
*
*
$
)
4 )* #
$ 4
"
+
4
1
&)
& %0 0 %
&
-)
,
- , .
"/
/
0 #1
4
)
+
3
3
a )
$
3
(Un ), (Vn )
1 1 a 6= 0 0 a
x rx
w lv npu
y y
hts
rq
r
ij hgf
mlnok
p
rq
e
ed c
ab
z
-+ *
&"
%#
%*
&
#
)
4)
3
)
#
+
Q=
1−a
a
b
1−b
*
-"
0
1 − gn = P(Xn = 1).
.
)#
#
&)
" %(
gn = P(Xn = 0)
-$
-% #
$
"
3
$
2)
2
2
% *
$
{0, 1}
gn+1 = (1 − a)gn + b(1 − gn ) = (1 − a − b)(gn − g∗) + g ∗ 3
)
$
g ∗ = (1 − a − b)g ∗ + b.
z
(Xn )
x
rx w
lv
npu
y
y
hts
rq
r p
mlnok
ij hgf
rq
e
ed
c
ab
d
,
,
)#
%*
%*
X0 = 1.
3 &"
4 # )*
& "1 -
# * )
"
$
*
-)
%
&
)
$* )*
2) 0 ) +
-+ "
/
0 #1 % % "/$ - ,
$
a b + (1 − a − b)n rn (0) = gn = a+b a+b
b a + (1 − a − b)n a+b a+b rn (1) = 1 − gn =
z
X0 = 0,
Xn
x rx
w lv npu
y y
hts
rq
r
ij hgf
mlnok
p
rq
e
ed c
ab
ed
)*
/ $
$ )*
, ,
0
) ) +
-+ "
/
0 #1 % % $ "/
$ " )
,
,
- , .
5 %0
2
4
#
)*
2)
& $ 4
#
4
1
&)
& % &" *
* -" 0
$ # )*
& "1 -
# * )
"
$
*
-)
%
&
)
$* )*
,
"
-) -+ * * $ "
-+
rn ≤
)
)
-+
-%
1 & %)
"
%* %
)
# # "
3 -
% +4 ) $ *
+
#$
)4
-1
0 0 % 0 $
log(1 − α) − log((1 − )1/l − α) . nc = − log(1 − a − b)
0
-%
0
"
#
(
b a α = inf( a+b , a+b ).
* -" 0
&
$
#
& $)
& % 2 * &" "*
+
2
i=1
rn (X0i ) ≥ [α + (1 − α)(1 − a − b)n ]l rn =
l Y
Xn
z
Xn1 , . . . , Xnl
Xn = (Xn1 , . . . , Xnl ) l > 1.
x rx
w lv npu
y y
hts
rq
r
ij hgf
mlnok
p
rq
e
ed c
ab
z d
RP
S ]Z
P
R]
XO
O
QV
Z
QRP
VO
_
H9
=
>9
< < >
R O [
O
NV Z Q P
:
K
@
X P Q N O R S V
[ X P
P
QR NO
Q S ]R
PT ]O
S NZ
P OZ Q V Q N O R RV] S N
" P ZXO
! ]R
N N Z N Y N [
P
Q YV
UV
+# " #
"
-+
%0
" )
4 # )*
*
)
$ $
#
$
-" 0
& -%
& %
/
0 #1 % % $ "/
,
- , .
%0
" )
4 # )*
-'
# )*
"
$
)4
&)
% &
$
$
3 0
$ #
* )
*
#
)4
1
-% 3
2
0 ) +
*
%#
#$ +
4 "
#
)
)
*
%#
& %
&+
,
,
$
#
( %
n ≥ 0.
•
z
π Xn π, X0
•
Q
E π
π = πQ.
5
P
Z O O [S
X R
x rx
w lv npu
y y
hts
rq
r
rq
RV
p
ij hgf
mlnok
*
c
ed
e
&+
& $ 34 &"
4
ab
d d
0
)
$ $
#
)
"
-+
& -%
& %
/
0 #1 % % $ "/
,
- , . ) &+
5
-
& 0
)* # 3 $ )
)4
$ 1 2+
$) 3 1 *
+
)$
*
%"
% 2 &$
)4
$
$
^_
J
`^
78
%0
# 5
5
" )
4
3 )
$
"
-+
3
x
x
#
, 2 # *
$
z
m(y ◦ x Q(x, y) =
)*
* )
-+
2 -"
%
)
)
$
"
&+
%0
0
2
*
1 , π(x) = 52! X π(x)Q(x, y) π(y) = x
Q(x, y) = P(ξn+1 ◦ x = y) = m(ξ ∈ E : ξ ◦ x = y) = m(y ◦ x−1 ).
