(
'& %$ "#!
&'(
$%# "
5
15
.; + '
:
* 9 78
+6(
2
); & :
3
3 <
=
D
B D
D E
A ?
J I K H > >G F
@ >
B> DE ?C > BA
>?@
E
> G J MH
CL @H
?
M> DE
D H L
D
B
A
U
J T > ? J T
S
ER Q
5
N
P 34 O 5
x∈N
1
!
3 4 3
|z| ≤ 1.
.
0. -/ +,
)*
x∈N
z x PX (x). GX (z) = E(z 1X<∞ ) =
X X
|z| ≤ 1, X : Ω→N ∪ {∞}
X. •GX
z x PX (x) GX (z) = E(z ) =
X X
{z : |z| < 1}. ≥ 1, C ∞ •GX
X
X : Ω 7→ N
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
J
E(X) = G0X (1), E(X 2 − X) = G00 (1),
E(X(X − 1) . . . (X − k + 1)) = G(k) (1).
=
5
=
5
D A
G(k) (z) = E(X(X − 1) . . . (X − k + 1)z X−k ).
O
O
! 1
!4
J
G00X (z) = E(X(X − 1)z X−2 ) . . . ,
G0X (z) = E(Xz X−1 ),
|z| < 1,
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
>
F
@
H
H
>
G T
k!
(k)
(k)
GX (z) = λk GX (z), GX (1) = λk ⇒ E(X) = λ, E(X 2 ) = λ2 + λ, Var(X) = λ.
k≥0
e−λ = exp(λ(z − 1)).
D
D
=
=
<
5
5
5
Q
!
O
GX (z) =
X (λz)k
λk −λ e , k ≥ 0. P(X = k) = k!
λ
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
= 5
/
+ ; &' . ( 8
. ); +
(+ , )* 7 +
' ; . ( ; 8
* K 8
&* '
( &* .
.; + '
:
:
* 9 78
+6( +6 ', '( &6
+6 ;
' ( +* +6 8 * &* 7 &; &
); & :
|z1 | ≤ 1, |z2 | ≤ 1.
3 4
=
!4
3 5 1 5
x1 ,x2
GX1 ,X2 (z1 , z2 ) =
z1x1 z2x2 PX1 ,X2 (x1 , x2 ) =
X E(z1X1 z2X2 )
(X1 , X2 )
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
=
( *& 6
+6 ', '( &6
.
, +6
:
' 6 ( *+ +
) + 6 + ( ' 6 +6 ( *. 7 *+ 78
:
GX1 ,X2 (z1 , z2 ) = GX1 (z1 )GX2 (z2 ). +6 ( .* 7 *+ 78 * ' ( &* 6
+ (
' $
:
GX1 +X2 (z) = GX1 (z)GX2 (z).
> @
> L
H
G
C
G
BH
5
5
B>
EB D
Q
3 <
T
E
> G J MH
CL
H L
H@
?
M> DE
D
D H L
@
A
>
B>
DJ EL D C
U
T
>
>
GX1 +X2 (z) = E(z X1 z X2 ) = E(z X1 )E(z X2 ).
-
/
3 <
"
#
!
* '
GX1 ,X2 (z1 , z2 ) = E(z1X1 z2X2 ) = E(z1X1 )E(z2X2 )
(X1 , X2 ). GX1 ,X2
X2 X1 •
X1 , X2 •
[
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
> L BH G
G
C
B>
EB D H
C E@ ME
H @
R
T
T
D
D
B
E
>? F @ H H > G J ? ?
G ?
>
J
E J M> G >? @
BH G
H
G
C
B>
EB
>? G
> @
T
T
= exp((λ + µ)(z − 1))
GX+Y (z) = GX (z)GY (z) = exp(λ(z − 1)) exp(µ(z − 1))
D
D
B
> F @ H H > G J
?
[
?
[(
E
&X
"$
ZY
J G J
WV
' E M> BA H
'& %$ "#!
(
>
T
λ + µ. ⇒ X +Y
λ, µ. Y X
@
> G JL L H
Y B
D
>?
> G @
BH
A
C
J
>G
>
L
>?
B>
M
E
D
B
U
T
@
L
>?
@>
>
B>
E
D
T
S = X + Y,
>? A @
>
DJ
D
D
>
BA
D EH D
>
J L BH D >@ BA
@
G A L
>?
A
BH D
M
E C >
G
A M
X
J ?
