A Lea To Ire 67

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View A Lea To Ire 67 as PDF for free.

More details

  • Words: 11,525
  • Pages: 63


 



 

 



  

 









 







 



 





  





























  





     



 







  

 

!

      







!

 !   

     

  











$ 

 













 

  #  







   

"

  



.4

6+

, 2 23

1 10 ( + )* () '&

+

@ C;< = B EF B E @ BD < ABC

?@

>

;<=

7

9 8 :

5

. /

@ <= I > JB

@ <= I > E B @ G @ ? = B ?G @ H F

ML )+ * O &

*L

6O

(

*L

&N4

ML M

M

) K 4

E @ B < ?<= <

 

 # 



   

 

? ;

  

Y

 X 

  









W

;

I @

=

B

@ H

EF@

>

?@

G

@

P

?G

<=

<

H

X0







  

 



      

, ( )* () '& ?G

Xn+1 = f (Xn , ξn+1 )

  









    

  





















        



X0 % <





 

W U TUV S R Q





n∈N • Xn =

(ξi ).

 

 

• ξ1 , ξ 2 , . . . ∈ F







• f : E × F →E,

F R, Rn •E

     

 _

_

[Z

 ^]

\







     



 





   



 

        

  









 

  

      

 









#



  

 

    









 











 







  

    



  



 





  X



 X



 



 









 X





































f (x, ξ) = ξ ⇔ Xn = ξn



 

f (x, ξ) = f (x) ⇔ Xn+1 = f (Xn )

!



!



     































 











!

  



  



 _

_

[Z

 ^]

\







     



 







    

 

  

   

!

 













  





  







    

 !





  

 







 

















      







!



 







 !

   





 

 



E = Rd

  









      

 

E







E

    



 





 





 # 

















"











 #



#



 





 _

_

[Z

 ^]

\







     



 











  



  





 















  

 





  "







#







  



   





    











 









 

      















  #  

   







#



x+ = max{x, 0}



 

Xn+1 = (Xn − 1)+ + ξn+1

 



 



ξn+1 =



  







   

  







n

]n, n + 1]. Xn =

=

n, X0 = 0. E=N



  

 













X

 _

_

[Z

 ^]

\







     



 







   

  #   



  

M

6

O



N

O

L

.

L

*

O

)O

M

M



.4



+ &

E B

;<=

5

7



9:8

5

-







()

K

*L L . & *

I ; E C

5

@ G P @ ? @ C CP > F C

= @

    





A@  

















#















 

< I<= ;

P @ ? @ C CP > F C

H

) ρ < 1 ⇔ E(T0 ) < ∞ (⇔

(Xn )) ρ ≤ 1 ⇔ P(T0 < ∞) = 1 (⇔





 

, ,

1

,



M

L

10

2

2

6+

ρ = E(ξ1 ) 

4









L

O

M4



L



X





 ! 

   









  



E(T0 ) = ∞  



T0 < ∞

ρ=1



T0 = ∞ ⇔



 

T0 < ∞ ⇔

 



•T0 = inf{n ≥ 1 : Xn = 0}

 _

_

[Z

 ^]

\







     



 









  





 

   





 





 

    













     

 

  

limn→∞ Xn = ∞



L L

5

Xn+1 ≥ (Xn − 1) + ξn+1

  



6 6 )* M O

L 

M4L

  

=ρ−1 n

−n



 

i=1

i=1 ξi

Xn ≥ limn→∞ lim inf n→∞ n

i=1

ξi − n = Xn ≥ X 0 +

Pn

ξi − n n X n X

 



(i) ρ > 1 ⇒

    

 





 

 _

_

[Z

 ^]

\







     



 







 





 





 







n≥1

Xn+1 = (Xn − 1) + ξn+1



 



{T0 = ∞} ⊂ {∀n ≥ 1 Xn =

i=1

ξi − n ≥ 1} ⊂ {

Pn

i=1 ξi

n

−n

≥ 0}



































limn→∞

n X

Pn

i=1 ξi

n

−n

=ρ−1<0





 









 







 



P(T0 = ∞) = 0.







T0 = ∞



















(ii) ρ < 1 ⇒



_

_

[Z



^]

\







    















 



     





 

  







 













 

 

  



 













 ! 

$  







 

  

 























   



 







 

 







 

  























 







 

    





















 











W 





"

 

    

  

Xn+1 = ξn+1 ◦ Xn

    

 

    # W















F. 



ξi

Xn . F ⊂E

ξn+1 n+1





X0 = e =

{1, . . . 52} 52! E = S52

 _

_

[Z

 ^]

\







     



 











5 4 3 2 1 6 7 . . . 52   X1 = ξ1 = 2 1 3 4 5 6 7 . . . 52   X2 = ξ2 ◦ X1 = 2 1 5 4 3 6 7 . . . 52   X3 = ξ3 ◦ X2 = 3 4 5 1 2 6 7 . . . 52





L

L 6 5





ξ3 =



1 2 5 4 3 6 7 . . . 52









ξ2 =



2 1 3 4 5 6 7 . . . 52





















ξ1 =





_

_

[Z



^]

\







    









 





 



  

  

        

 





  

    





 X







 













  

 



 



" 







 











 





 







 



 

 





 

 



" 

 

!



!





  



   





    



    





   





 









 

  







Y





















 X



   

 



 





  



  













 



  





! 



   







 

!

∀x ∈ F P(ξi = x) > 0

  























  







   

  







n

k + 1, . . . , 52. 1, 2, . . . , k

52 1

 

 

F. x = s1 ◦ . . . ◦ s l

x∈E

} F ={





F

 _

_

[Z

 ^]

\







     



 



 







K *L K



I ; E C

? = B I = ?

