A Lea To Ire 4

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View A Lea To Ire 4 as PDF for free.

More details

  • Words: 4,487
  • Pages: 28


 





               



















(



'& %$ "#!  

  







&'(

$%# "

5

15

.; + '

:

* 9 78

+6(

2

); & :

 3

3 <

=  



D

B D

D E

A ?

J I K H > >G F

@ >

B> DE ?C > BA

>?@

E

> G J MH

CL @H

?

M> DE

D H L

D

B

A

U

J T > ? J T

S

ER Q

5

N

 P 34 O 5

x∈N





1







!



 3 4 3  

|z| ≤ 1.

     

.

0. -/ +,

  )*







 





 

            

x∈N



   

 

z x PX (x). GX (z) = E(z 1X<∞ ) =

X X

|z| ≤ 1, X : Ω→N ∪ {∞}

 



X. •GX

z x PX (x) GX (z) = E(z ) =

X X

{z : |z| < 1}. ≥ 1, C ∞ •GX

X

X : Ω 7→ N



[(

'

ZY

&X

"$ WV

(



'& %$ "#!  

  



 

J

E(X) = G0X (1), E(X 2 − X) = G00 (1),

E(X(X − 1) . . . (X − k + 1)) = G(k) (1).



=

5



=

5

D A

G(k) (z) = E(X(X − 1) . . . (X − k + 1)z X−k ).





O

O

! 1

!4

J

G00X (z) = E(X(X − 1)z X−2 ) . . . ,

 



 





G0X (z) = E(Xz X−1 ),





 



 





|z| < 1,



[(

'

ZY

&X

"$ WV

(



'& %$ "#!









 

>

F

@

H

H

>

G T

k!

(k)

(k)

GX (z) = λk GX (z), GX (1) = λk ⇒ E(X) = λ, E(X 2 ) = λ2 + λ, Var(X) = λ.





k≥0

e−λ = exp(λ(z − 1)).



D



D



=

=



<

5

5

5





Q

!

O



GX (z) =

X (λz)k

 



 





λk −λ e , k ≥ 0. P(X = k) = k!





 



 





λ



[(

'

ZY

&X

"$ WV

(



'& %$ "#!









 

 

= 5



/

     



+ ; &' . ( 8 

. ); + 

(+ , )* 7 + 

' ; . ( ; 8





* K 8

&* ' 

( &* .

.; + '

:

:

* 9 78

+6( +6 ', '( &6

+6 ; 

' ( +* +6 8 * &* 7 &; & 

); & :

|z1 | ≤ 1, |z2 | ≤ 1.

    

3   4 



=

!4

3 5 1 5 

x1 ,x2



   

 

GX1 ,X2 (z1 , z2 ) =

 



z1x1 z2x2 PX1 ,X2 (x1 , x2 ) =

X E(z1X1 z2X2 )

(X1 , X2 )



[(

'

ZY

&X

"$ WV

(



'& %$ "#!  

  











 = 

( *& 6

+6 ', '( &6

.

, +6

:

' 6 ( *+ + 

) + 6 + ( ' 6 +6 ( *. 7 *+ 78

:

GX1 ,X2 (z1 , z2 ) = GX1 (z1 )GX2 (z2 ). +6 ( .* 7 *+ 78 * ' ( &* 6

+ (

' $

:

GX1 +X2 (z) = GX1 (z)GX2 (z).

> @

> L

H

G

C

G

BH

 5

5

B>

EB D

 Q

3 <

T

E

> G J MH

CL

H L

H@

?

M> DE

D

D H L

@

A

>

B>



DJ EL D C

U

 T







>



>

GX1 +X2 (z) = E(z X1 z X2 ) = E(z X1 )E(z X2 ).



-

/



  

 

 

3 <





"

#







 



 

!











* '

GX1 ,X2 (z1 , z2 ) = E(z1X1 z2X2 ) = E(z1X1 )E(z2X2 )



      

 

(X1 , X2 ). GX1 ,X2

 



X2 X1 •

X1 , X2 •

 [

[(

'

ZY

&X

"$ WV

(



'& %$ "#!  

