A Lea To Ire 3

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View A Lea To Ire 3 as PDF for free.

More details

  • Words: 6,331
  • Pages: 29


 





  





































 



  

& &



&% $# !"   

  







 



 

$



 













"

  



   

#



  

 

 



  

 '    



 



 

  

"







%









 





!

 









!







  



  





 

"





 " 

 

"

 

"  









  



&

(

#

 





%



"

       "

%    "  

0

/+ .-

,+ )*

  







   



!













!







   



!

 '  

 

     !    &

(



#



!









% 1

   

 

1 ˜ ˜ ˜ ˜ Ω = {2, 4, 6}, P({2}) = P({4}) = P({6}) = . 3



  









 





1 . 6 Ω = {1, 2, 3, 4, 5, 6}, P({1}) = . . . = P({6}) =

 &7 & &

65

%4

!#

& &

32



&% $# !"   

  









.

 



   -

     



  %  $

+

# ! !"      

. .+

       

 ! (  # !&

# ! !"   

)

( &

+    

 



'   

  

#

   

 *



!



 





  



  !

  "  















 



  

" 

%

 



 



,



-

 

 





!  











! 











 

 !

 

!   

!

#

 



"



 

 

-

 

!





        "









'  



#

NA∩B /N NA∩B = NB NB /N





  

 

' 

 



-







 .





 



 





%





!  

!





!

 

    

  

.

.

0

/

N

P(A ∩ B) P(B) ∼

B NB A •

N A • NA =

P(B) > 0 P(A ∩ B) P(B) P(A|B) =

B A

(Ω, A, P),

 &7 & &

65

%4

!#

& &

32



&% $# !"   

  









$     

%

! 

 

 &

(

 !  

  "

 "



!



         !





! ( #  

( ( #   " ! "  

)

P (A ∩ B) = P (B)P (A|B)







  









 

 

.





 % ! 

-

' 

   









%





!

 













+

  + )* + .-

,+ )*

!  

!    ! !  '

 ! "



.



 





!





  

!  

!    ! !  '

 ! "





.

.



!  

!    ! !  '

 ! "



.



 





!





  



.

P(







)

1 1 1 = / = 4 2 2 ) P(

)= P(

1 11 = 22 4 )= P(

B : P(B|B) = 1. A • A 7→ P(A|B)

P(A|B) = P(A)/P(B) A⊂B •

 &7 & &

65

%4

!#

& &

32



&% $# !"   

  









+

 +



 

%      

        

    

  







!     %  



+   !



!    



   

 ! 

 





'

 

 





"



!



 !   



      !  



!  



!  

 



  









 ! 

 







%



! 

  "   !  !

 "  

#



1 



 

ρ(t + s) = ρ(t)ρ(s)



   





 

 $  .

+

+













$

-



+





/



.

  + .-

,+ )*

   

"   

  



!

(







   



-  

 



0

/

pT (t) = θe−θt ρ(t) = e−θt

θ = ρ(0). ˙ ρ(t) ˙ = ρ(t)θ

 

 

t 7→ ρ(t) = P(T > t)







T : Ω 7→ R+

P(T > t + s|T > s) = P(T > t)

 &7 & &

65

%4

!#

& &

32



&% $# !"   

  







+



.



, ,+

 

! (

-

'

! 

# ( 

  -

! (    # !&  

!

 

 "  





!

 

-



 





$





 

)

 

   



&







{i:P(Bi )>0}





  









































 



+

/+



{i:P(Bi )>0} P(A|Bi )P(Bi )

P i P(A ∩ Bi ) =

P i (A ∩ Bi )) =

S P(A) = P(

P(A|Bi )P(Bi ) P(A) =

X







Ω.

i 6= j, Bi ∩ B j = ∅ S i Bi = Ω

(Bi )

 &7 & &

65

%4

!#

& &

32



&% $# !"   

  









   





 



   















!

-



!



 !  



!





















!













    



!     

&





 

0

/



 !





!









.

/

% 



 

"      

 

!  

"



(

0

/

% !  !     













"

! 





 



 

 (  











(



0

"







!

















  











  

  





!

 

%

' 

!





!  



 

(







!







   



!



 '



  





     

#

(

.

%

-





"  ! 

!



 











!











!



  

  

   











/

 





 



0





- 

"  ! 

 &7



!



&

 





%4 32





&% $# !" 

&

!#

65

& &



$

, 

        



" 

 



!









 

!



!











!

# (

















!





    



!    



 

 















(

. /

  0



!

% 





!





!











(

/

0



!

% 







!



!









 









"









 







#

!   