?



B

AB

=

<E

) ) L .

+



ML



(

L

I E

H



> H

? =

@ 

@

 @ IC @ >I @ C

E(Te ) = 52! ∼ 8, 065.1067 P A@ B

Te = inf{n ≥ 1 : Xn = e}



;<= I

= ; > = C; >

I

H

 

 

@ > < G;

@C @

 ; F

C



5

 3 ( +

+

+

K

)* )

M

6

1 Nn (x) = limn→∞ n 52!



 

k=1

  











Nn (x) =

n. x

1{Xk =x} n X

x ∈ E,

 _

_

[Z

 ^]

\







     



 



 





 













Y







Y



 

        

#



  



L 

M4L





W  #



   











$ 

 







 



#











 

 

 









  

 

 







 















   

#  





K

+

*L

.

L

K

O

.

K

+



ML



(

( M

M 





≥0⇒ )+



! 

1 Nn (e) i = limi→∞ i = . limn→∞ n T E(T1 )

    

 

Nn (e) = i

T





T i+1

i Nn (e) ≤ i ≤ n T i

T i ≤ n < T i+1 . i n∈N

n T

T i = ∆1 + . . . + ∆ i .

i+1 Ti T1 0

∆i

i (i − 1) ∆i = e. T 0 = 0

Ti ∆1 + . . . + ∆ i = limi→∞ = E(∆1 ). limi→∞ i i

 _

_

[Z

 ^]

\







     



 













  





     









 









 

x



#





1 Nn (x) 1 + Nn (e) = limn→∞ = limn→∞ n n E(T1 )

  





 









   



Nn (x) = n. X

 



 





#







x











52! Nn (x) 1 = ⇒ E(T limn→∞ ) = 52!. n E(T1 ) X

 

 

x

n. x x+ Nn (x)





x 6= e

 _

_

[Z

 ^]

\







     



 



























 

 6

(



)

) O

L

4

*

L

*L

N

KL

+

K

4

N

&L





6 5



)

)

)

(

( +

.

L



O

ML4











5

5

5

 #









#



K

L

* 5

 









2

2

()

' K

L

L

O

6

)M O



Tx = inf{n ≥ 1 : Xn = x} 



























⇒ ∃α > 0 ∀y P(∃n ≥ 1 : Xn = y) ≥ α > 0

P(Tx = ∞) = P(X1 6= x, . . . , Xn 6= x, Xn+1 6= x, . . .) X

=

y6=x

X

=

y6=x



P(X1 6= x, . . . , Xn−1 6= x, Xn = y, ξn+1 ◦ y 6= x, ξn+2 ◦ ξn+1 ◦ y 6= x . . .)

P(X1 6= x, . . . , Xn−1 6= x, Xn = y)P(ξn+1 6= x◦y −1 , ξn+2 ◦ξn+1 6= x◦y −1 . . .)

X

y6=x

P(X1 6= x, . . . , Xn−1 6= x, Xn = y)(1 − α)→n→∞ P(Tx = ∞)(1 − α)



 

 

P(Tx = ∞) ≤ (1 − α)P(Tx = ∞)

P(Tx = ∞) = 0.



_

_

[Z



^]

\







    









 





=

@

@ B ;

I@

@ > < G;

@C @

 ; F

C







(

(

K *L O . L & .

@ > I E @E @ =

@ G



5



dn ≤ Cρn .



( +

+

+

K

)* )

M

5

 



  

E@

<

=

G

@

I

P

?=

I

=

?

I

C>0





x∈E

  

K

.

L

)+ 

( L

+

)



N K )O



) 4

   



  

 

 



 

 

Y

  

L 

M4L











W



















    



ρ K )O





  

 















C

 

 

F 0≤ρ<1





1X 1 | ≤ 1. dn = |P(Xn = x) − 2 52!

 _

_

[Z

 ^]

\







     



 

















!







I @ = BCP

@ G



@> ? >I ;<

@ =C = B D @ G = I E>



 



 

<

 >I

C

<





@ 



   ?









  







0



   

 W 

 

 















 



  

 



 

n=7



 +

&

+



L

.

L

N4

*





(





1

    

 

n > 8. dn ∼ 0 n<7 dn ∼ 1





  

n ≤ 2500... 





@CA





E

;

B

?G

>I

< 

   ?

dn ∼ 1

52 7

 _

_

[Z

 ^]

\







     



 







     









 



 





  













Zd . 



  

     

    

   # 

 



  











 

    #





ξ1 , ξ 2 , . . .

Rd . e1 , . . . , e d

Zd .

Xn+1 = Xn + ξn+1 , X0 = 0

{e1 , . . . , ed , −e1 , . . . , −ed }.









     

 W







  

 











#





 















  



, 3 ,

O

6+



7

8

-

 _

_

[Z

 ^]

\







     



 







 





 

















 



r

r

r

r















Z

r

r

r

r

Zd .

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

Z2 . 

_

_

[Z



^]

\







    









 

     





 

2 , 3 , O

&

+



L

6+



M



E(T0 ) = ∞ 



 



    I = @ E @E @

;C >

P(T0 < ∞) < 1.

I

8

 



P(T0 < ∞) = 1.

= @

@ C;< = B EF B @ P

BC

 E B

; >

C; >



 7

-

  

 







#







  



M +

M4L



L

4 5



!



d≤2



 



d ≥ 3,

(Xn ) 2 d=1

Zd .