  



 



















 









> L BH G

G

C

B>

EB D H

C E@ ME



H @

R

T

T

D



D

B

E

>? F @ H H > G J ? ?

G ?

>

J

E J M> G >? @

BH G

H

G

C

B>

EB



>? G

> @

T

T

= exp((λ + µ)(z − 1))

    

 

GX+Y (z) = GX (z)GY (z) = exp(λ(z − 1)) exp(µ(z − 1))



     



D



D

B

> F @ H H > G J



?

[

?

[(

E

&X

"$

ZY

J G J

WV

' E M> BA H

 









'& %$ "#!

(

>

T

λ + µ. ⇒ X +Y

λ, µ. Y X









@

> G JL L H

Y B



D

>?

> G @

BH



A

C

J



>G



>

L

>?

B>

M

E

D



B

U

T





@

L 

>?

@>

>

B>



E

D

T



S = X + Y,





>? A @

>

DJ

D

D

 >

BA

D EH D

>

J  L BH D >@ BA

@

G A L

>?

A

BH D

M

E C > 

G

A M

X



    

J ?

> F G J A G

H L@

A?@



G



 

 E B

E



EJ

B



M

J  

E

?

B>

B>

 





D

>?

> G @



>

B> E D A

J

?

H

F



>

E@



E

M E



D

>?

T

T





> G >? @

BH G

>

J ?

@

@

G

C

B>

EB





 B







H



>?

> F?

@

T

J T I



B

E

J ? ?

J

G

>

J E M> BA

@

>

B>



D

?

C

L

>?

EH

B @ B>

?



EA



B

A?

J

L

EJ

M B



X, Y, S

S. Xi

B A 0) Xi = 1 (

B A Y X

C S = X+Y

 



A

 [

[(

'

ZY

&X

"$ WV

(



'& %$ "#!  

  



)

GXi (z) = (pz + (1 − p))s .

 

J

GX (z) = E(z X ) = E(E(z X |S)) = GS (pz + (1 − p)) B L

J

G

>

@

GS (z) = GX (z)GY (z) = GS (pz + (1 − p))GS ((1 − p)z + p).



i=1

Xi



s Y

i=1



=

Xi ⇒ E(z |S = s) = E(z

Ps



JR

i≤S

X



5



5

E@

Q

3

<

X=

X



 





GXi (z) = pz + (1 − p).



 



 





p = P(Xi = 1).



[

[(

'

ZY

&X

"$ WV

(



'& %$ "#!











k

 

J

ak = ak (pk + (1 − p)k ) D A

J T

⇒ ak = 0

k > 1.

E

EB



?

Φ(t) = a0 + a1 t = a1 t >

@

GS (z) = exp(a1 (z − 1))



>

?

J T

S

a k tk .



B

Φ(t) =

X

 



 

>

C



T

Φ(t) = Φ(pt) + Φ((1 − p)t).





 





DE

B L

@

J

H

>

>G

L

EJ

B

M



DJ

D A

J

Φ(t) = log(GS (1 + t))







0,







t



[

[(

'

ZY

&X

"$ WV

(



'& %$ "#!









  



 



   







 



 

 



 









 

 





















 

    

?

G

BH

E J



M>





> G >? @

BH G

B>

C

H

G B



 J

T

E B

> >G A

J L

BH > H?



H M> G A

D? > L @>







D 

E

>

J BA

>?@

> G J MH

E

(Xn ) DE



 D



> A

@ C ? > L H



I



Rd . (e1 , . . . , ed ) =





X1 , X 2 , . . .

Zd . Sn+1 = Sn + Xn+1 , S0 = 0

{e1 , . . . , ed , −e1 , . . . , −ed }.

Zd .

@

?

A

H

H

L

>

C

A

>

>

A

>

H

L

>

>?@

?

DG

 E M

D

 D



DE



 D



MD

J Q





4

U





I

#





D

B

@H > >G G EJ ?

?



H

T

J T

E@

D E

" !

>

B> D

<



[

 [(

'

ZY

&X

"$ WV

(



'& %$ "#!  