  

 

1 . 3

1 P(E|A) = , P(E|C) = 1, P(E|B) = 0 2  





1 11 1 + = P(E) = P(E|A)P(A) + P(E|B)P(B) + P(E|C)P(C) = 23 3 2 P(E|A)P(A) 11 1 1 P(A ∩ E) = = ( )/ = P(E) P(E) 23 2 3

P(A|E) =

P(C|E) = 



"

 !



! 







'

*



2 3









P(A) = P(B) = P(C) =











































&7

&

&

65

%4

!#

&

& 32



&% $# !" 

















 %









+ $  #   

! " ! 

! 

!

 











!



!



 '  













(



% ! " ! 

! 

 '    

! 





!





 

  !   









(

(



.





 !   !

 

   

!

 

  







!

"



 







 



1 "



    

 











'  

 !  ! 



=

0, 95 × 10−4 ' 0,02 . . . −4 0, 95 × 10 + 0, 005 × 0, 9999



%



! 



  !











 









"







.  



=

P (T + |M ) × P (M ) P (T + |M ) × P (M ) + P (T + |M c ) × P (M c )

  





+

  +

  



 "   







 

! !







P (M T + ) P (T + ) P (M |T ) =



+

. ,



  $ +

/+ .-

,+ )*

T

+

 

 

T+ =







M=

 &7 & &

65

%4

!#

& &

32



&% $# !"   

  









  



 



 







































 



   

  







 



 +

$

  $  

% ! 

 "





!

%  

- 

.



 

$



%

+

+ .+

         . 



.







-







   

 ! (

)

'   # !&

! 

 ! (

)

'  



 #

! #

)

!&

 





   $

%

.

+

+ .+

 

 

 +





 

 

$ +





-

y

X Y



 









 

$



%

.

+

+ .+

 

 

 +





 

 

$ +





  # !&

-



Ψ(x) = E(Y |X = x). E(Y |X) := Ψ(X)

X Y

yPY |X (y|x) E(Y |X = x) :=

X=x Y

X

PX (x) > 0. x PX,Y (x, y) PX (x) PY |X (y|x) := P(Y = y|X = x) =

 



• X, Y

 7 &7 & &

65

%4

!#

& &

32



&% $# !"   

  





!

%



!

% 

0

B /

   

 













"

!



 











!



"











0

/

 





%      

" 

"















    

 "

!





  











-





$



  

 

"  





   ! 

"











' 

"



!

1        



!

 





0

/

   

      









-





 

( 

 (



 





 

 

 

  ! 



      

/

%



   ! 

.

0

E(X|S) =?







  













  





-

      0

/



.

  + .-

,+ )*

S =X +Y C,







  



 

X

C S = X+Y

A Y X

 



A

X

Y B

 7 &7 & &

65

%4

!#

& &

32



&% $# !"   

  

 













#





% 







"



!











  







0

/

µ

λk −λ e ,k≥0 P(X = k) = k! 



1 

!



!









!







 





" 

 

 





(X, Y )

+







λk µl e−(λ+µ) PX,Y (k, l) = PX (k)PY (l) = k!l! 

 







S: PS (n) = P(X + Y = n) =

n X

P(X = k, Y = n − k)

k=0

=

n X λk µn−k e−(λ+µ)

k!(n − k)!

k=0

n

1 −(λ+µ) X k k n−k 1 = e Cn λ µ = e−(λ+µ) (λ + µ)n n! n! k=0









 





!



!





(λ + µ)









&

(&











 









!

















 !











!



!

0

λ

Y































!



 























X



7

&7

&

&

65

%4

!#

&

& 32



&% $# !" 









 





  

P(X = k|S = n) =

P(X = k, Y = n − k) P(X = k, S = n) = P(S = n) P(S = n)

λk µn−k e−(λ+µ) 1 −(λ+µ) / e (λ + µ)n = k!(n − k)! n! "

,



− p)



=

n−k



Cnk pk (1

λ p= λ+µ

!



  

























(n, p)

⇒ E(X|S = n) = np, E(X|S) = Sp







+







k ≤ n,







X|S























































7

&7

&

&

65

%4

!#

&

& 32



&% $# !" 









  









     $  

!





 ! 











    



   "

.

+



.+

         $  +





.



! 

 # (





'   

-





 



 

 







#

 

#  

 &

) 



) 



#  

 & !  !   !   

( # (   



! 

  !&   # !

)

)

R



  













 

 

 



+

   



+

.

.













! 





&





#

X 

.

+



.+

 



 +





 

   $ +

! 