T0 = inf{n ≥ 1 : Xn = 0}

 _

_

[Z

 ^]

\







     



 







  







     #









 (

K +

+

*

ON

)* M (

N   



 





 











Xn+1 = AXn + B→X ∗ = AX ∗ + B









 













   



W

#





     







||A(i)|| < 1. A(i), i = 1, . . . , k,













{B(1), . . . , B(k)} {A(1), . . . , A(k)}



 







k > 1, •

k=1 •

{1, . . . , k}, (ξn )





Xn+1 = A(ξn+1 )Xn + B(ξn+1 ) ∈ Rd



       

  _

_

[Z

 ^]

\







     



 



 

L

A(1) = 

0.839 −0.303 0.383

0.924 

B(1) = 





 , A(2) = 

0.232 −0.080



−0.161 −0.136 0.138 

 , B(2) = 

0.921 0.178

−0.182



,

 



m(1) = m(2) = 12 .







 6O

M

) 5 K

(L









 



P(ξn = i) = m(i)











ξn



















•m =



_

_

[Z



^]

\







    













0 0.16

 , A(2) = 

−0.15 0.28



0.2

−0.26

0.23

0.22



 , A(4) = 

0.85

,

0.04



,

−0.04 0.85         0 0 0 0         B(1) = , B(2) = , B(3) = , B(4) = 0 1.6 0.44 1.6 0.26

0.24



m(1) = 0.01, m(2) = 0.07, m(3) = 0.07, m(4) = 0.85



L

A(3) = 

0





6

6

) L4

(L



0













A(1) = 

























_

_

[Z



^]

\







    









 

 



 

(

) ) ( M

)M



3 (

+ * K O * L . L N * O

? ; < PB= E <

B ?@

> I = @

CI >

?@ 

H H

@ > E @E @ =



y

 







  

 



   

+ )* ()





M





+

O

L . (L O



N

I

C E @> AB



B A

@ G @ <= I > ?@

> I = @

P @ < C B=

 @ G

?@ 

@ > E @E @ =

I ? B G



P(Xn+1 = xn+1 |X0 = x0 , . . . , Xn = xn ) = Q(xn , xn+1 )

 

    









    

  





















   

'&

(Xn ) Q

E %

E,

Q(x, y) = 1. X

 

 

Q : E × E→[0, 1],







•E

 





















 







  





# 







 



Y  X 



   

   













  











 





.4

6+

, 2 23

1

*

+

10 (

) ()

+

+

K

*

+

'&

)

(

  )





 

 

 M

@ ? = @ C CP > F C @ <= I > @ = ; >

5

7

8

. / 

5



A ; 

BC

@ G ?@ 

B P

?@

> I = @ @ C;< = B EF



L 

M4L

P(Xn+1 = y|X0 = x0 , . . . , Xn = x) = P(f (x, ξn+1 ) = y) := Q(x, y)







        

 B

Xn+1 = f (Xn , ξn+1 ).





 

Xn .

 

    





















 







(X0 , X1 , . . . , Xn ) Xn+1

 





















 







  



















 











#











  q(y) x = 0, = y|Xn = x) =  q(y − x + 1) x ≥ 1 

Q(x, y) = P(Xn+1



































"











 





(ξn )







#



Xn+1 = ξn+1 ◦ Xn ,

m.

Q(x, y) = P(ξn+1 ◦ x = y) = m(ξ ∈ E : ξ ◦ x = y) = m(y ◦ x−1 ). 





























  

"







Z. 







{−1, 1}.

|x − y| = 1









 0



 

1 2





 



Q(x, y) = P(x + ξn+1 = y) =







(ξn )







#



Xn+1 = Xn + ξn+1 ,

.



 





 

"







q











(ξn )



 



 

































Xn+1 = (Xn − 1)+ + ξn+1 ,



 





















 















 

















































& 5 &" %# %* &

#

#

3

)4

)

-$

-%

&+

$





2)



 











 





#)

-+ *

/

0 #1 % % $ "/

6

- , . )

# )*

&+

% '

&"

"#$

%#

!

(

) "* ,

F

8

E

9J 9 9

H9 G

>D

D

X P Q PW

TUV

Q P S

QR NOP

?

I

L K M

:

A @ B

E : . C

=

>9

<

9

<9;

78

\

] N Z [

X P NO

[ V

[

R P

T P O RZ VY

^_

J

`^

78

y

y



  

 

µn (y)Q(y, x). P(Xn+1 = x|Xn = y)P(Xn = y) = µn+1 (x) = P(Xn+1 = x) =

(Xn )

X X







Xn , i.e µn (x) = P(Xn = x). µn Q

µ(x)Q(x, y). µQ(y) =

x∈E

X

Q E µ

µn+1 = µn Q

x rx

w lv npu

y y

hts

rq

r

ij hgf

mlnok

p

rq

e

ed c

ab

z

{







 



 



 









z



* 

%+( &% " $ (

(

(

$)

'(

$

(

%+( * %$)

+0

&%

 &% " &! & $ (

%+( ! *$ 

"* $) (

'( %&! #$ 

"!   

-

/.

  

'(

'(

#$ 

"!

%&!

,

,

(Xn ) •

(Xn ) •

x rx

w lv npu

y y

hts

rq

r

ij hgf

mlnok

p

rq

e

ed c

ab

z

1

^ D ; ^;

I

%

# /







'

)

-+

-)

4

/

0 #1 % % $ "/ - , . )

)

$ *



3

&+

% 2* & -$ # # )*

)#

)

)4

*$ * $ &+

-+ "





,

,



5

)#

)

)4

$* * $ &+

,







5 )

*$ )*

2+

4 ) +

-+ "

-+ ,

0

$

&"

0



)

 1

$

0 0

$ 1



)



# " %(





(

5

)#

b

) +

$

+



5

) $ * -1 &+ *



-)

# *

-$

% 2* &

# # )

)*

-$

%

/

&$ % &"

1

*$ )*

)

43

"

4

)$

2 &

Xn+1 = Xn (1 − Vn+1 ) + (1 − Xn )Un+1

 

E > _

   >9

;

;

<; < E

=

>D 8

`^ H :

E^



%

l = 1.





