& &
&% $# !"
$
"
#
'
"
%
!
!
"
"
"
"
&
(
#
%
"
"
% "
0
/+ .-
,+ )*
!
!
!
'
! &
(
#
!
% 1
1 ˜ ˜ ˜ ˜ Ω = {2, 4, 6}, P({2}) = P({4}) = P({6}) = . 3
1 . 6 Ω = {1, 2, 3, 4, 5, 6}, P({1}) = . . . = P({6}) =
&7 & &
65
%4
!#
& &
32
&% $# !"
.
-
% $
+
# ! !"
. .+
! ( # !&
# ! !"
)
( &
+
'
#
*
!
!
"
"
%
,
-
!
!
!
!
!
#
"
-
!
"
'
#
NA∩B /N NA∩B = NB NB /N
'
-
.
%
!
!
!
.
.
0
/
N
P(A ∩ B) P(B) ∼
B NB A •
N A • NA =
P(B) > 0 P(A ∩ B) P(B) P(A|B) =
B A
(Ω, A, P),
&7 & &
65
%4
!#
& &
32
&% $# !"
$
%
!
&
(
!
"
"
!
!
! ( #
( ( # " ! "
)
P (A ∩ B) = P (B)P (A|B)
.
% !
-
'
%
!
+
+ )* + .-
,+ )*
!
! ! ! '
! "
.
!
!
! ! ! '
! "
.
.
!
! ! ! '
! "
.
!
.
P(
)
1 1 1 = / = 4 2 2 ) P(
)= P(
1 11 = 22 4 )= P(
B : P(B|B) = 1. A • A 7→ P(A|B)
P(A|B) = P(A)/P(B) A⊂B •
&7 & &
65
%4
!#
& &
32
&% $# !"
+
+
%
! %
+ !
!
!
'
"
!
!
!
!
!
!
%
!
" ! !
"
#
1
ρ(t + s) = ρ(t)ρ(s)
$ .
+
+
$
-
+
/
.
+ .-
,+ )*
"
!
(
-
0
/
pT (t) = θe−θt ρ(t) = e−θt
θ = ρ(0). ˙ ρ(t) ˙ = ρ(t)θ
t 7→ ρ(t) = P(T > t)
T : Ω 7→ R+
P(T > t + s|T > s) = P(T > t)
&7 & &
65
%4
!#
& &
32
&% $# !"
+
.
, ,+
! (
-
'
!
# (
-
! ( # !&
!
"
!
-
$
)
&
{i:P(Bi )>0}
+
/+
{i:P(Bi )>0} P(A|Bi )P(Bi )
P i P(A ∩ Bi ) =
P i (A ∩ Bi )) =
S P(A) = P(
P(A|Bi )P(Bi ) P(A) =
X
Ω.
i 6= j, Bi ∩ B j = ∅ S i Bi = Ω
(Bi )
&7 & &
65
%4
!#
& &
32
&% $# !"
!
-
!
!
!
!
!
&
0
/
!
!
.
/
%
"
!
"
(
0
/
% ! !
"
!
(
(
0
"
!
!
%
'
!
!
(
!
!
'
#
(
.
%
-
" !
!
!
!
/
0
-
" !
&7
!
&
%4 32
&% $# !"
&
!#
65
& &
$
,
"
!
!
!
!
# (
!
!
•
•
•
(
. /
0
!
%
!
!
(
/
0
!
%
!
!
"
#
!
1 . 3
1 P(E|A) = , P(E|C) = 1, P(E|B) = 0 2
1 11 1 + = P(E) = P(E|A)P(A) + P(E|B)P(B) + P(E|C)P(C) = 23 3 2 P(E|A)P(A) 11 1 1 P(A ∩ E) = = ( )/ = P(E) P(E) 23 2 3
P(A|E) =
P(C|E) =
"
!
!
'
*
⇒
2 3
P(A) = P(B) = P(C) =
•
•
&7
&
&
65
%4
!#
&
& 32
&% $# !"
%
+ $ #
! " !
!
!
!
!
'
(
% ! " !
!
'
!
!
!
(
(
.
! !
!
!
"
1 "
'
! !
=
0, 95 × 10−4 ' 0,02 . . . −4 0, 95 × 10 + 0, 005 × 0, 9999
%
!
!
"
.
=
P (T + |M ) × P (M ) P (T + |M ) × P (M ) + P (T + |M c ) × P (M c )
+
+
"
! !
P (M T + ) P (T + ) P (M |T ) =
+
. ,
$ +
/+ .-
,+ )*
T
+
T+ =
M=
&7 & &
65
%4
!#
& &
32
&% $# !"
+
$
$
% !
"
!
%
-
.
$
%
+
+ .+
.
.
-
! (
)
' # !&
!
! (
)
'
#
! #
)
!&
$
%
.
+
+ .+
+
$ +
-
y
X Y
$
%
.
