A Lea To Ire 5

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View A Lea To Ire 5 as PDF for free.

More details

  • Words: 4,760
  • Pages: 24


 





  



 























$ # "!    

  



5  5

,

) %

:

( 9 78

)6&

 4  3

= ) &-

6< 7%

,6 ; ! 

=

' ( % & ($ < ,6 ; !  

2

2 >

3   





?@A

F

D

F

G

? I H

C G? @ E B A C D BC

J

M

 4

1 K5

2

L5

F

X : Ω→N

φX (t) = GX (eit )







,

)* '(

$%&

"#!



  

 2   0 21 01

P X = P Y ⇔ φ X = φY

 

 0











   

 

   





φX (t) = E(eitX ) = E(cos(tX)) + iE(sin(tX)). P itx φX (t) = x e PX (x) R itx φX (t) = e pX (x)dx

   

+ +

+.





   

   











/,









 

      



X: •φX

C∞ •φX

X, φX : R 7→ C

X : Ω 7→ R

 S RQ

#P

!

$

 ON



$ # "!    

  







 







 





 







  3



5

3

5



0

K

K



 1





@ CA

I

? @



B

DH





B 

?

@

?

@



H

@

?



M



E(.)

F

G

D

F E

DI

A

?

H

F

E(|X|k ) < ∞

?

A

φ0X (t) = E(iXeitX ), φ00X (t) = E(−X 2 eitX ) . . . , φ(k) (t) = E(ik X k eitX ).  

H

iE(X) =

φ0X (0),

−E(X 2 ) =

φ00 (0),

ik E(X k ) =

φ(k) (0).



S

RQ

#P

!

$



ON



$ # "!  









 









 3

3



1

5





 



F H

G? I

1 pX (x) = g(x) = √ exp(−x2 /2) 2π Z φX (t) = E(eitX ) = eitx g(x)dx



DH



s∈R

1 sx e g(x)dx = √ 2π

Z

L !













 

5

 

K5



N (0, 1).

Z

2

exp(−x /2 + sx)dx =

Z

e

s2 /2

g(x − s)dx = e

s2 /2

 F

D



H

I

?



?

E

@

?A

F

D

?@



C

H

?



E

?

G

G I

@

?@



HA

D



?

I

?@

?











φX (t) = exp(−t2 /2)









 





 





•X



S

RQ

#P

!

$



ON



$ # "!  



















 F H

G? I

N (m, σ). B

?



C

Y = m + σX

X ∼ N (0, 1).

φY (t) = E(eitY ) = E(eitm eitσX ) = eitm φX (σt)

= exp (itm − t2 σ 2 /2).









 





 





•Y



S

RQ

#P

!

$



ON



$ # "!  









 

  

2

3 5



1 3

1





2 5  0 5 



.





 





:



' $

& ()



) 

, 8 ( 8 '6 

: 



φX (t) = E(eiht,Xi ).

)6&

) $% , & 8 

, ' ) &) < * '( 7 ) '

% 6& -% 8 ,& -< ,

< $( % & < $( ,

,

)

( 9

%  78





X ∈ Rn , t ∈ Rn





 

φX1 ,X2 (t1 , t2 ) = E(ei(t1 X1 +t2 X2 ) ).

        



(X1 , X2 )

 S RQ

#P

!

$

 ON



$ # "!    

  



  



+ +

.

  3 



) & % 6 )6 & ,( 7 )(

78 ( % & $( 6

,

* )6



:





!

  





  

 

 

2 >

% 6 & ()



) 

' )

φX1 ,X2 (t1 , t2 ) = φX1 (t1 )φX2 (t2 ). 

? B

IC

I

E

? F DC 

5



L5

2 >



D BC

A? 

? A

E

B

H

? DF

D







F

G

? I H

C

E

@

G? F

D B A C D BC

  3 



)6 & (, 7 ()

78 ( % & $( 6

) &

%

:

" ! #











  



 

2 >

φX1 +X2 (t) = φX1 (t)φX2 (t). 