 





 



 

l





z

1 0 b 6= 0

1 b

% %

&

*

*

$

)

4 )* #

$ 4

"

+

4

1

&)

& %0 0 %

&

-)



,

- , .

"/

/

0 #1

4

)

+

3

3



a )

$



3

(Un ), (Vn )

1 1 a 6= 0 0 a

x rx

w lv npu

y y

hts

rq

r

ij hgf

mlnok

p

rq

e

ed c

ab

z





-+ *

&"

%#

%*

&

#

)

4)

3

)

#

+

Q=

1−a

a

b

1−b

*

-"

0

1 − gn = P(Xn = 1).

. 

)#

#

&)

" %(

gn = P(Xn = 0)

-$

-% #

$

"

3

$

2)

2

2

% *

$



{0, 1} 

gn+1 = (1 − a)gn + b(1 − gn ) = (1 − a − b)(gn − g∗) + g ∗ 3

)



$

g ∗ = (1 − a − b)g ∗ + b.







 





















z

(Xn )

x

rx w

lv

npu

y

y

hts

rq

r p

mlnok

ij hgf

rq

e

ed

c

ab



d

,

,



)#

%*

%*

X0 = 1.

 

3 &"

4 # )*

& "1 -

# * )

"

$

*

-)

%

&

)

$* )*

2) 0 ) +

-+ "

/

0 #1 % % "/$ - ,

$

a b + (1 − a − b)n rn (0) = gn = a+b a+b





 





 



 

b a + (1 − a − b)n a+b a+b rn (1) = 1 − gn =





z

X0 = 0,

Xn

x rx

w lv npu

y y

hts

rq

r

ij hgf

mlnok

p

rq

e

ed c

ab

ed

)*

/ $

$ )*

, ,

0

) ) +

-+ "

/

0 #1 % % $ "/

$ " )



,

,

- , .

5 %0

2

4

#

)*

2)

& $ 4

#

4

1

&)

& % &" *

* -" 0

$ # )*

& "1 -

# * )

"

$

*

-)

%

&

)

$* )*

,



"

-) -+ * * $ "

-+



rn ≤ 

)

)

-+

-%

1 & %)

"

%* %

)

# # "



3 -

% +4 ) $ *

+

#$

)4

-1

0 0 % 0 $

log(1 − α) − log((1 − )1/l − α) . nc = − log(1 − a − b)

  0

-%

0

"

#

(

b a α = inf( a+b , a+b ).





 



 



* -" 0 

&

$

#

& $)

& % 2 * &" "*

+

2

i=1

rn (X0i ) ≥ [α + (1 − α)(1 − a − b)n ]l rn =

l Y



 

Xn





z

Xn1 , . . . , Xnl

Xn = (Xn1 , . . . , Xnl ) l > 1.

x rx

w lv npu

y y

hts

rq

r

ij hgf

mlnok

p

rq

e

ed c

ab

z d



RP

S ]Z

P

R]

XO

O

QV

Z

QRP











 



VO



 

_

H9





=

>9

< < >

 

R O [

O

 NV Z Q P





:

K

@ 

X P Q N O R S V

  [ X P

P





 QR NO

Q S ]R

 PT  ]O

S NZ

P OZ Q V Q N O R RV] S N

 



" P ZXO

! ]R

N N Z N Y N [



 P

 Q YV

UV





+# " #

"

-+

%0

" )

4 # )*

*

)

$ $



#

$

-" 0

& -%

& %

/

0 #1 % % $ "/

,



- , .

%0

" )

4 # )*

-'

# )*

"

$

)4

&)

% &

$

$

3 0

$ #

 * )

*

#

)4

1

-% 3

2

0 ) +

*

%#

#$ +

4 "

#

)



)

*

%#

& %

&+

,



,

$

#

 ( %

n ≥ 0.





z

π Xn π, X0



Q

E π

π = πQ.

5

P

Z O O [S

 X R



x rx

w lv npu

y y

hts

rq

r

rq

RV

p

ij hgf

mlnok



*

c

ed

e

&+

& $ 34 &"

4

ab

d d

0

)

$ $



#

)

"

-+

& -%

& %

/

0 #1 % % $ "/

,

- , . ) &+

5

-

& 0

)* # 3 $ )

)4

$ 1 2+

$) 3 1 *

+

)$

*

%"

% 2 &$

)4



$

$



^_

J

`^

78

%0

# 5 

5 

" )

4

3 )

$

"

-+



3

x

x

#

, 2 # *

$

z

m(y ◦ x Q(x, y) =

)*

* )

-+

2 -"

 %

)

)

$

"

&+

%0



0

2 

*

1 , π(x) = 52! X π(x)Q(x, y) π(y) = x





 

Q(x, y) = P(ξn+1 ◦ x = y) = m(ξ ∈ E : ξ ◦ x = y) = m(y ◦ x−1 ).



z

m(z) = 1. )=

X

m. (ξn ) Xn+1 = ξn+1 ◦ Xn ,

−1

X X

E

x rx

w lv npu

y y

hts

rq

r

ij hgf

mlnok

p

rq

e

ed c

ab



d



+# " #

*

"

-+



-"

,

0

0 #1

)

$ $



#



5

-%

&

% % / "/$

)

4 * $ )#

4 $

,

,

,

- , .