z
m(z) = 1. )=
X
m. (ξn ) Xn+1 = ξn+1 ◦ Xn ,
−1
X X
E
x rx
w lv npu
y y
hts
rq
r
ij hgf
mlnok
p
rq
e
ed c
ab
d
+# " #
*
"
-+
-"
,
0
0 #1
)
$ $
#
5
-%
&
% % / "/$
)
4 * $ )#
4 $
,
,
,
- , .
2
&
* )
-+
0
2 )
$
#
"
%* % 0 1 )$
)
)
$
$
3 -
2
0
2
& %
& -%
& %
) #
$
$
/
0 #1 % % "/$
(
,
,
- , . ) &+ ) # * %)
0 %+
*
+
"*
&"
^_
J
`^
78
#
"
π(n + 1) − π(n) = π(n) − π(n − 1) = π(1) − π(0).
3 &"
4 )#
#
*$
)
&)
2 % * 3 1
#
"
+
)
&1
%
&"
*
"
$
#
*
-+
&
2 2
&
5 &" % #3 % 4 #
-$
)
3
&"
&
π(n) = 0.
π(1) = π(0) = 0 n
π.
z
π(n) =
1 (π(n + 1) + π(n − 1)). 2 n ∈ Z.
Z
x rx
w lv npu
y y
hts
rq
r
ij hgf
mlnok
p
rq
e
ed c
ab
d
z
H
^;
D
^;
^J
^
<; 8
8
> C
A
=
>9
< < >
Q N O R O] Q
V RZ X P T P O RZ VY
V
S ]Z
R O O [
NV Z Q P S
R NO
L
H
^
^ ^J
<; 8
8
]O
! R N Z
V Z Z V
RP XO ]R P
Q P O TUV
V [ QR YP P
O RT P] P Z
SR N R S
x, y ∈ E. NZ
^
^
_
H9
< 8
^
=
>9
<
9
<9;
78
R N Z
V Z Z V P
[ ]O Z
P P Z ]R P
O
@
L K
:
:
QRP
VO Z QV O R O O [
VN Z Q P S R] P
N
[
Z
]
π !
V
π
Q
π X
P E. π
π(x)Q(x, y) = π(y)Q(y, x)
x rx
w lv npu
y y
hts
rq
r
ij hgf
mlnok
p
rq
e
ed c
ab
d
*
$
$
#
)
-"
0
5
&
-%
&
%
/
0 #1
%
%
"/$
- , .
)
&+
# " %(
^_
J
`^
78
#
"
x:x6=y
x:x6=y
Q(y, x) = µ(y)
5 &" % +# 0 " * # )*
) +
#
1
)
)*
#
4
&)
%
0 %
2
-"
)
#
/
$
4
1
#$
1
)*
&+
0 0 %
& 0 % +
4 &" %# % 4
)
$ "
*
1
)
3
&"
0
%
$
/
0 #1 % % %* -)
$
) -
)
"
+*
3
#)
#
(
π
µ(x)Q(x, y). X X
x:x6=y
x:x6=y
x
z
µ X X X µ(y) = µ(x)Q(x, y) = µ(y)(1 − Q(y, x)) + µ(x)Q(x, y).
, ,
,
2
-
-%
-%
)*
# * * )*
4
$ )
1
1 )
"*1
+ * + " )
1
1 #
#
+
)*
*
"
+
&)
%
#1
,
, ,
1 -%., " - , .
$
5 )* +
%*
,
$
x rx
w lv npu
y y
hts
rq
r
ij hgf
mlnok
p
rq
e
ed c
ab
{ d
z
.
,
,
&
$ $
$
+
#)
$
%#
0
$
"*1 "
)
+*
)
,
,
- , .