 !   !  # !&

) )

-

Y

 



 



ψ(x) = E(Y |X = x) E(Y |X) := ψ(X)

ypY |X (y|x)dy E(Y |X = x) :=

Z

pX,Y (x, y) , pX (x) y 7→ pY |X (y|x) =

X=x Y

pX (x) > 0 x ∈ Rn X=x Y

Rn × R m pX,Y •(X, Y )

 7 &7 & &

65

%4

!#

& &

32



&% $# !"   

  













 "

!





!

 

 



   ! !     











!



 

    

   

"

  "

 

  !



 

  



.







+

-







,



 %

E(Y ) = E(E(Y |X))







  

 

  

 









  

E(1|X) = 1



  













 



   











   





 



Y ≥ 0 ⇒ E(Y |X) ≥ 0 

/



+

$



$

+



+













y

x

y

y =













E(aY + bZ|X) = aE(Y |X) + bE(Z|X) 

yPY (y) = E(Y ) P(Y = y|X = x)PX (x) =

X # X " X

y

x



 

Ψ(x) = E(Y |X = x). # " X X X Ψ(x)PX (x) = yP(Y = y|X = x)PX (x) E(Ψ(X)) = x

 





7 &7 & &

65

%4

!#

& &



32



&% $# !"   

  







 

  

.



& 

  



  !   ( 

!& #  



& 









(



!







!





(" )

 !   ( #  

& # !

(   -

! !   !   

( # (   



!  ( 

 





 

!  !   !   

( # (   









! #  # &  









   



   

E(f (X, Y )|X) = F (X) , avec F (x) = E(f (x, Y )).













-



  





$

 

Y





 



 "









   



/

 +

$



$

+

+











(







&7 & &



65

&

   

%4



&% $# !" 

&

!#



32

P(Y =y)P(X=x) P(X=x)

= P(Y = y). P(Y = y|X = x) =







E(Y |X) = E(Y )

X Y

Y X











  ! 

$ 



(



(

% 



! 

 

 





         "



 



!     ! 











 

!



%



 



 ! 

#



#

% 







 "

!







 



 

 



⇒ E(S|N ) = N E(X1 ), E(S) = E(E(S|N )) = E(N ) × E(X1 ).







+



+



 

 ! 



"







"

! 

   "

!

    !  



i≤n

 

+



, ,

$



#





.





"       !     



 

E (S | N = n) = E

!   

-

 

  



,

i≤n

i≤n

/

   







! 0

=

.

  + .-

,+ )*

  X E Xi | N = n = E (Xi ) = n E(X1 ) X

Xi | N = n

 X

(Xi ) N (Xi )





 

Xi , i≤N

S=

P

i Xi







N

&7 & &

65

%4

!#

& &



32



&% $# !"   

  



















   

 





 













  





 

 

 

,   ! 





!





     



!





"



 

 

  





% %

 !



Xi Sn := S0 +

i=1

n X







• (Xi , i ≥ 1)



+



  



! 









"

 



(

 (  !

 







  !









. "

 "  

 

!











!







+





  





,



%

+







 

 !     



% % %   

  



    1    !





% %



 

 !

&7 & &

65

%4

!#

& &



32



&% $# !"   

  

















   



 



























%

!





    $







 ! 













 





'





 +











0

/ 

+  !









.



   !

0



 

 ! 





!





   $ 

  

     









   #

P(Xi = +1) = p, P(Xi = −1) = 1 − p 



 

   !











 

 

,







!











#





0

/

   

#

Sn = 0







%

 

 





#

/

0

Sn = m

n. Sn =

i Xi ∈ {−1, 1} =

&7 & &

65

%4

!#

& &



32



&% $# !"   

  



















 













 

 

+ !























 









 

















































R={

Pk (A)





S0 = k

A.



}, µk = Pk (R)

! 



+





µk = Pk (R|X1 = 1)P(X1 = 1) + Pk (R|X1 = −1)P(X1 = −1)  

 &   

µk = pµk+1 + (1 − p)µk−1

k = 1, . . . , m − 1

!

 

- 

!











"

!

"



 





µ0 = 1, µm = 0.

 





p(µk − µk+1 ) = (1 − p)(µk−1 − µk ), k = 1, . . . , m − 1

&7

&

&

65

%4

!#

&

& 

32



&% $# !" 









  















 













 

 









/+

.





 +

p 6= 1/2



(µk − µk+1 ) = (

1−p k 1−p k ) (µ0 − µ1 ) = ( ) (1 − µ1 ). p p



 





!





k 1 − ( 1−p ) 1−p i p ) (1 − µ1 ) = µ0 − µk = ( 1−p (1 − µ1 ) p (1 − p ) i=0 k−1 X





1 = µ 0 − µm =

⇒ µk =

m 1 − ( 1−p ) p

(1 −

1−p p )

(1 − µ1 )

1−p k m ( 1−p ) − ( p p ) m ( 1−p p ) −1





/+

.