> F G J A G
H L@
A?@
G
E B
E
EJ
B
M
J
E
?
B>
B>
D
>?
> G @
>
B> E D A
J
?
H
F
>
E@
E
M E
D
>?
T
T
> G >? @
BH G
>
J ?
@
@
G
C
B>
EB
B
H
>?
> F?
@
T
J T I
B
E
J ? ?
J
G
>
J E M> BA
@
>
B>
D
?
C
L
>?
EH
B @ B>
?
EA
B
A?
J
L
EJ
M B
X, Y, S
S. Xi
B A 0) Xi = 1 (
B A Y X
C S = X+Y
A
[
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
)
GXi (z) = (pz + (1 − p))s .
J
GX (z) = E(z X ) = E(E(z X |S)) = GS (pz + (1 − p)) B L
J
G
>
@
GS (z) = GX (z)GY (z) = GS (pz + (1 − p))GS ((1 − p)z + p).
i=1
Xi
s Y
i=1
=
Xi ⇒ E(z |S = s) = E(z
Ps
JR
i≤S
X
5
5
E@
Q
3
<
X=
X
GXi (z) = pz + (1 − p).
p = P(Xi = 1).
[
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
k
J
ak = ak (pk + (1 − p)k ) D A
J T
⇒ ak = 0
k > 1.
E
EB
?
Φ(t) = a0 + a1 t = a1 t >
@
GS (z) = exp(a1 (z − 1))
>
?
J T
S
a k tk .
B
Φ(t) =
X
>
C
T
Φ(t) = Φ(pt) + Φ((1 − p)t).
DE
B L
@
J
H
>
>G
L
EJ
B
M
DJ
D A
J
Φ(t) = log(GS (1 + t))
0,
t
[
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
?
G
BH
E J
M>
> G >? @
BH G
B>
C
H
G B
J
T
E B
> >G A
J L
BH > H?
H M> G A
D? > L @>
D
E
>
J BA
>?@
> G J MH
E
(Xn ) DE
D
> A
@ C ? > L H
I
⇔
Rd . (e1 , . . . , ed ) =
X1 , X 2 , . . .
Zd . Sn+1 = Sn + Xn+1 , S0 = 0
{e1 , . . . , ed , −e1 , . . . , −ed }.
Zd .
@
?
A
H
H
L
>
C
A
>
>
A
>
H
L
>
>?@
?
DG
E M
D
D
DE
D
MD
J Q
4
U
I
#
D
B
@H > >G G EJ ?
?
H
T
J T
E@
D E
" !
>
B> D
<
[
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
r r
r
r
r
r
r
r
r r
r
r
r
r
r
r
r r
r
r
r
r
r
r
r r
r
r
r
r
r
r
r r
r
r
r
r
r
r
r r
r
r
r
r
r
r
r r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
> @
Z2 .
D >?
C
?
>
H
A
Z
r
r
r
r
Zd .
[
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
60
8 4
50
0 40 -4 30
-8 -12
20
-16
10
-20 0 -24 -10
-28
-20
-32 0
100
200
300
400
500
600
700
800
900
1000
60
0
100
200
300
400
500
600
700
800
900
1000
50
40 30 20
0
10
-20 -10 -40
-60
-30
-80 -50 -100
-120
-70 -110
-90
-70
-50
-30
-10
10
30
50
-30
-10
10
30
50
70
90
110
130
Zd .
[
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
Zd .
3
3
3 15
5
1
5
5
P
4
5
!4
3
3 "
E@ JR
T0 = min {n ≥ 1 : Sn = 0} ∈ N∗ ∪ {∞}. B
E
B
D
?
J
?
?
C
G
A
J
|z| ≤ 1
T0
P(T0 = k)z k
F0 (z) = GT0 (z) = E(z 1{T0 <∞} ) =
X k≥1
>
@
k
k≥0
P(Sk = 0)z k .
1{Sk =0} z ) =
X
Q0 (z) = E(
X
k≥0
B
D
>
A
?
AJ
H
>
F0 (1) = P(T0 < ∞) >
@
A
D?
J
>
>
>G
J
D@
D
B
Q0 (1) = E(N0 ), N0 =
0
[
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
3 3
3
3
15
5
1
5
5 31
!
5
) ( & ( ); &
"
#
#
O
3
+ &;
*+
&
' 6 ( *+ +
) + 6 + ( '
6
k≥0
(
;
8
+6(
;
);
*+
P(T0 < ∞) = 1 X Q0 (1) = P(Sk = 0) = ∞.