+
+ .+
+
$ +
# !&
-
Ψ(x) = E(Y |X = x). E(Y |X) := Ψ(X)
X Y
yPY |X (y|x) E(Y |X = x) :=
X=x Y
X
PX (x) > 0. x PX,Y (x, y) PX (x) PY |X (y|x) := P(Y = y|X = x) =
• X, Y
7 &7 & &
65
%4
!#
& &
32
&% $# !"
!
%
!
%
0
B /
"
!
!
"
0
/
%
"
"
"
!
-
$
"
!
"
'
"
!
1
!
0
/
-
(
(
!
/
%
!
.
0
E(X|S) =?
-
0
/
.
+ .-
,+ )*
S =X +Y C,
X
C S = X+Y
A Y X
A
X
Y B
7 &7 & &
65
%4
!#
& &
32
&% $# !"
#
%
"
!
0
/
µ
λk −λ e ,k≥0 P(X = k) = k!
1
!
!
!
"
(X, Y )
+
•
λk µl e−(λ+µ) PX,Y (k, l) = PX (k)PY (l) = k!l!
•
S: PS (n) = P(X + Y = n) =
n X
P(X = k, Y = n − k)
k=0
=
n X λk µn−k e−(λ+µ)
k!(n − k)!
k=0
n
1 −(λ+µ) X k k n−k 1 = e Cn λ µ = e−(λ+µ) (λ + µ)n n! n! k=0
!
!
(λ + µ)
&
(&
!
!
!
!
0
λ
Y
!
X
7
&7
&
&
65
%4
!#
&
& 32
&% $# !"
P(X = k|S = n) =
P(X = k, Y = n − k) P(X = k, S = n) = P(S = n) P(S = n)
λk µn−k e−(λ+µ) 1 −(λ+µ) / e (λ + µ)n = k!(n − k)! n! "
,
− p)
=
n−k
Cnk pk (1
λ p= λ+µ
!
(n, p)
⇒ E(X|S = n) = np, E(X|S) = Sp
+
k ≤ n,
X|S
•
7
&7
&
&
65
%4
!#
&
& 32
&% $# !"
$
!
!
"
.
+
.+
$ +
.
!
# (
'
-
#
#
&
)
)
#
& ! ! !
( # (
!
!& # !
)
)
R
+
+
.
.
!
&
#
X
.
+
.+
+
$ +
!
! ! # !&
) )
-
Y
ψ(x) = E(Y |X = x) E(Y |X) := ψ(X)
ypY |X (y|x)dy E(Y |X = x) :=
Z
pX,Y (x, y) , pX (x) y 7→ pY |X (y|x) =
X=x Y
pX (x) > 0 x ∈ Rn X=x Y
Rn × R m pX,Y •(X, Y )
7 &7 & &
65
%4
!#
& &
32
&% $# !"
"
!
!
! !
!
"
"
!
.
+
-
,
%
E(Y ) = E(E(Y |X))
E(1|X) = 1
Y ≥ 0 ⇒ E(Y |X) ≥ 0
/
+
$
$
+
+
y
x
y
y =
E(aY + bZ|X) = aE(Y |X) + bE(Z|X)
yPY (y) = E(Y ) P(Y = y|X = x)PX (x) =
X # X " X
y
x
Ψ(x) = E(Y |X = x). # " X X X Ψ(x)PX (x) = yP(Y = y|X = x)PX (x) E(Ψ(X)) = x
•
7 &7 & &
65
%4
!#
& &
32
&% $# !"
.
&
! (
!& #
&
(
!
!
(" )
! ( #
& # !
( -
! ! !
( # (
! (
! ! !
( # (
! # # &
E(f (X, Y )|X) = F (X) , avec F (x) = E(f (x, Y )).
-
$
Y
"
/
+
$
$
+
+
(
&7 & &
65
&
%4
&% $# !"
&
!#
32
P(Y =y)P(X=x) P(X=x)
= P(Y = y). P(Y = y|X = x) =
E(Y |X) = E(Y )
X Y
Y X
!
$
(
(
%
!
"
! !
!
%
!
#
#
%
"
!
⇒ E(S|N ) = N E(X1 ), E(S) = E(E(S|N )) = E(N ) × E(X1 ).
+
+
!
"
"
!
"
!
!
i≤n
+
, ,
$
#
.
" !
E (S | N = n) = E
!
-
,
i≤n
i≤n
/
! 0
=
.
+ .-
,+ )*
X E Xi | N = n = E (Xi ) = n E(X1 ) X
Xi | N = n
X
(Xi ) N (Xi )
Xi , i≤N
S=
P
i Xi
N
&7 & &
65
%4
!#
& &
32
&% $# !"
, !
!
!
"
% %
!
Xi Sn := S0 +
i=1
n X
• (Xi , i ≥ 1)
+
!
"
(
( !
!
. "
"
!
!
+
,
%
+
!
% % %
1 !
% %
!
&7 & &
65
%4
!#
& &
32
&% $# !"
%
!
$
!
'
+
0
/
+ !
.
!
0
!
!