2

&

* )

-+

0

2 )

$

#

"

%* % 0 1 )$

)

)

$

$

3 -

2

0

2 

& %



& -%

& %

) #

$

$

/

0 #1 % % "/$

(

,

,

- , . ) &+ ) # * %) 

0 %+

*

+

"*

&"

^_

J

`^

78

 #

"

π(n + 1) − π(n) = π(n) − π(n − 1) = π(1) − π(0).





 

3 &"

4 )#

#

*$

)

&)

2 % * 3 1

#



"

+

)

&1

%

&"

*

"

$

#

*

-+

&

2 2

&

5 &" % #3 % 4 #

-$

)

3

&"

&



π(n) = 0.

π(1) = π(0) = 0 n

π.



z

π(n) =

1 (π(n + 1) + π(n − 1)). 2 n ∈ Z.

Z

x rx

w lv npu

y y

hts

rq

r

ij hgf

mlnok

p

rq

e

ed c

ab

 d







z

 

H

^; 

D

^;

^J

^

<; 8

8

> C

A





=

>9

< < >

 

Q N O R O] Q

V RZ X P T P O RZ VY

V

S ]Z

R O O [

 NV Z Q P S

R NO

L



H

^



^ ^J

<; 8

8

]O

! R N Z

V Z Z V

RP XO ]R P

Q P O TUV

V [ QR YP P

 O RT P] P Z

 









SR N R S



x, y ∈ E. NZ

^





^



_

H9





< 8

^

=

>9

<

9

<9;

78

R N Z

V Z Z V P

[ ]O Z

P P Z ]R P

O



 



@

L K

:

:

QRP

VO Z QV O R O O [

 VN Z Q P S R] P

N

[

Z

]



π !

V

π

Q

π X

P E. π

π(x)Q(x, y) = π(y)Q(y, x)

x rx

w lv npu

y y

hts

rq

r

ij hgf

mlnok

p

rq

e

ed c

ab



d

*

$

$



#

)

-"

0



5

&

-%

&

%

/

0 #1

%

%

"/$

- , .

)

&+

# " %(

^_

J

`^

78

 #

"

x:x6=y

x:x6=y





 

Q(y, x) = µ(y)

5 &" % +# 0 " * # )*

) +

#

1

)

)*

#

4

&)

%

0 %

2

-"





)

#

/

$

4

1

#$

1

)*

&+

0 0 %

& 0 % +

4 &" %# % 4

)

$ "

*

1

)

3

&"

0

%

 $

/

0 #1 % % %* -)

$



) -

)

"

+*

3

#)

#

(

π

µ(x)Q(x, y). X X

x:x6=y

x:x6=y

x



z

µ X X X µ(y) = µ(x)Q(x, y) = µ(y)(1 − Q(y, x)) + µ(x)Q(x, y).



, ,

,



2

-



-%



-%

)*

 # * * )*

4

$ )

1

1 )

"*1

+ * + " )

1

1 #

#

+

)*

*

"

+



&)

%

#1

,

, ,

1 -%., " - , .

$





5 )* +

%*

,

$

x rx

w lv npu

y y

hts

rq

r

ij hgf

mlnok

p

rq

e

ed c

ab

{ d







z

 

.

 





,

   

 ,















      



&

$ $

$

+

#)

$

%#

 0



$

"*1 "

)

+*

)

,

,

- , .

 $ &"

1

4

)4

% +*

 %



0



% ,

2

)

" 4



%* 0

2 &



5 0

)

) +* )

"

-"

% $ ) &+

$ )*

3

 -1

)#

*1

$

)

4

$ )*

#

+4

1

/

+#

+



%*

2



&) -



&

)* # ) %3

)

+

&)



#



,

,

,

,





0

0

2

$ )

 



5

&

) # ) %3

)4

&)

& $

3 -4 *$ $

+ $)

"

%* %

1"

3

+

)

3 0

0

2)





x rx

y y

hts

rq w

npu

)

ab

c

p

mlnok ij hgf

ed

e

rq

r

lv

#

4 #1

$

)

* ,

&+

2

%

&+

4 )*



3

+

)



+ 3 1"

N

B A

1 d

<

8 < E

^ _

9 

9;



>9

<; < 

:



'

2

)

) # * * +

4 # #$

$





&

) # ) %3

4

+

)

)*

#

$

*

&) 0

&

0 3

$

)

)

$

%# -

2 % 0

,

'

&" %# %* &

#

$

#

3

)4

)

-$

-%

&

1 Q(x, y) = N





 

A. xi = 1 ⇔



z

)#

Q(x, y) = 0 |xi − yi | = 1 i %*

P

x = (xi ) ∈ {0, 1}N .

5 &" & %*

x rx

w lv npu

y y

hts

rq

r

ij hgf

mlnok

p

rq

e

ed c

ab

 d

<

8

E

^ _

9 

9;



D

>9

<; < 

:



&

) # ) %3

4 +

)*

$

*

&) 0

&

0

,

* "



-+

-' $

)4

&)

% & $ )

3 &+ # )*

'

&" %# %* &

#

$

#

3

)4

)

-$

-%

&

N −k N Q(k, k + 1) =

3

"

/

)4

)

$

%# -

-

2 &

i=1

%*

k < N,

k Q(k, k − 1) = , N %*

k > 0.