1 . Q0 (z) = 1 − F0 (z)
. ( 8(
;+ '
)
' .;(
*
:
0
Q0 (z) = 1 + Q0 (z)F0 (z) |z| ≤ 1
Zd .
[
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
M
EB
A J >
G @
>?
?@
BH
?
>
D@
D
B>
E
D
EB
M
? ?
J
>?
@ ? T > >@ G >?
>?
@
>
MH M
B>
M> D
D@
>
A
D?
?
A
L
L
>?
DE
E
B
EB
>? A C
?@
@
> A
@
>
@
G
J ?
@
G
C
B>
BH
>?
@
EG
B>
E
G
5
I1 = T0 , I2 = T02 − T01 , . . . , In = T0n − T0n−1
B>
5
T0n+1 = min{k > T0n : Sk = 0} ∈ N ∪ {∞}.
Q
3 <
D
E
H
>?
@
T
J T
E @H
@
BH
(Ik )
• I1 , I 2 , . . .
0: • T01 = T0 < T02 < . . . < T0n < . . .
Zd .
[
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
X
1{Sk =0} z = 1 +
k
X
n
1{T0n <∞} z T0 .
n≥1
k≥0
J
E(1{T0n <∞} z
T0n
) = E(
n Y
z Ii 1{Ii <∞} ) =
i=1
n Y
E(z Ii 1{Ii <∞} ) = F0 (z)n .
i=1
B L
J
G
@
Q0 (z) = 1 +
X n≥1
1 . F0 (z) = 1 − F0 (z) n
Zd .
[
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
4
5
! <
O
+ ; &' . ( 8
. +
.;
.
) &
); &
"
#
> @
A L
B> D D
D C +6( + )
;
' 3 8(
6
> @ ?
B> E
+
+
+6(
@
BH D
&
);
d ≥ 3,
2 d=1
P(T0 < ∞) = 1.
P(T0 < ∞) < 1.
Zd .
[
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
A
A
T
M E
M D
M
> >G A
J H
R
U
>
@
D
D
M
B
DE
> >G L
A L C H L
J G > @
>
?C H M>
U
U
[
ZY
[(
>G
>
&X
"$
'& %$ "#!
WV
L
D
E
HG M> A
>
H
DJ
M
(
'
T
B>
(Sn ).
B
DJ
A
B>
D
J
D EH
E
D
J
@
A @
?
BH E EM
B
J
1 = 0) ∼ √ . πk P n P(Sn = 0) P(S2k
A J T > A >
log(n!) = n(log(n) − 1) +
D
D
n
d = 1.
P(Sn = 0) = 0. d ≤ 2. •
P(S2k
1 k = 0) = 2k C2k . 2
D
n = 2k
EB D
@
1 1 1 log(n) + log(2π) + O( ), 2 2 n
Zd .
B
@
?
J
@
J
Σk = (Sk1 + Sk2 , Sk2 − Sk1 ).
>
Sk = (Sk1 , Sk2 )
d = 2.
Σk+1 = Σk + Θk+1 L
>
H
Θk = (Θ1k , Θ2k ) = (Xk1 + Xk2 , Xk2 − Xk1 ) ?
G
A
>
H
BH
=
5
4
5
D?
M
@
J
?
>?
H
H
>?
{−1, 1}.
D
B =
5
4
5
>?
L
H
>?
G
@
J
?
>
@
(Σ2n )
B
M
DE
⇒ (Σ1n )
Θ1k , Θ2k
1 2 1 2 1 2 P(S2k = 0) = P(S2k = S2k = 0) = P(S2k + S2k = S2k − S2k = 0)
=
P(Σ1k
=
0)P(Σ2k
1 . = 0) ∼ πk
Zd .
[
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
5
P
=
5
3
O
!
!
5
5
=
O
5
1
34
"
P(Xi = 1) = p = 1 − P(Xi = −1). k [p(1 − p)]k P(S2k = 0) = C2k
J
Q0 (z) =
X
k C2k [p(1
k≥0
k 2k
− p)] z
1 p = (1 − 4p(1 − p)z 2 )
D H
L
(1 + u)α = 1 + αu +
α(α − 1) 2 u + ... 2!
B L
J
G
>
@ U
F0 (z) = 1 −
p
(1 − 4p(1 − p)z 2 )
Zd .