  

 



 



   







 

 

r r

r

r

r

r

r

r

r r

r

r

r

r

r

r

r r

r

r

r

r

r

r

r r

r

r

r

r

r

r

r r

r

r

r

r

r

r

r r

r

r

r

r

r

r

r r

r

r

r

r

r

r

r

r



r

r



r

r





r

r



 

r

r





r

r

> @

Z2 .

D >?

C

?

>

H

A

Z

r

r

r

r

Zd .

[

 [(

'

ZY

&X

"$ WV

(



'& %$ "#!  

  













 

































 



 60

8 4

50

0 40 -4 30

-8 -12

20

-16

10

-20 0 -24 -10

-28

-20

-32 0

100

200

300

400

500

600

700

800

900

1000

60

0

100

200

300

400

500

600

700

800

900

1000

50

40 30 20

0

10

-20 -10 -40

-60

-30

-80 -50 -100

-120

-70 -110

-90

-70

-50

-30

-10

10

30

50

-30

-10

10

30

50

70

90

110

130

Zd .

[ 

[(

'

ZY

&X

"$ WV

(



'& %$ "#!









  











 





































 

Zd .



3

3

3 15

5

1



5

5

 P



4

5



!4



3



3 "

E@ JR

T0 = min {n ≥ 1 : Sn = 0} ∈ N∗ ∪ {∞}. B

E

B

D

?

J

?

?

C

G

A

J

|z| ≤ 1

T0

P(T0 = k)z k





F0 (z) = GT0 (z) = E(z 1{T0 <∞} ) =

X k≥1

>

@

k

k≥0

P(Sk = 0)z k .



1{Sk =0} z ) =

X



Q0 (z) = E(

X

k≥0

B

D



>

A

?

AJ

H

>

 



F0 (1) = P(T0 < ∞) >

@



A

D?

J

>

>

>G



J

D@

D



B

Q0 (1) = E(N0 ), N0 =

0

[ 

[(

'

ZY

&X

"$ WV

(



'& %$ "#!









 





 

   



 









3 3

3

3



15

5

1 

5

5  31



!

  

5

) ( & ( ); &





"

#

#





O



3



+ &; 

*+



&

' 6 ( *+ + 

) + 6 + ( '

6





k≥0

(

;

8

+6(

;



);

*+

P(T0 < ∞) = 1 X Q0 (1) = P(Sk = 0) = ∞.

 



 

 



 

1 . Q0 (z) = 1 − F0 (z) 



. ( 8( 

;+ ' 

) 

' .;(

*

:

0





Q0 (z) = 1 + Q0 (z)F0 (z) |z| ≤ 1

Zd .

[

 [(

'

ZY

&X

"$ WV

(



'& %$ "#!  

  











M

EB

A J >

G @

>?

?@

BH

?

>

D@

D

B>

E

D

EB

M

? ?

J

>?

@ ? T > >@ G >?

>?

@



>

MH M



B>

M> D

D@

>

A

D?

?

A

L

L

>?



DE

E

B

EB

>? A C 

?@

@

> A

@

>

@

G

J ?

@

G

C

B>

BH

>?

@

EG

B>

E



G





 5





I1 = T0 , I2 = T02 − T01 , . . . , In = T0n − T0n−1

B>

5

T0n+1 = min{k > T0n : Sk = 0} ∈ N ∪ {∞}.









 



 

 

Q

3 <

D



E

H



>?

@



T

J T

E @H



@

BH





(Ik )



 

• I1 , I 2 , . . .





0: • T01 = T0 < T02 < . . . < T0n < . . .





Zd .

[

 [(

'

ZY

&X

"$ WV

(



'& %$ "#!  

  















 





















X



 





1{Sk =0} z = 1 +







k





X

n

1{T0n <∞} z T0 .

n≥1

k≥0

 

J

E(1{T0n <∞} z

T0n

) = E(

n Y

z Ii 1{Ii <∞} ) =

i=1

n Y

E(z Ii 1{Ii <∞} ) = F0 (z)n .

i=1

B L

J

G

@

Q0 (z) = 1 +

X n≥1

1 . F0 (z) = 1 − F0 (z) n

Zd .

[ 

[(

'

ZY

&X

"$ WV

(



'& %$ "#!









 



 



  







 



 

 



 











 4

5

! <

O

+ ; &' . ( 8 

. + 

.;

 . 