$
#
P(Xi = +1) = p, P(Xi = −1) = 1 − p
!
,
!
#
0
/
#
Sn = 0
%
#
/
0
Sn = m
n. Sn =
i Xi ∈ {−1, 1} =
&7 & &
65
%4
!#
& &
32
&% $# !"
+ !
R={
Pk (A)
S0 = k
A.
}, µk = Pk (R)
!
+
µk = Pk (R|X1 = 1)P(X1 = 1) + Pk (R|X1 = −1)P(X1 = −1)
&
µk = pµk+1 + (1 − p)µk−1
k = 1, . . . , m − 1
!
-
!
"
!
"
µ0 = 1, µm = 0.
p(µk − µk+1 ) = (1 − p)(µk−1 − µk ), k = 1, . . . , m − 1
&7
&
&
65
%4
!#
&
&
32
&% $# !"
/+
.
+
p 6= 1/2
(µk − µk+1 ) = (
1−p k 1−p k ) (µ0 − µ1 ) = ( ) (1 − µ1 ). p p
!
k 1 − ( 1−p ) 1−p i p ) (1 − µ1 ) = µ0 − µk = ( 1−p (1 − µ1 ) p (1 − p ) i=0 k−1 X
1 = µ 0 − µm =
⇒ µk =
m 1 − ( 1−p ) p
(1 −
1−p p )
(1 − µ1 )
1−p k m ( 1−p ) − ( p p ) m ( 1−p p ) −1
/+
.
+
p = 1/2
k µk = 1 − m &7
&
&
65
%4
!#
&
&
32
&% $# !"
%
'
'
.
0
0
/
m
/
k
p
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
!
&7 & &
65
%4
!#
& &
32
&% $# !"
%
!
!
,
!
!
! 0
#
#
! !
%
!
"
-
.
/+
!
!
'
*
+
p 6= 1/2
!
"
%
!
$
"
/+ .
+
p = 1/2
!
"
•Pk (R) = 1.
•p < 1/2 ⇒ Pk (R) = 1.
k 1 − ( 1−p p ) k •p > 1/2 ⇒ Pk (R) = ( 1−p p ) < 1.
µk . m→∞
&7 & &
65
%4
!#
& &
32
&% $# !"
!
!
!
"
! " 0
0
/
%
%
! !
0
/
A = {∃n ≥ 1|Sn = 0}.
!
!
!
"
! " " !
!
! " " !
!
!
%
!
!
1
"
!
"
#
Sn
! !
!
%
! '
1
!
"
Z
$
! # !
# !
!
#
!
(
&
#
#
!&
!
"
)
)
-
(
&
&
)
&(
"
!
#
(
&
p 6= 1/2 2p p ≤ 1/2 P(A) = 2(1 − p) p = 1/2.
Z
P(A) < 1. •
Sn P(A) = 1. •
S0 = 0 0
Z (Sn )
&7 & &
65
%4
!#
& &
32
&% $# !"
+
/+
P(A) = P(A|X1 = 1)p + P(A|X1 = −1)(1 − p) 1 p ≤ 1/2 = P(A|X1 = 1) = P1 (R) 1−p p > 1/2 !
'
"
!
p
!
(
1
!
P(A|X1 = −1) =
p 1−p
!
p ≥ 1/2
p < 1/2
&7
&
&
65
%4
!#
&
&
32
&% $# !"
5 0 0
0 )
8 . -
'4 ' 3
-2
'-.
',
'
!
#"
%!$
&
)(
+*
)
01
)
)
5'
6
987
X1 , X 2 , . . .
e1 , . . . , ed
/
{e1 , . . . , ed , −e1 , . . . , −ed }.
(
Sn+1 = Sn + Xn+1 , S0 = 0
Rd .
-
Zd .
Zd .
: ) .( ' 3 ' 3
7
KP K K
ON JM
FH
K K
Q
BL@ KJ IH FGE D C BA@ ?
?> = ;<
R
R Q
r
r
r
r
r
r
r
r
Z
Zd .
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
Z2 .
KP
K
K
ON
JM
FH
K
K Q
BL@
KJ IH FGE D
C BA@
?
?>
=
;< R
Q
$ #"
'
*,
5 .' ) )
)
' 5 '. 0 -
.
5( )
d ≥ 3,
R
(Sn )
2 d=1
P(∃n > 0 : Sn = 0) = 1.
P(∃n > 0 : Sn = 0) < 1.
Zd .
KP K K
ON JM
FH
K K
Q
BL@ KJ IH FGE D C BA@ ?
?> = ;<
R
R
Q
Zd .
p(d) = P(∃n > 0 Sn = 0). p(1) = p(2) = 1 p(3) = 0.3405373295509991... p(4) = 0.1932016732249839... p(10) = 0.0561975359742678... p(64) = 0.0079380451778596...
0
) 8
KP
K
K
ON
JM
FH
K
K Q
BL@
KJ IH FGE D
C BA@
?
?>
=
;< R