+

p = 1/2



k µk = 1 − m &7

&

&

65

%4

!#

&

& 

32



&% $# !" 









 















   













 





  



 

%   





  '

  

 '

.





 













  

  











0

0

/

m 

 



 





/

k

p



















(

(























(

(

(



















(

(



  

  

 

(

(

(



(













 



(

(

(

(















(

(

( 









(



























































!







 



&7 & &

65

%4

!#

& &



32



&% $# !"   

  

 

















 



   





%  

   !



!



,















 

 !













    !

 ! 0

#

#

 







    ! !  

%  













!



"





 



-

.



 



/+

 !  

  

!















  '



*

+





p 6= 1/2

 !

 









 



 

" 







%

   !



$ 









  

"







 

/+ .



 +



p = 1/2







 

   

 

 

  







!



"



   

•Pk (R) = 1.







•p < 1/2 ⇒ Pk (R) = 1.

k 1 − ( 1−p p ) k •p > 1/2 ⇒ Pk (R) = ( 1−p p ) < 1.

µk . m→∞

&7 & &

65

%4

!#

& &



32



&% $# !"   

  













 

!

   !

















 



  

 !



"

 







   !  " 0



0

/

%

%



    ! !

0

/

A = {∃n ≥ 1|Sn = 0}.







     





















  





 



  





















!

 







!





 !

"

   

 

 

! "  " !

 

  !





! "  " ! 



!







!

  %

!  

!





  

1







 



 





"



   ! 

"









#

Sn 



!    !   

    !

% 











! '

  1 



!



 

 









 

"







 

Z













$





 

! # !   

 # !





!

#

!

(

& 

#

#

!&

!



 " 

)

)

-

(

&



& 

)



&(

"

!

#





(

&

p 6= 1/2   2p p ≤ 1/2 P(A) =  2(1 − p) p = 1/2.

Z

P(A) < 1. •

Sn P(A) = 1. •

S0 = 0 0

Z (Sn )

&7 & &

65

%4

!#

& &



32



&% $# !"   

  



















 













 

 



+

/+

 

P(A) = P(A|X1 = 1)p + P(A|X1 = −1)(1 − p)   1 p ≤ 1/2 = P(A|X1 = 1) = P1 (R)  1−p p > 1/2 !

'







"





























!

p









!





(





1

!

P(A|X1 = −1) =

p 1−p

!



p ≥ 1/2 

 

p < 1/2

&7

&

&

65

%4

!#

&

& 

32



&% $# !" 









  

 

 





   

 



  



 



















































5 0 0

0 )

8 . -

'4 ' 3

-2

'-.

',

'



    



!

#"

%!$

&



)(

+*

)

01

)

)

5'

6

987 

  





 





 





X1 , X 2 , . . .







e1 , . . . , ed



/





{e1 , . . . , ed , −e1 , . . . , −ed }.

(



Sn+1 = Sn + Xn+1 , S0 = 0



Rd .

-

Zd .



 

Zd .

: ) .( ' 3 ' 3

7

KP K K

ON JM

FH

K K

Q

BL@ KJ IH FGE D C BA@ ?

?> = ;<

R





























R Q





r

r

r

r

r

r

r

r















Z

Zd .

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

Z2 .

KP

K

K

ON

JM

FH

K

K Q

BL@

KJ IH FGE D

C BA@

?

?>

=

;< R 

























Q 





 

 









$ #"



    

  





'

*,



5 .' ) )

)

  



   

' 5 '. 0 -

.  





5( )







d ≥ 3,





R

(Sn )

2 d=1

P(∃n > 0 : Sn = 0) = 1.

P(∃n > 0 : Sn = 0) < 1.

Zd .

KP K K

ON JM

FH

K K

Q

BL@ KJ IH FGE D C BA@ ?

?> = ;<

R















R 















Q





Zd .















 



 



p(d) = P(∃n > 0 Sn = 0). p(1) = p(2) = 1 p(3) = 0.3405373295509991... p(4) = 0.1932016732249839... p(10) = 0.0561975359742678... p(64) = 0.0079380451778596... 





 







 

























































0

) 8

KP

K

K

ON

JM

FH

K

K Q

BL@

KJ IH FGE D

C BA@

?

?>

=

;< R



Related Documents

A Lea To Ire 3
November 2019 16
A Lea To Ire 4
November 2019 17
A Lea To Ire 2
November 2019 21
A Lea To Ire 5
November 2019 16
A Lea To Ire 1
November 2019 18
A Lea To Ire 67
November 2019 6