A Lea To Ire 2

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View A Lea To Ire 2 as PDF for free.

More details

  • Words: 6,176
  • Pages: 32


 



 

 



  

 









 







 



 





 



  

 

 



  





  



    



 









. 2

-3

56

78

1

9,

9:

<#; 2



%&

(

$ "$

23

-01 /

-. ,+

'

)

4

* ! *

1 , ? 2 / 6 5

. -3 2

2

@

E

/ -

7 A 2 3 26

2 B1 76 0 3 26

8 7:A 9 , -3 2 2 / 5 1-

:, / -

D

C

5 /3 26

2. 6 A ,

/ F

D

4

< ;

A 6/ 3 76 0 ,+ *  ! 

R



 

   

2. 0 6 5, 1 ? 2 = : >

X≥0

 

 



















 





    





"#!



   

x∈E

  





   





  



 







E

E

/ -

7 A 2 9: , 15 3 6/ -3 2

/ -

D

C



H





K







N

O





O





R  >

P

M

J

K

J

I



H

G

Q

L

X E(X)





 

E(X) :=

x pX (x)dx E(X) :=

Z

x pX (x) X

pX X E=R

X≥0 xp(x)

X

 



• X : Ω→E ⊂ R

X



  WV

U





 TS



    



 















 



 





 











( '







O

O H

J



L









H M

J

  I  O 



G

I  I G 



K



G



M 

M 





J

 

MJ

 G 

O



 JO



2



  





 

a

a+b = 2 1 x dx = xp(x)dx = x b − a 2(b − a) [a,b]

b E(X) =

 



k≥1

kp(1 − p)k−1 = 1/p E(T ) =

 Z

Z

[a, b] X •

T •

X

P •E(1A ) = 0 × P(1A = 0) + 1P(1A = 1) = P(A) E

X



  WV

U





 TS



    



 









 







 

 

   





M



  O



H NG M

J

 I G









H

J





   G

I



O M

M H



   

 





(







  

(









 

 



  



 

2

.

2 : 2:

, 6



'

? ?



 



 





 





  















  



 

2 9: , 15 3 6/ -3 2

C

(i.e E(|X|) < ∞). 7 A

X / -

X≥0

X(ω)P(dω) E(X) =

Z

X





 

•X : Ω 7→ R

 



•(Ω, A, P)

X



  WV

U





 TS



    



 















 



 





 





  





 

 

M

 M H H

 J



J









 



 

O  

K



O

N



L

E E

23

,B 2 6 A

26 / 7 F *



L







3















!







I

N

 O





K



O M

M

 





H





J 



E

7 1 :

2 9: , -1 2A

D

;

8 4

E

2 1/ : /0A 3

D

1 , ? 6

2 9: , 15 3 /6

7 A

/ -

C

<



23

-01 /

-. ,+ * !

< A 6/ 3 76 0 ,+

 ! 

*

E(f (X)) =









 J 

f (x)pX (x)dx X

R

f (x)PX (x) x

E(f (X)) =

P

E Ω





 

E(f (X)) =

 



f (X) f ≥0

f (x)PX (dx) f (X(ω))P(dω) =

Z Z

f : E 7→ R X : Ω 7→ E

X

 X



  WV

U





 TS



    



 











 (



  





%



  



3 26 / 7 F

'

'

 '

)

*

*

!

2 9: , 15 3 6/

7 A 2 B / 3/ 7

2 / 17 3 5 , : -, 2 9: / , B1 , 2

.

?

C

<5 3/ 15 , 6/ : * !

*  ! 

E(1) = 1,





 

 

%&

(

 $ "$

 







'

" !

 

 





E(aX + bY ) = aE(X) + bE(Y )

   





   















 

E

0 76

. 23 D

(X ≤ Y ) ⇒ (E(X) ≤ E(Y )) / -

X≥0 /3

3/ 7

-

/

B

<5

 

?

 !