$ &"
1
4
)4
% +*
%
0
% ,
2
)
" 4
%* 0
2 &
5 0
)
) +* )
"
-"
% $ ) &+
$ )*
3
-1
)#
*1
$
)
4
$ )*
#
+4
1
/
+#
+
%*
2
&) -
&
)* # ) %3
)
+
&)
#
,
,
,
,
0
0
2
$ )
5
&
) # ) %3
)4
&)
& $
3 -4 *$ $
+ $)
"
%* %
1"
3
+
)
3 0
0
2)
x rx
y y
hts
rq w
npu
)
ab
c
p
mlnok ij hgf
ed
e
rq
r
lv
#
4 #1
$
)
* ,
&+
2
%
&+
4 )*
3
+
)
+ 3 1"
N
B A
1 d
<
8 < E
^ _
9
9;
>9
<; <
:
'
2
)
) # * * +
4 # #$
$
&
) # ) %3
4
+
)
)*
#
$
*
&) 0
&
0 3
$
)
)
$
%# -
2 % 0
,
'
&" %# %* &
#
$
#
3
)4
)
-$
-%
&
1 Q(x, y) = N
A. xi = 1 ⇔
z
)#
Q(x, y) = 0 |xi − yi | = 1 i %*
P
x = (xi ) ∈ {0, 1}N .
5 &" & %*
x rx
w lv npu
y y
hts
rq
r
ij hgf
mlnok
p
rq
e
ed c
ab
d
<
8
E
^ _
9
9;
D
>9
<; <
:
&
) # ) %3
4 +
)*
$
*
&) 0
&
0
,
* "
-+
-' $
)4
&)
% & $ )
3 &+ # )*
'
&" %# %* &
#
$
#
3
)4
)
-$
-%
&
N −k N Q(k, k + 1) =
3
"
/
)4
)
$
%# -
-
2 &
i=1
%*
k < N,
k Q(k, k − 1) = , N %*
k > 0.
S(x) =
{0, . . . , N } (Sn = S(Xn ))
A xi = N X
z
S : {0, 1}N →{0, . . . , N }
x rx
w lv npu
y y
hts
rq
r
ij hgf
mlnok
p
rq
e
ed c
ab
t t
5 0
)*
5
% -
) # "
4 )
# )* $ )# )
"
+
)
$
+3
2
-3
"*
3
"
+
%
3
,
+
$
%# -
-
0
% 3 "*
3 %"
%
* * $ )*
,
,
&"
2
,
%# ,
#
)*
-% 3
-$
*
-3
1
*
-+
&
4)
&)
3
t t t t t t
t t
z
t t
x rx
w lv npu
y y
hts
rq
r
ij hgf
mlnok
p
rq
e
ed c
ab
e
;^ = >D
;
9
D
=
J
> <
78
* )
-+
2 -"
%
"
&+
%0
$
5
%
) +
" 3 "* -3 % 2) 0
" 4
$ $
#
)4
2+
& -%
& %
$ "/
/
0 #1 % %
D
,
- , .
H # )*
0
% 2 & % %0
)
$ "
/ "
$
5
%
) +
" 3 "* -3
$ 2) 0
" 4
$ $
#
)4
2+
& -%
& %
$ "/
/
0 #1 % %
D
,
- , .
H # )*
&
)# )
i=1
xi = k}. µN (k) = π{x ∈ {0, 1}N : S(x) =
N X
z
1 k µN (k) = N CN 2 •
1 π(x) = N 2 {0, 1}N •
x rx
w lv npu
y y
hts
rq
r
ij hgf
mlnok
p
rq
e
ed c
ab
z
+# " #
)
)
"
-+
5 ' % 0 / % 3# +
4
,
-
-
00
+# " #
$
+# " #
$ )
4 )
$ +# )
&"
,
,
,
&)
)#
"
-+
-
)
-) % 2
4
#$ *
#
)
- , .
&
& 0 %
&
) "#
&"
"
-+
Tx = inf{n ≥ 1 : Xn = x}.
* "
-+
-' $
)4
&)
% & $
3 ) &+
-1 -
%
P(∃n : Xn = y|X0 = x) > 0.
z
x. Tx X0 = x, •
x, y ∈ E •(Xn )
E • (Xn )
x rx
w lv npu
y y
hts
rq
r
ij hgf
mlnok
p
rq
e
ed c
ab
d
k=1
^
9
E 8 C
n
" ] P
[ ]O ] N
QR N ] ] T V
S P
<
^ J =
<9;
^
_
>^ 8 8
D;
:
K
@
A
QRP
VO Z QV O R O [
O
NV Z
H H >
^
_ ^
_
>^ 8 8
8 9_ ^
>^
<; >D 8
`
D; A
K
@
QRP
VO Z QV O R O O [
NV Z X P ]
V ]RP O
PQ
O [
E(Tx ) = ∞ ⇔
1 . E(Tx ) π ⇔ π(x) = ∀x E(Tx ) < ∞ ⇔ ∃!
z
1 1X limn→∞ 1Xn =x = . n E(Tx )
5 5 5
& %
)
$
3 " - , . )
$
&1 & 0
^_
J
`^
78
x rx
w lv npu
y y
hts
rq
r
ij hgf
mlnok
p
rq
e
ed c
ab
F
8
> < 7
>
D
9
>D
E
=
9J
^
;
^
H9
8
8
^;
=
^
=
D
>9
H
>^ C8
8
> _
^
`^ H :
E^
$% "#
!