? B

IC

I

E

? F DC 

5



L5

2 >



φX1 +X2 (t) = E(eitX1 eitX2 ) = E(eitX1 )E(eitX2 ).



     

































6

X2 X1



 

φX1 ,X2 (t1 , t2 ) = E(eit1 X1 eit2 X2 ) = E(eit1 X1 )E(eit2 X2 )

 



(X1 , X2 ). φX1 ,X2

X1 , X 2

 S S RQ

#P

!

$

 ON



$ # "!    

  











 





 













  

?@

A IC

E

I

?@

?

F



?

F @

@



C

C

 ?@

I

?A

F H M





D ?@



A

?

I

C

5

DC

 5

3

3

?



A



@

@

H





E(S) = m =







1







F

D

G



E(Xj ) = mj , Var(Xj ) = σj2 Pn S = j=1 Xj

N (mj , σj )

X j

2

mj , Var(S) = σ =

X

σj2 .

j

 ?

B

IC

E

I

?

F

DC





5

L5

2

>



φS (t) =

n Y

φXj (t) =

j=1

n Y

j=1

exp (imj t − σj2 t2 /2) = exp (im − σ 2 t2 /2).









 





 





X1 , . . . , X n



S

S

RQ

#P

!

$



ON



$ # "!  









 

 



     



 













 F F G

D



E @



C 

H

? B C ?@



 

 C

A ?

@



?

I

?

 F

 











 















 









2





 

)

 



) 6 ()



% 6

-6 )

3*

5

5

  0

 

 

) '

7%&

(











˜ = {ω ∈ Ω : limn→∞ Xn (ω) = X(ω)} Ω

 

 

 

  

 

+



, $

)6&

7

)

-



%

%&

8

%

)

˜ = 1. P(Ω) :

1

X (Xn )

 



•X1 , X2 , . . . : Ω→R •(Ω, A, P)

B? ?



? D

AH

?

I

?

B

H

D

H F

H A

? 



 R

# 

! # " 





$ # "!    

  



 



2

3 5



F

DF

?@ E

 

@A I

?A

? I ?

A

 @ ?







? F

?

IC

?@

A

I

?A F



F



C

I

E

K 





5

3

21

5  

F

A



3

 

?

J

 I F



F 

Sn := X1 +X2 + . . . + Xn .

 

 

 

  

2

/

1

 



L

5

1

D

@ H GC

F M

D



 5



3 5

5

5



@ ?





 4

5

3

K5 2

2

2

  0



µ = E(X1 ) (Sn /n)

 

E(|X1 |) < ∞

 



•X1 , X2 . . .



 R

# 

! # " 





$ # "!    

  





?

C

 F H

I

?

A

I

G?

F

F



C

 ?@







P(Xn = 1) = p = 1 − P(Xn = 0) ?

E

DC

F

 I

?@A



@

E









D

F



C



H

C

FA

G

D

G



Pp ({ω ∈ Ω : ω1 = a1 , . . . , ωn = an }) =

n Y

i=1

pai (1 − p)1−ai

˜ p = {ω ∈ Ω : limn→∞ Sn (ω)/n = p} Ω @

@

C

Pq (Ωp ) = 0

F

F



Pp (Ωp ) = 1

p 6= q



F

D ?A





I

CA

A



E@

(Xn )



5

0

1



5



F



G

D

H@



@

G?









/



5



5

5



0

 



L

/



3

2



 5

 

5

K5





•Xn (ω) = ωn =



























•Ω = {0, 1}N



R

#



!

#

"

 



$ # "!  









 











 

 

  

 















 





 



0





5

5

5

  

2



 

 

 

 

% 6

-6 )

*

) '

7%&

(







) 8 -( $

 ) & ) ' ( % & $( <

B? 

G

? I

?A

H

DC F

G

? ? B

?

F D

?

@

? B

?



? D





 ?

F

E B

IH

?

 B

H

D

?

B

?

C

H 







L

2

2 >





A?

C

G?

C

B







D



H ? I

@ C

H



B

?