[
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
!
5
" #
3
4
!
!
3
P(T0 < ∞) = F0 (1) = 1 − |2p − 1|
);
&
p ≤ 1/2
2(1 − p) E(T0 |T0 < ∞) = 1 − 2p
(
);
&
;+
'
)
'
.;(
*
+
p = 1/2 T0 < ∞
:
:
E(T0 ) = ∞.
Q
3
<
5
5
P(T0 < ∞) = F0 (1)
F00 (1) E(T0 1T0 <∞ ) = E(T0 |T0 < ∞) = P(T0 < ∞) F0 (1)
Zd .
[
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
B
?
A
>G
>
>@
DJ
B
D
J
>? A
U
T
B U
M M> M
B H A
@
EJ
M J T > BA
>G L
? ?
BH
E
E
>
C EG T
B H
EJ
C
H
F
>
C
D@
B
E B M
B H A
@
EJ
M T J T > BA
G A?
J
>G
G
EG E EB
D
B
? @
BH B>
D
>
G
B>
B>
A
H
A
>
G
EG E EB
DE
> L
H
C
C
D@
B
B
J
@
L
EJ
B >
J ?
@
G
B
H
>?
> F?
@
J T I
Gξin (z) = φ(z).
DJ L H
G
M>
B H
G J
C
?
@
EJ
E M
C
i=1
ξin
ξin Zn X
Zn+1 =
ξin i = 1, . . . , Zn •
•Zn =
> L
?@
BH
E
>
D?
B
L @
EJ
EB
?
@
B
EJ >?@ A
T U
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
Z1=2
Z4=6 Z2=4
Z0=1
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
/
!
+
7
+
'
;
.
(
;
8
*
8
&*
'
(
&*
.
=
3
< "
#
Z n , G n = GZ n
+
'
;
8
, 9
Gn+1 = Gn ◦ φ.
&*
7
+
(
' $
Z0 = 1, G0 (z) = z
Gn = φn = φ ◦ . . . ◦ φ.
Q
3
<
5
5
E(z
Zn+1
|Zn = s) = E(z
Ps
i=1
ξin
) = φ(z)s
J
>
L
BH
G
C
G
B>
EB
D H T
T
Gn+1 (z) = E(z Zn+1 ) = E(E(z Zn+1 |Zn )) = E(φ(z)Zn ) = Gn (φ(z)).
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
> ? T
J T A ? S
B H A
@
EJ
M T J T H
G
M>
B L @
EJ
EB
@
B H A
@
EJ
M T J T H M>
> L
A
C
G
>
L
B> D D
D
B H >
@
EJ
MD H M>
G B
DE L @ C
EJ
EB
@
πn+1 = φ(πn ), π0 = 0.
1
B
P(Zn = 0) = Gn (0)
5
4
!
3 <
) = limn→∞ P(Zn = 0) P(
=
n≥0
{Zn = 0} [
Z0 = 1.
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
> @
J
JL
?@
BH
B
B B
B
> ? T
J T A ? S
>
> B LJ > @ ? ?
BH
E L
DJ
@
L @
>
B>
DE ?@ >?@
U
U
⇒ φ : [0, 1]→[0, 1]
φ0 (1) = E(ξ) φ0 (z) = E(ξz ξ−1 ), φ00 (z) = E(ξ(ξ − 1)z ξ−2 )
ξ
[(
'
ZY
&X
"$ WV
(
'& %$ "#!
'
#
$ #
"
&* ' . (
) & .
+ 7
&* '
( * '
(
: :
'
: :
+ 7
Q
5
= &*
P 34
N
' ) (
O
& 6
5
⇒ E(Zn ) = E(ξ)n . > A
L H? L >
? BH
M
ED @
E
E(ξ) = 1,
+ ) ' )*
+ . ,
*& ' . (
) & .
+ 7
&* '
( * '
(
$%#
⇒ E(Zn+1 ) = E(E(Zn+1 |Zn )) = E(Zn )E(ξ)
!
5
O
3
i=1
G
? H?
>
BH D
D
J T
A
n > @
Zn = 0 E(Zn ) = 1
ξin ) = kE(ξ) E(Zn+1 |Zn = k) = E(
k X
π = φ(π). <1
π )=π<1 E(ξ) > 1, P(
) = 1. E(ξ) ≤ 1, P(
[(
'
ZY
&X
"$ WV
(
'& %$ "#!