32 ",+ , , " +1" ( " *% ( " $% , 0 , "%
2 %
D
? A
>
>
C
AB
=
@
? ?
3 "% + )(, ' " %
M W P
5Y
7 ML 56
M
MV
6
W
WV
XM
U ST 6 M
R6 5 L K
= < ,% E
K
5
5
L
MN
M
M
O O
O
P
Q
M
"
)(
:;
%
I 2 J
'G%
% + $ "%
E
#F
H
9
, *,
9 8
) % / . -
7 6
", )*+
3
5 4
%
'(
&
•
z
•
V LM
M _ [
^
w qw
x x
gsr
qp v
o lkmnj hi gfe dc
d
qp
ku
XW \V
MP PM 6 V
q
mot
O
]L \
5 \
WZ[
\Z
b `a
y
z
z
X \K
[ W M PM
L
6
XM
M M L \W
WV
7\ M W P
5Y
O
5
MV
M
XW
T L [ 6#
MV
V
XW
5 L
MV WL 6
6
MV
5W 7 5
\
Z
!M
5 V N
\ M
6 MV M 6 V M
V
7Y
"
$
^
( '
M P6 MV
WL 6 M M
$
VP O
V
M
6
7M
5 & '
\ 7[ 6
XM N WL V 6
M
XM 7 \X X% \ T L [ # M [
N WL M
6
^
V
L
N
M
X\ M PM *
M L
MV
6
V L 5O
5
) 5 '
)
)
K
WL
^
N = 6, 02 × 1023 , ) 5 '
M PM PW
2N .
π(x) = 2−N
w qw
v ku mot
x x
gsr
qp
q
hi gfe
lkmnj
o
qp
d
dc b `a
y
+
X X _7[ 6
5W 4M MP YV 6
TW
M
T6 M L \W
WV
M
7[
W P
5Y
O
O
6
L
6
MV
V
XW
5 \
[ MV P 6 \W \ 7
O
5 8 [
6 6 [
O
) 5 $ '
M
L \W
WV
7[ M W
WL
M
P
5Y
7 5
K
5
X
V L V M
N
5
M
O
O
VO
M
M
M 6 MP
PM
\
X
MV
XW 6 \O
V[
\6
6
\V
6
L
M
M
7
XMP
7W
6P
[M
TY
6
7M MV
MV
L 8
V
6
O
X [ P6
L
6
MV
V
XW
5 \ [
O
PM
M 6 M \
V
XM 5
A.
WL 6
6 6 [ M L
6
WL L
MV
6Z
[
M
\N V L 5O
\V
) 5 '
)
X [ P
E(TN/2 ) =
z
πN . 2 ∼
r N/2 CN 2N
E(TN ) = 2N
S = N/2
S=N A
k µN (k) = 2−N CN
Z
M
5 \
\L
w qw
x x qp v ku gsr
mot L
X
qp
q
o
V M
N
hi gfe
lkmnj
b
dc
d
N M[ 6
7Y V V `a
y
B AB
B
A
> 6
M
M
N
[
M
WV
L
V
\V
\
\
X
O
O
x>2
q0 , q1 , q2 6= 0.
)
6
[
[N
!M
X
\
X
\6
5
\ WZ[
M
L
PM
\Z
X
T
M
TM
O
K WL
•
n≥3
π(n) = π(n − 1)q2 + π(n)q1 + π(n + 1)q0 ⇔ (π(n + 1) − π(n))q0 = (π(n) − π(n − 1))q2
)
W
[π(n + 1) − π(3)]q0 = [π(n) − π(2)]q2 P
π(n) = 1 ⇒
6
n ≥ 2,
M
O
q2 n−2 ) π(2) q0
WL
π(n) = (
q 2 < q0 .