? D



1



5

H



2

K  F

? 

GF

F





?

A

H

($



%

:

C & < $( ) ' & $ -& ' $





F

G

H

?



?

? D

B

H



D

DF

H

B E

C

B ?

 C

@





?

?@A

C



@

?

?





Xn = (−1)n X

 



X ∼ N (0, 1) @

C

@

C

@





F



D

@



?

X

f

X (Xn )

limn→∞ E(f(Xn )) = E(f(X))

 R

# 

! # " 





$ # "!    

  



-6

)

*



%$

)(

)

-

)

*

$(

<

"



:

:





)

7

($

%

%&

-

,&

8-

-6

$



,

)

'

(

%

&

$(

<

)6&

:





F ?



B

HA

F



L5

5 AH M

1x≤t ≤ h (x) ≤ 1x≤t+



1

t

t+ε

0

lim sup P(Xn ≤ t) ≤ limn E(h (Xn )) = E(h (X)) ≤ FX (t + ) n

⇒ lim sup P(Xn ≤ t) ≤ FX (t) n→∞

?

? I

?

A

lim inf P(Xn ≤ t) ≥ FX (t) n→∞

$(

%

<

,



%

)

'

)

$6

'

6

( 



 2

>

h : R 7→ R







3



 )

7

limn→∞ P(Xn ≤ t) = FX (t).









2

>

X.



&



 $(

























(Xn ) X FX (t) = P(X ≤ t),



R

#



!

#

"

 



$ # "!  









  

 



 

 5

 1

() ) )

* $( <

 



! !



  





> 5  5

5







K 2

 

 5





K 2



*





%$)

-6

X ⇔ limn→∞ φXn (t) = φX (t)

 

 

 

 

  

 



(Xn )

 R

# 

! # " 

# R







  





?@ E

 

@A I

? 

C

E

?

? F

 D

BA? ?@A



A

?

E

I



?

? F

 F

D A



Sn − nµ ) = 1. Var( √ nσ

F

DF

G F

 ?

?

@A

?

A

C

DC

G

F 

M

Sn − nµ )=0 E( √ nσ





?A





? F

I

?A F ? A ?@

A IC

I

E

? F C

?

I

?

 F A

 @ ?

F

Sn − nµ √ nσ





























 





   I F



F 

•Sn = X1 + . . . + Xn .

  





















 

E(X12 ) < ∞, σ 2 = Var(X1 )







•X1 , X2 . . .

$ S

RQ

#P

!  ON



$ # "!    

  







   



5



5

0

5



21 

 K  







)

)

,(

< '%& -%

* &

)

,

6 ) '(

$%&

!

" !





 

5





K 2



) ( )( $



) 7

)6 '8

 -% 6& 7%

& ()



) '

% & )( 7 % ) & )6 & ,( 7 ()

78 ( ,

+% +

)* 7

:





µ















 



+

.

(

$% 

) 7

,

)* '( -6 )

* $% 

() ) )

* $( <

) '%& 6 ,



)





,

-

*)

&

(

%

' & $ -& ' $

) % 

'

%< ,& :



:

I  Z  Sn − nµ √ ∈ I = g(x)dx limn→∞ P nσ I











) < , *

H



?

?A

@

 B



?



?

?

I

?

B

DE



G

D F

 D A C

?

?

DC

G 



 DC

? 



exp(−x2 /2). √1 2π

g(x) =

N (0, 1). X n −nµ ( S√ ) nσ

σ2 .

X1 , X 2 . . .

) $&



$

)< 6 ) '

($



<) '

$% 

)





) 7

)6 & ,( 7 )(

78 ( % )6 

 , %,

)* 7 )





$ 6 ) ( 

:





:

) ( )( % 6 '6 ,

) 

 , -% ,

)* '( )





$

< & )(



)

%* , &



% 

$ -

,

: :



@



?@

C

I

D?

 D

 @

@

?@

H

C



@

? F

F

G I

E@

A? DF

 ?