 

S(x) =

{0, . . . , N } (Sn = S(Xn ))

A xi = N X



z

S : {0, 1}N →{0, . . . , N }

x rx

w lv npu

y y

hts

rq

r

ij hgf

mlnok

p

rq

e

ed c

ab





t t

5 0

)*

5

% -

) # "

4 )

# )* $ )# )

"

+

)

$

+3

2

-3

"*

3

"

+

%

3

,

+

$

%# -

-

0

% 3 "*

3 %"

%

* * $ )*

,

,

&"

2

,

%# ,

#

)*

-% 3

-$

*

-3

1

*



-+

&





4)

&)



3

t t t t t t





 

t t



z

t t









x rx

w lv npu

y y

hts

rq

r

ij hgf

mlnok

p

rq

e

ed c

ab

e 

;^ = >D

;

9



D



=

J


> <


78

* )

-+

2 -"

 %

"

&+

%0

$

5

%

) +

" 3 "* -3 % 2) 0

 " 4

$ $



#

)4

2+

& -%

& %

$ "/

/

0 #1 % %

D

,

- , .

H # )*

0

% 2 & % %0

)

$ "

/ "

$

5

%

) +

" 3 "* -3

$ 2) 0

 " 4

$ $



#

)4

2+

& -%

& %

$ "/

/

0 #1 % %

D

,

- , .

H # )*

 &

)# )

i=1





 

xi = k}. µN (k) = π{x ∈ {0, 1}N : S(x) =

N X



z

1 k µN (k) = N CN 2 •

1 π(x) = N 2 {0, 1}N •

x rx

w lv npu

y y

hts

rq

r

ij hgf

mlnok

p

rq

e

ed c

ab

z 





  



+# " #

)

)

"

-+

5 ' % 0 / % 3# +

4

,



-

-

00

+# " #

$

+# " #

$ )

4 )

$ +# )

&"

,

,

,



&)

)#

"

-+

-

)

-) % 2

4

#$ *

#

)

- , .

&

& 0 %

&

) "#

&"

"

-+



Tx = inf{n ≥ 1 : Xn = x}.



 

  

* "



-+

-' $

)4

&)

% & $

3 ) &+

-1 -

%

P(∃n : Xn = y|X0 = x) > 0.





     

 

     



  

 

























 



z

x. Tx X0 = x, •

x, y ∈ E •(Xn )

E • (Xn )

x rx

w lv npu

y y

hts

rq

r

ij hgf

mlnok

p

rq

e

ed c

ab



d





k=1





^

9



E 8 C

n





     

 

   

  



 

" ] P

[ ]O ] N

QR N ] ] T V

S P





<

^ J =

<9;

^ 

_





>^ 8 8

 D;

:

K

 @ 

A

QRP

VO Z QV O R O [

O

 NV Z



H H >

^

_ ^ 

_





>^ 8 8

8 9_ ^ 

>^

<; >D 8

`

D; A

K

@



QRP

VO Z QV O R O O [

 NV Z X P ]

V ]RP O

 PQ

O [





E(Tx ) = ∞ ⇔

1 . E(Tx ) π ⇔ π(x) = ∀x E(Tx ) < ∞ ⇔ ∃!

 

z

1 1X limn→∞ 1Xn =x = . n E(Tx )



5 5 5

& %

)

$

3 " - , . )

$

&1 & 0

^_

J

`^

78

x rx

w lv npu

y y

hts

rq

r

ij hgf

mlnok

p

rq

e

ed c

ab













     

 

   

  



 

 F

8

> < 7

>

 D 

9

>D

E

=

9J

^

;

^

H9



8

8

^;

=

^

=

D



>9

H

 >^ C8

8

> _

^

  

 `^ H :

E^





 

 



  

  



 



$% "#











!

















32 ",+ ,  , " +1"  ( "  *% ( "  $% , 0  , "% 

2 %

D



? A

 

>

>

 C



 AB



=



@

?  ?

 

3 "%  + )(, ' " %

M W P

5Y

7  ML 56

M

MV

6

W

WV

XM



U  ST   6  M

R6 5 L K

= < ,% E

K

5

5

L

MN

M

M

O O

O

P

Q

M 

"

)(

:;

%

I 2 J

'G%

%  + $ "%

E

#F

H

 

9

, *,

9 8  

) % / . -

 7 6

", )*+

 3

5 4

% 

 '(

 &



 

z



V LM

M _ [

^

w qw

x x

gsr

qp v

o lkmnj hi gfe dc

d

qp

ku

XW \V

MP PM 6 V

q

mot

O

]L \

5 \

WZ[

\Z 

b `a

y

z





 



















 



 

  



z  





X \K





[ W M PM 

L

6



XM  



M M L \W 

WV 

7\ M W P

5Y





O

5

MV



M

XW

T L [ 6#

MV

V

XW

5 L 

MV WL 6

6

MV

5W 7 5

\

Z

!M

5 V N

\ M



6 MV M 6 V M

V

7Y



"

$

^

(  '



M P6 MV

WL 6 M M

$

VP O

V

M

6

7M

5 &  '

  \ 7[ 6

XM N WL V 6



M

XM 7 \X X% \ T L [ # M [

N WL M

6 

^

   V

L

N

M

X\ M PM *

M L



MV

6



V L 5O

5

) 5 '

)

)



K

WL

^

N = 6, 02 × 1023 , ) 5 '

M PM  PW



2N .







π(x) = 2−N

w qw

v ku mot

x x

gsr

qp

q

hi gfe

lkmnj

o

qp

d

dc b `a

y

+





 

















 







X X _7[ 6

5W 4M MP YV 6

TW

M

T6 M L \W 

WV 

M

7[

W P

5Y



O



O

6

L

6

MV

V

XW

5 \

[ MV P 6 \W \ 7

O

5 8 [

6 6 [

O



) 5 $ '

M

L \W 

WV 

7[ M W

WL

M

P

5Y

7 5 

K

5

X

V L V M

N







5

M



O

O

VO



M



M

M 6 MP

PM

\

X

MV

XW 6 \O

V[

\6

6

\V

6

L

M

M

7



XMP



7W

6P

[M

TY

6

7M MV

MV



L 8

V

6



O



X [ P6

L

6

MV

V

XW

5 \ [

O

PM

M 6 M \

V

XM 5

A.