) &

); &





"

#





> @

A L

B> D D

D C +6( + )

;

' 3 8(







6







> @ ?

B> E





+

+

+6(

@

BH D



&

);

d ≥ 3,

2 d=1

P(T0 < ∞) = 1.

P(T0 < ∞) < 1.

Zd .

[

 [(

'

ZY

&X

"$ WV

(



'& %$ "#!  

  









A

A

T

M E

M D 

M

> >G A

J H

R

U

>



@

D

D

M

B

DE

> >G L

A L C H L

J G > @

>

?C H M>

U

U

[

ZY

 [(

>G

>

&X

"$

 









'& %$ "#!

WV

L

D

E 

HG M> A

>

H



DJ

M

(

'

T

B>



(Sn ).



 

B

DJ

A

B>   







 

   D

J

D EH



E

D

J

@

A @

?

BH E EM

B

J

1 = 0) ∼ √ . πk P n P(Sn = 0) P(S2k



A J T > A > 



log(n!) = n(log(n) − 1) +





D

D





n

d = 1.



 

P(Sn = 0) = 0. d ≤ 2. •





P(S2k



1 k = 0) = 2k C2k . 2

D

n = 2k



EB D

@

1 1 1 log(n) + log(2π) + O( ), 2 2 n

Zd .













 

































 

B



@

?

J

@

J

Σk = (Sk1 + Sk2 , Sk2 − Sk1 ).

>

Sk = (Sk1 , Sk2 )





d = 2.



Σk+1 = Σk + Θk+1 L

>

H



Θk = (Θ1k , Θ2k ) = (Xk1 + Xk2 , Xk2 − Xk1 ) ?

G

A

>

H





BH

=

5

4



5





D?

M







@

J

?

>?



H

H



>?

{−1, 1}.













D



B =

5

4



5





>?

L

H

>?

G

@

J

?

>

@

(Σ2n )



B

M

DE

⇒ (Σ1n )

Θ1k , Θ2k

1 2 1 2 1 2 P(S2k = 0) = P(S2k = S2k = 0) = P(S2k + S2k = S2k − S2k = 0)

=

P(Σ1k

=

0)P(Σ2k

1 . = 0) ∼ πk

Zd .

[ 

[(

'

ZY

&X

"$ WV

(



'& %$ "#!









  











 

































 



  5

 P



=



5

3

O





!

!



5





5

=

O



5

1







34

"

P(Xi = 1) = p = 1 − P(Xi = −1). k [p(1 − p)]k P(S2k = 0) = C2k

 

J

Q0 (z) =

X

k C2k [p(1

k≥0

k 2k

− p)] z

1 p = (1 − 4p(1 − p)z 2 )

D H

L

(1 + u)α = 1 + αu +

α(α − 1) 2 u + ... 2!

B L

J

G

>

@ U

F0 (z) = 1 −

p

(1 − 4p(1 − p)z 2 )

Zd .

[ 

[(

'

ZY

&X

"$ WV

(



'& %$ "#!









 













 

































 



 

!







5

" #

 

3

4

!

!

3

P(T0 < ∞) = F0 (1) = 1 − |2p − 1| 

);

&

p ≤ 1/2

2(1 − p) E(T0 |T0 < ∞) = 1 − 2p



(

);

&

;+

'



)



'

.;(

*

+

p = 1/2 T0 < ∞

:



:

E(T0 ) = ∞.

Q

3

<

5



5

P(T0 < ∞) = F0 (1)

F00 (1) E(T0 1T0 <∞ ) = E(T0 |T0 < ∞) = P(T0 < ∞) F0 (1)

Zd .

[ 

[(

'

ZY

&X

"$ WV

(



'& %$ "#!









 





B

?

A



>G

>

>@

DJ

B

D



J

>? A

U

T



B U

M M> M

B H A

@

EJ

M J T > BA

>G L

? ?

BH

E







E 

>

C EG T









B H

EJ

C



H

F

>

C

D@

B



E B M

B H A

@

EJ

M T J T > BA

G A?

J



>G

G



EG E EB

D



B



? @

BH B>

D

>

G

B>

B>

A

H

A

>

G



EG E EB







DE

> L

H

C

C

D@

B

B

J

@

L

EJ

B >

J ?