B



H D A C D BC

 I

BCA

H F

F 

@A









  F



F

GF

?@

 @

?@







 H H 





 $ S

RQ

#P

!  ON



$ # "!    

  







 

 

























 

 DC

?A

@

? 

?



DH

F E



H

D 

D ?

A











?

B

C

C















G



DC E

B

H

?



E

H

DE







 

H



H

C







L





>

2





5

5



5



5

1 

n

Xi − µ 1 X Sn − nµ , Vn = √ ) Ui = Ui = ( √ σ n i=1 nσ  ?

B

IC

E

I

?

F

DC





φVn (t) = [φU1 /√n (t)]n D 

√ √ 2 √ 2 t 2 φ √U1 (t) = E(exp (i √ U1 )) = E(1 + (it/ n)U1 − ((t/ n) /2)U1 + o((t/ n)) ) n n t2 + o(t2 /n) =1− 2n B

?



= φX (t)

C

⇒ limn→∞ φVn (t) = e

−t2 /2

X ∼ N (0, 1)

$

S

RQ

#P

!



ON



$ # "!  









  



   





























 

1

$ S

RQ

#P

!  ON



$ # "!    

  





! D B

?

I

?



H



σ 2 = E(Xi2 ) − E(Xi )2 = 14 . 

DH



n = 400 S400 − 200 S400 − 200 Sn − nµ √ = = nσ 20 × 1/2 10 Z c S400 − 200 | < c) ∼ g(x)dx P(| 10 −c F E



C



H

FA

G

D B

?



C

 F E



C



H

?



C



FA

G

D



B



DH

c = 2.6, S400 ∈ [174, 226]



DH



c = 1.96, S400 ∈ [180, 220]

∼ 0.95

∼ 0.99









E

DF

F

G E

?@

?

B

C





H

?

?

I



?

C

F

G











 

5

 

K5



Xi







µ = E(Xi ) = 1/2,

i=1

 

 



























Xi ∈ {0, 1}, Sn =

Pn

$

S

RQ

#P

!



ON



$ # "!  









  

 













  



 





 































 B

H F ?

GE

A



D? D

C DC

  I

A IC

?

I

E

?

F DH ECA GC ? B

?

?

E

? F

D 

  ? 

DI F

@ B

H  













G

?

 ?

GC

D

 ?

FA  F D  D @A

H B ? I ? B

?

E

? F

D 



I

? D

H ?A

A

E

E

?









? F





F

C

I

?

H



C



FA G

D

 D B

A

B ? H

ECA GC

D

F

HA

?

C

C

?

A



CA

I

G?

G





E@

I

@

C

A



C

I

?

D 

F

G F



G









θ







θ





 



 

?

E

E

GC

F

?

H



C



FA G

D

A? BA

S RQ

#P

!

 $

 ON



$ # "!    

  





 

















  





 





 

















+

/.,  # !*  &

#)   (# #





$



  

   





 

"! 

#



$



 %

 &

!# '



    





 





































 !  0 2

# ' #



#)  

/.-

#

8 '  # 0  7  . ' .

!#  $ 

!

(# 6#



5



 '  

.  #

%

,

#

 3



 %

!



!

!

!

4#

%



. %

  (#   #



 $  ! # . 1

 #

!





$

!# 

$

# 

% 0# 



=

# $  

     # 7 $

 

!8 #

 %  #

#

<

?@

@

A

A

. %



/.-

#

'

 3

 !

!# ' 0

!

# '

$ 

$ 

7

!#

'



B  



$





 &

,

2

;< ;