WL 6

6 6 [ M L 

6

WL L

MV

6Z

[

M



\N V L 5O

\V

) 5 '

)

X [ P

E(TN/2 ) =

 









z  

πN . 2 ∼

r N/2 CN 2N

E(TN ) = 2N

S = N/2

S=N A







k µN (k) = 2−N CN

Z

M 

5 \

\L 



w qw

x x qp v ku gsr

mot L

X

qp

q

o

V M

N

hi gfe

lkmnj

b

dc

d

N M[ 6

7Y V V `a

y 



B AB

B



A

> 6

M



M

N

[



M

WV

L

V

\V

\

\

X 

O

O

x>2

q0 , q1 , q2 6= 0.

)

6

[

[N

!M

X

\

X 

\6

5

\ WZ[

M

L

PM



\Z



X

T

M



TM 

O



K WL



n≥3

π(n) = π(n − 1)q2 + π(n)q1 + π(n + 1)q0 ⇔ (π(n + 1) − π(n))q0 = (π(n) − π(n − 1))q2

)  

W

[π(n + 1) − π(3)]q0 = [π(n) − π(2)]q2 P

π(n) = 1 ⇒



6

n ≥ 2,

M

O

q2 n−2 ) π(2) q0

WL

π(n) = (

q 2 < q0 .









@





@





qx = 0



 





z





P(ξn = x) = qx























 















Xn+1 = (Xn − 1)+ + ξn+1

w

qw v

ku

mot

x

x

gsr

qp

q o

lkmnj

hi gfe

qp

d

dc

b

`a y





K

n = 1, 2

WL

π(1) = π(0)q1 + π(1)q1 + π(2)q0 . π(2) = π(0)q2 + π(1)q2 + π(2)q1 + π(3)q0 

[

q2 q 0 π2 )

π3 =



⇒(

5

M

V

L

\6

\

XW

L



[

WL

M

5

5



K

π(0)

q2 1 − q0 π(0), π(2) = 2 π(0) π(1) = q0 q0 P π(0) P q2 n n π(n) = q0 [ n≥0 ( q0 ) ] = 1. \6V

XM

ML

7M

5 V

6

M

M

6

[

[N

\V

X

\

X 

\6

5

\ WZ[

M

L

M

6

V

\Z



X





Q\M



5



? 

@=

 

O !



X [

M



P6

MV

M

XW

5

S5 O

q2 < q0 ⇔ E(ξ) < 1.

π

q2 q2 q2 n−1 q2 π(0) = q0 (1 − ), π(1) = (1 − q0 )(1 − ), π(n) = ( ) (1 − ), n ≥ 2. q0 q0 q0 q0





 



z





























 

















w

qw v

ku

mot

x

x

gsr

qp

q o

lkmnj

hi gfe

qp

d

dc

b

`a y 



 

 











 











 





















z 





















 



 







 





e

      d

dc b `a



z









=

@ @ ? ? A B 

 A B B



M X XW

ML

ML

N

M



6



5W 



6 

M N 6

XW

[M

P [

W

6

[W

\6 X 5

X



O

\

M 

6

L

M

7[ X

$

!M

56 \ L 5M

[ 

O O

hAx, yi = hx, At yi.





 







  ?



i=1

 













 

 







 





















z  

xi y i . hx, yi = xt y =

n X





   , xt = (x1 , . . . , xn ). 

x  1  x ∈ Rn =  . . .  xn

Atij = Aji A = (Aij )

 

d

  



 e

e

      d

dc b `a

dz

E(X1 )   E(X) =  . . .  E(Xn ) 

6

!M

\ M

7[

X 6L

MV

•XX t

    

(XX t )i,j = Xi Xj

• X t X = hX, Xi = ||X||2





   



W

M



\6 

5[

ML

6



M

N

[

X

L

X  1  X =  ...  Xn







z













































• X : Ω→Rn

d

 





 e

e

    



d

dc

b

`a 

z



 





































 

z







=

A





=





=

A

?

? A

B

%

>

 )

+

,% E

!

0

1





%

)

,

1"

$

2

2

%

1

%)

'

%

)

,

"

+$

2

+

"

%

1

%

"

(



KX ∈ Mn (R)





+   C





@











?







?B







?

?B







X,

KX = E[(X − E(X))(X − E(X))t ]. L

!M



7M[

KX (i, j) = E((Xi − E(Xi ))(Xj − E(Xj )).









  C

>



E(Y ) = aE(X). Var(hX, ai) = hKX a, ai = at KX a ≥ 0.  "





%$2

%

)

+1

1

2 H



cov(hX, ai, hX, bi) = hKX a, bi. !

5M

[ 

O

O

cov(U, V ) = E [(U − E(U ))(V − E(V )] .

)

(2

"

%

"

(,



>

Y = hX, ai = at X.



@









? 





?B



a ∈ Rn

d

 





 e

e

    



d

dc

b

`a c

z









= E(ha, KX bi) = E(hb, KX ai).







˜X ˜ t b) = at E(X ˜X ˜ t )b = at KX b = E(at X





z





˜ ai, hX, ˜ bi) = E(hX, ˜ aihX, ˜ bi) cov(hX, ai, hX, bi) = cov(hX,





































˜ = X − E(X) X

d

 





 e

e

    



d

dc

b

`a y z

 

D



7

M 

W

6

XW T

Z[

[

[V

Z

PM

V

L

M

V

M

W

X X

5

5 \

[

X[W

\

P

M

$



^

XM  6

6V



XM

X

L[

PM

M

W \O

X



[ MV V

V ML 

O

\ O 

5 [

^

(

&

6

XW

[

[

P M

L

L[

PM

V

P

\M 

\ 5 X

X

X

M

W

XM

7 5 5 \6 [

^

U_2

U_1







B  

 L 6

\ 7 V

•λi = 0 ⇔ (X − E(X)) ⊥ Ui .