@
@
qx = 0
z
P(ξn = x) = qx
Xn+1 = (Xn − 1)+ + ξn+1
w
qw v
ku
mot
x
x
gsr
qp
q o
lkmnj
hi gfe
qp
d
dc
b
`a y
K
n = 1, 2
WL
π(1) = π(0)q1 + π(1)q1 + π(2)q0 . π(2) = π(0)q2 + π(1)q2 + π(2)q1 + π(3)q0
[
q2 q 0 π2 )
π3 =
⇒(
5
M
V
L
\6
\
XW
L
[
WL
M
5
5
K
π(0)
q2 1 − q0 π(0), π(2) = 2 π(0) π(1) = q0 q0 P π(0) P q2 n n π(n) = q0 [ n≥0 ( q0 ) ] = 1. \6V
XM
ML
7M
5 V
6
M
M
6
[
[N
\V
X
\
X
\6
5
\ WZ[
M
L
M
6
V
\Z
X
Q\M
5
?
@=
O !
X [
M
P6
MV
M
XW
5
S5 O
q2 < q0 ⇔ E(ξ) < 1.
π
q2 q2 q2 n−1 q2 π(0) = q0 (1 − ), π(1) = (1 − q0 )(1 − ), π(n) = ( ) (1 − ), n ≥ 2. q0 q0 q0 q0
z
•
w
qw v
ku
mot
x
x
gsr
qp
q o
lkmnj
hi gfe
qp
d
dc
b
`a y
z
e
d
dc b `a
z
=
@ @ ? ? A B
A B B
M X XW
ML
ML
N
M
6
5W
6
M N 6
XW
[M
P [
W
6
[W
\6 X 5
X
O
\
M
6
L
M
7[ X
$
!M
56 \ L 5M
[
O O
hAx, yi = hx, At yi.
?
i=1
z
xi y i . hx, yi = xt y =
n X
, xt = (x1 , . . . , xn ).
x 1 x ∈ Rn = . . . xn
Atij = Aji A = (Aij )
d
e
e
d
dc b `a
dz
E(X1 ) E(X) = . . . E(Xn )
6
!M
\ M
7[
X 6L
MV
•XX t
(XX t )i,j = Xi Xj
• X t X = hX, Xi = ||X||2
W
M
\6
5[
ML
6
M
N
[
X
L
X 1 X = ... Xn
z
• X : Ω→Rn
d
e
e
d
dc
b
`a
z
z
=
A
=
=
A
?
? A
B
%
>
)
+
,% E
!
0
1
%
)
,
1"
$
2
2
%
1
%)
'
%
)
,
"
+$
2
+
"
%
1
%
"
(
KX ∈ Mn (R)
+ C
@
?
?B
?
?B
X,
KX = E[(X − E(X))(X − E(X))t ]. L
!M
7M[
KX (i, j) = E((Xi − E(Xi ))(Xj − E(Xj )).
C
>
E(Y ) = aE(X). Var(hX, ai) = hKX a, ai = at KX a ≥ 0. "
%$2
%
)
+1
1
2 H
cov(hX, ai, hX, bi) = hKX a, bi. !
5M
[
O
O
cov(U, V ) = E [(U − E(U ))(V − E(V )] .
)
(2
"
%
"
(,
>
Y = hX, ai = at X.
@
?
?B
a ∈ Rn
d
e
e
d
dc
b
`a c
z
= E(ha, KX bi) = E(hb, KX ai).
˜X ˜ t b) = at E(X ˜X ˜ t )b = at KX b = E(at X
z
˜ ai, hX, ˜ bi) = E(hX, ˜ aihX, ˜ bi) cov(hX, ai, hX, bi) = cov(hX,
˜ = X − E(X) X
d
e
e
d
dc
b
`a y z
D
7
M
W
6
XW T
Z[
[
[V
Z
PM
V
L
M
V
M
W
X X
5
5 \
[
X[W
\
P
M
$
^
XM 6
6V
XM
X
L[
PM
M
W \O
X
[ MV V
V ML
O
\ O
5 [
^
(
&
6
XW
[
[
P M
L
L[
PM
V
P
\M
\ 5 X
X
X
M
W
XM
7 5 5 \6 [
^
U_2
U_1
B
L 6
\ 7 V
•λi = 0 ⇔ (X − E(X)) ⊥ Ui .
?