 % =  >  : !# # 

$  !  0 # 



0#  6 #. & 

%

% 9

I

QJ V QWZ Y

HI I W

I

VG

R Q FP

M

K TN S

UV

D

Q

K

X D

O

KF N ML

EFG

HI

HJ

KI

CD

D V D D V

HI

G MW IW

HIG

^] E I

F IW W\ WI

E

J W

H

I

M

QJ

U I

_

Q [ M

QIW

VF

X D

X K

O

fg

D

I

IGW I QF

J W M

a

ed

V

GZ

HI

IW

HI

cM

D V Q F

I

E M

W

Kb

`

Q D IW 

M

_

[

f

D D

IG

HI k G

J F

a ] a

[

M G QI [

Q

D

W a

i

V j J ^ I

IG KZ VG

M

HF

I h

F

Z

WZ

Z

KF Q

D G

‚ƒ

„… „

~  n €

~w

q

p

oq o }

wn q

xwyv u

x{z

|p

o tq

nqs r pq o

mnl

Š š

‰ š• ™˜ ”—

‘’ –‹ • ” “’ ‘x  Ž Œ‹ Š

Š‰ ˆ †‡

›Š

‚



‚





o

!

  $



$

 



 



!



 $  ! 1 &

# ' #   













 # $ . # & ' #



7 0 







. % # $ 

# $ . # # # 0* #  

 #







! $ &

#

   *  % 



! .# $ 7  #  $ 

.

!# 

6

%



N

pq



mp q uw q 

qt







!



#  '   ' $.  $ & . +



 





# $./ 0&

#



1$ 0 * 

'



 '

# # $ '

!

& '

!#

!

$ !

%

#





#



#



8 

 

0#

#



' *

#

.

$ #/.! 1$ %

9

1

%

1$

*

#

8









1 

$  ( !





‚ 

›

P(Xi = 1) = p. Xi

49% , n

pˆ =

i=1

p=

Xi i=1

Xi PN

R. Xi = 1 • Xi ∈ {0, 1}, i = 1 . . . N,

Pn •

R •

N >> n •

959 n •

Š š

‰ š• ™˜ ”—

‘’ –‹ • ” “’ ‘x  Ž Œ‹ Š

Š‰ ˆ †‡

› ›

‚



‚





o

‚



› 

5

 #





2



%

,



Z

c

g(x)dx.

−c













n









  N

HJ

MW

G M[

M





np > 10, n(1 − p) > 10

K [ M

f

^

f

D

V

V

c

Q

√  Sn − np |≤c P |p − pˆ| ≤ c/2 n ≥ P | p np(1 − p)

!

 √ √  p ∈ pˆ − c/2 n, pˆ + c/2 n

g(x)dx.



−c



















Rc





#





$

#

!



5





&

$



.&



#

'

. %

#



!



! 

#

'

#



 $

#

!



! $

.

# Š

š ‰

š•

™˜

”—

‘’

–‹ • ” “’ ‘x 

Ž Œ‹

Š

Š‰

ˆ

†‡

 √  √ pˆ − c/2 n, pˆ + c/2 n Rc p g(x)dx. −c

pq



mp

q

uw

q



qt





√ |S − np| n|ˆ p − p| p n p = np(1 − p) p(1 − p) √ ≥ 2 n|p − pˆ|

› ‰

g(x)dx. −∞

pq



mp q uw q

c p ≤ pˆ + √ 2 n

‚



‚









#

!

 ! 

# ' & $

G

QIW J IL HI I E

F

HZ

ek

K HI I W QW V

HJ WZ 

[



# ' & $  .& 



# ' & $  .& 

Š ‰

–‹ • ” “’ ‘x 

š

Š‰

†‡

ˆ

Š

Ž Œ‹

”—

‘’

™˜

š•

≤ 0.491 ⇒ c ≤ 0.06 ⇒

#

  .&  #

V VK F

c √ 2 n

'

# ' & $

,

!  #.



• pˆ +

#

  $

# ! 4 ,

  .&  #

#

0 0 2

V

≤ 0.499 ⇒ c ≤ 0.55 ⇒

o qt





52%

c √ 2 n

‚ 

›

70% • pˆ +

c

Z

[0.46, 0.52] 95% •c = 1.96 :

›

Related Documents

A Lea To Ire 5
November 2019 16
A Lea To Ire 4
November 2019 17
A Lea To Ire 2
November 2019 21
A Lea To Ire 3
November 2019 16
A Lea To Ire 1
November 2019 18
A Lea To Ire 67
November 2019 6