? 



? A B 

B

B > 



KX Ui = λi Ui ⇒ Var(hX, Ui i) = λi











    



 

z  

Ui λi =





i

E(X). X := • √

hX, Ui iUi X=

X

U1 , . . . , U n ⇒ KX KX

d

  



 e

e

      d

dc b `a

z z









>

> C 



7 10 −1 4         E(X) =  0  KX =  −1 1 −1      1 4 −1 2



M

N

[

Ker(KX ) = RU1 ,





1     U1 =  −2    −3

⇒ (X − E(X)) ⊥ U1 .



@





=

=



?





@











z















































d

 





 e

e

    



d

dc

b

`a +

z







z





@



 









? 





?B



'

%

)



,

$+

%





(,



 C

>

>

d × n, Y = AX.

KY = AKX At . 





hY, ai = hAX, ai = hX, At ai cov(hY, ai, hY, bi) = cov(hX, At ai, hX, At bi) = hKX At a, At bi = hAKX At a, bi.









































A

d

 





 e

e

    



d

dc

b

`a 

z

3

3  





 



 

E

•KX = AKη At = AAt .

M P 6

1 −x2 /2 . x→ √ e 2π





 

2



 



 







 

2 





3  

   

•E(X) = µ,



  









 

 

 





\V



V

6 \V XM MVP P6 W P

\L 

M

$

O









 



XM

P 6



=√ me

(x1 , . . . , xm )→ √



?









P O O

\V XM P

. me

−||x||2 /2

1 x2i /2 i=1

Pm



1







A



=B



!

5M



ηi , [

η

 

? ?B 





µ ∈ Rm

 

z  

A

N (0, 1), η1 , . . . , η m η ∈ Rm







X = Aη + µ



  



 e

e

      d

dc b `a



z































I 

2





























E

>

 



? 





? 





?B

 



























E

H

X























? ? 

K = KX

1 g(x) = [(2π)n det(K)]−1/2 exp({− (x − µ)t K −1 (x − µ)}) 2 





Φη (t) = E[exp(iht, ηi)] =

d Y

Φηi (ti ) =

i=1

d Y

e

−t2i /2

=e

−||t||2 /2

.

i=1

ΦX (t) = E[exp(iht, Xi)] = E[exp i(ht, Aη + µi)] = E[exp i(ht, Aηi)]eiht,µi t

= E[exp i(hA t, ηi)]e

iht,µi

t

= Φη (A t)e

iht,µi

=e

−||At t||2 /2 iht,µi

e







X M

L

M

L

M[







||At t||2 = hAt t, At ti = hAAt t, ti = hKX t, ti.



















z





KX .

E(X)









X



\





W

[M

V





[



\



M[

L



\V





[



\



[

XW



\

[M

L

M

M

XW

U







 [M

V

XW 

M 



O

O 

 





 e

e

    



d

dc

b

`a 

z





\V

P

[M

P

L

XM







[ 

X



X

X



\

W

Z

M

L

V

[

P

M

V

[

P

X[W

\

M

XW



Z

V

N

\ M

X

\

\ "

$

^

i

U1 , . . . U n

hX, Ui iUi , KX Ui = λi Ui , Var(hX, Ui i) = λi hX − E(X), Ui i) √ ηi = . λi ]

SX

 

M

M





P

M





\L







XM

XM

L

[

LM





M

N

\VV



X L



MV $

^

η

cov(ηi , ηj ) = p







M

N

[

X = Aη + µ

1 λi i j p hKX U , U i = δij . λi λj λi λj

V

L

M O

 √ λ 1 U1 1    A=   ...  √ λ1 U1 n

...



... ...

λn Un 1

... √

λn Un n



    , µ = E(X)   



















z





X=

X

KX









KX



 





 e

e

    



d

dc

b

`a 

+





WL 

O

U 

M Z [



WL

γ(x)dx







\

^



X = φ(η),



  



N M[ P 

M

XM 

X 

T[



O ⊂ Rn K



M N



L

$







M

XW 

. n



PM W P

L



V

[M



T 





\ \ XW  

\V

[

P

XM



WL

[



L

M 





K

[

−||x||2 /2

e γ(x) =

 

z  

γ(φ−1 (y))|Jac(φ−1 )(y)|dy =

Z

φ−1 (O)

P(X ∈ O) = P(η ∈ φ−1 (O)) =

Z







φ : Rn →Rn , x→φ(x) = Ax + µ



  



 e

e

      d

dc b `a

d+

M

P



\V

XM





M

N

φ−1 (y) = A−1 (y − µ). )  

W

||φ−1 (y)||2 = hA−1 (y − µ), A−1 (y − µ)i = hA−1t A−1 (y − µ), (y − µ)i = hK −1 (y − µ), (y − µ)i.

1 . Jac(φ−1 ) = det(A−1 ) = p det(K)



















z





X : g(y) = γ(φ−1 (y))|Jac(φ−1 )(y)|.













 





 e

e

    



d

dc

b

`a  +

Related Documents

A Lea To Ire 67
November 2019 6
A Lea To Ire 4
November 2019 17
A Lea To Ire 2
November 2019 21
A Lea To Ire 5
November 2019 16
A Lea To Ire 3
November 2019 16
A Lea To Ire 1
November 2019 18