? A B
B
B >
KX Ui = λi Ui ⇒ Var(hX, Ui i) = λi
z
Ui λi =
i
E(X). X := • √
hX, Ui iUi X=
X
U1 , . . . , U n ⇒ KX KX
d
e
e
d
dc b `a
z z
>
> C
7 10 −1 4 E(X) = 0 KX = −1 1 −1 1 4 −1 2
M
N
[
Ker(KX ) = RU1 ,
1 U1 = −2 −3
⇒ (X − E(X)) ⊥ U1 .
@
=
=
?
@
z
d
e
e
d
dc
b
`a +
z
z
@
?
?B
'
%
)
,
$+
%
(,
C
>
>
d × n, Y = AX.
KY = AKX At .
hY, ai = hAX, ai = hX, At ai cov(hY, ai, hY, bi) = cov(hX, At ai, hX, At bi) = hKX At a, At bi = hAKX At a, bi.
A
d
e
e
d
dc
b
`a
z
3
3
E
•KX = AKη At = AAt .
M P 6
1 −x2 /2 . x→ √ e 2π
2
2
3
•E(X) = µ,
\V
V
6 \V XM MVP P6 W P
\L
M
$
O
2π
XM
P 6
2π
=√ me
(x1 , . . . , xm )→ √
?
P O O
\V XM P
. me
−||x||2 /2
1 x2i /2 i=1
Pm
−
1
A
=B
!
5M
ηi , [
η
? ?B
µ ∈ Rm
z
A
N (0, 1), η1 , . . . , η m η ∈ Rm
X = Aη + µ
e
e
d
dc b `a
z
I
2
E
>
?
?
?B
E
H
X
? ?
K = KX
1 g(x) = [(2π)n det(K)]−1/2 exp({− (x − µ)t K −1 (x − µ)}) 2
Φη (t) = E[exp(iht, ηi)] =
d Y
Φηi (ti ) =
i=1
d Y
e
−t2i /2
=e
−||t||2 /2
.
i=1
ΦX (t) = E[exp(iht, Xi)] = E[exp i(ht, Aη + µi)] = E[exp i(ht, Aηi)]eiht,µi t
= E[exp i(hA t, ηi)]e
iht,µi
t
= Φη (A t)e
iht,µi
=e
−||At t||2 /2 iht,µi
e
X M
L
M
L
M[
||At t||2 = hAt t, At ti = hAAt t, ti = hKX t, ti.
z
KX .
E(X)
X
\
W
[M
V
[
\
M[
L
\V
[
\
[
XW
\
[M
L
M
M
XW
U
[M
V
XW
M
O
O
e
e
d
dc
b
`a
z
\V
P
[M
P
L
XM
[
X
X
X
\
W
Z
M
L
V
[
P
M
V
[
P
X[W
\
M
XW
Z
V
N
\ M
X
\
\ "
$
^
i
U1 , . . . U n
hX, Ui iUi , KX Ui = λi Ui , Var(hX, Ui i) = λi hX − E(X), Ui i) √ ηi = . λi ]
SX
M
M
P
M
\L
XM
XM
L
[
LM
M
N
\VV
X L
MV $
^
η
cov(ηi , ηj ) = p
M
N
[
X = Aη + µ
1 λi i j p hKX U , U i = δij . λi λj λi λj
V
L
M O
√ λ 1 U1 1 A= ... √ λ1 U1 n
...
√
... ...
λn Un 1
... √
λn Un n
, µ = E(X)
z
X=
X
KX
KX
e
e
d
dc
b
`a
+
WL
O
U
M Z [
WL
γ(x)dx
\
^
X = φ(η),
N M[ P
M
XM
X
T[
O ⊂ Rn K
M N
2π
L
$
M
XW
. n
√
PM W P
L
V
[M
T
\ \ XW
\V
[
P
XM
WL
[
L
M
K
[
−||x||2 /2
e γ(x) =
z
γ(φ−1 (y))|Jac(φ−1 )(y)|dy =
Z
φ−1 (O)
P(X ∈ O) = P(η ∈ φ−1 (O)) =
Z
φ : Rn →Rn , x→φ(x) = Ax + µ
e
e
d
dc b `a
d+
M
P
\V
XM
M
N
φ−1 (y) = A−1 (y − µ). )
W
||φ−1 (y)||2 = hA−1 (y − µ), A−1 (y − µ)i = hA−1t A−1 (y − µ), (y − µ)i = hK −1 (y − µ), (y − µ)i.
1 . Jac(φ−1 ) = det(A−1 ) = p det(K)
z
X : g(y) = γ(φ−1 (y))|Jac(φ−1 )(y)|.
⇒
e
e
d
dc
b
`a +