@

G



 B







H



>?

> F?

@

J T I

Gξin (z) = φ(z).













 

   

    DJ L H

G

M>

B H

G J

C

?

@

EJ

E M



C

i=1

 



 



 

  

 

ξin

ξin Zn X

Zn+1 =

ξin i = 1, . . . , Zn •







•Zn =



> L

?@

BH

E

>

D?

B

L @

EJ

EB

?

@ 

B

EJ >?@ A

T U





[(

'

ZY

&X

"$ WV

(



'& %$ "#!  

  







Z1=2

 



 



 

  

 

Z4=6 Z2=4







Z0=1



[(

'

ZY

&X

"$ WV

(



'& %$ "#!  

  







































 

 /



!







+

7

+



'

;

.

(

;

8

*

8

&*

'



(

&*

.



 

=







3

< " 



#

Z n , G n = GZ n

+

'

;

8

, 9

Gn+1 = Gn ◦ φ. 

&*

7

+

(

' $



Z0 = 1, G0 (z) = z

Gn = φn = φ ◦ . . . ◦ φ.

Q

3

<

5



5

E(z

Zn+1

|Zn = s) = E(z

Ps

i=1

ξin

) = φ(z)s

 



J

>

L

BH

G

C

G

B>

EB

D H T

T

Gn+1 (z) = E(z Zn+1 ) = E(E(z Zn+1 |Zn )) = E(φ(z)Zn ) = Gn (φ(z)).



[(

'

ZY

&X

"$ WV

(



'& %$ "#!









  



> ? T

J T A ? S





B H A

@

EJ

M T J T H

G

M>

B L @

EJ

EB

@





B H A

@

EJ

M T J T H M>

> L

A

C

G

>

L

B> D D

D

B H >

@

EJ

MD H M>



G B

DE L @ C

EJ

EB

@



πn+1 = φ(πn ), π0 = 0.

 



 



 



  1

B

P(Zn = 0) = Gn (0)

 

5









4



    ! 

3 <

) = limn→∞ P(Zn = 0) P(

=

 

 

n≥0

{Zn = 0} [







Z0 = 1.



[(

'

ZY

&X

"$ WV

(



'& %$ "#!  

  





 

 

 



 



> @

J

JL

?@

BH

B

B B

B

> ? T

J T A ? S

>



> B LJ > @ ? ?

BH

E L

DJ

@

L @

>

B>



DE ?@ >?@

U

U

⇒ φ : [0, 1]→[0, 1]

 

 

φ0 (1) = E(ξ) φ0 (z) = E(ξz ξ−1 ), φ00 (z) = E(ξ(ξ − 1)z ξ−2 )







ξ



[(

'

ZY

&X

"$ WV

(



'& %$ "#!  

  





'

#



$ #

"







&* ' . ( 

) & . 

+ 7

&* ' 

( * ' 

(

: :









'



: :

+ 7

Q

5

= &*

 P 34

N

' ) (

O



& 6

5

⇒ E(Zn ) = E(ξ)n . > A

L H? L >

? BH



M

ED @

E



E(ξ) = 1,

+ ) ' )*





+ . ,

*& ' . ( 

) & . 

+ 7

&* ' 

( * ' 

(

$%#  

⇒ E(Zn+1 ) = E(E(Zn+1 |Zn )) = E(Zn )E(ξ)







!

 

5

 

O



3





i=1

 



 



 

  

 







G

? H?

>

BH D



D

J T

A

n > @

Zn = 0 E(Zn ) = 1

ξin ) = kE(ξ) E(Zn+1 |Zn = k) = E(

k X







π = φ(π). <1

π )=π<1 E(ξ) > 1, P(

) = 1. E(ξ) ≤ 1, P(



[(

'

ZY

&X

"$ WV

(



'& %$ "#!  

  





Related Documents

A Lea To Ire 4
November 2019 17
A Lea To Ire 2
November 2019 21
A Lea To Ire 5
November 2019 16
A Lea To Ire 3
November 2019 16
A Lea To Ire 1
November 2019 18
A Lea To Ire 67
November 2019 6