*

E(X) ≥ 0

 



X, Y



M





G

J

 

N

I



K



K



O M M



H

M J K

I 



NG O I

G







& 









'





X

 X



  WV

U





 TS



    



 







J



I





 H

 M



K 



E(Xi ) = 0P(Xi = 0) + 1P(Xi = 1) = p.





G O





H

 G N



H M

J

  I  O 



G

I  I G 

K

 O 



   H J H

M

 M



  I

I



K N

G



M

J

N 

MN H

G 

 J  M

 

i=1

   

 





 





  





 M





MI

  

I

 H









( '





 

E(Xi ) = np =





 

k=0 k=0

 



E(Sn ) =

n X

. kCnk pk (1 − p)n−k kPSn (k) =

n X n X

S ∼ B(n, p), • S n = X1 + . . . + X n

Xi : Ω→{0, 1} i •

Ω = {0, 1}n . n

X

 X



  WV

U





 TS



    



 







)

*

 

N O

K 

JO

 G









I

O



G



K



I

 M H

M M

H M

J 

 

JO 

K K







M H

M





O 

K G 

 

O MI 

G



O M

M 

HG

N

J H

O

K

  

G





 

 OG

 G

  





 O







O J  

J

K







 H

 JO

 









O

I

K 





M  H

 JO

 





M



M

M 





O

I

 G

 G



I

 M H

 

c



'

!

I





J

 



b















%&

(

$ "$ "



 





( '





I

a

    





   





  





 



P

R







N

K



J M

H

J K





I









O







JO

J

M







M

H



K







O



G





O

J



k

 



N

N

X

 X



  WV

U





 TS



    



 





= −b + (a + b + c)P(N > k). k∗ = min{k : P(N > k) ≤ b/(a + b + c)}.





L 

O

E(Gk+1 ) − E(Gk ) = −bP(N ≤ k) + (a + c)P(N > k)



 



G





M





 K

  −b si N ≤ k, Gk+1 − Gk =  a + c si N > k













  aN − b(k − N ) = (a + b)N − bk si N ≤ k, Gk =  ak − c(N − k) = (a + c)k − cN si N ≥ k















 























Gk

X



X







WV

U



 

TS



   











E E



 

5

1 1 , 0 2

.

2 : 2: 5

1 B, 2 6 A .

,

'

)

*

4

E

1 , ? 2 / 6 5

. -3 2

2 / 2 9:

D

C

@

;









 

'

1 , ?

23

)

E





K 

JO  



K O M

G 



G





K

G

J  M

H

J



I



 M

J 

•V ar(aX + b) = a2 Var(X)



=





 

%&

(

$



"$ "#!



 , 15

(



= E(X 2 ) − [E(X)]2



 

   3 6/

•Var(X) = E(X 2 ) − 2E(XE(X)) + [E(X)]2



 



p σ(X) := Var(X)

   





   











 

Var(X) := E (X − E(X))







 



i 2

h

E(X) X •

E(X 2 ) < ∞

X

X X



  WV

U







 TS



    



 







M

H

H



J



 

O





K







G





(





 

















&

















(









%&

(

$

"$



' )



*

" !





( '





M



O

N

G

K

K



M

X



1 pX (x) = √ exp(−x2 /2). 2π 

M

J

 





N





I=

Z

pX (x)dx = 1.

R











I2 =

Z Z

M

JH

G



O







G

G





Z Z 1 pX (x)pX (y)dxdy = exp(−(x2 + y 2 )/2)dxdy 2π Z ∞ Z 2π 2 1 = e−r /2 rdrdθ = 1. 2π 0 0



M







( '





Var(X) = E(X 2 ) − E(X)2 = E(X) − E(X)2 = p(1 − p).











P(X = 1) = p = 1 − P(X = 0).



 











 





 















X

L

X

X







WV

U



 



TS



   



















    

 





 















 





 

1

X X



  WV

U







 TS



    



 



 









M

G

 J   J 

O



N

L



 

M



 O



K N

N

G





G



I



J

J

M



 

G



M



 

K



L



 JO

Y = µ + σX

   

 





 



 M

J M 





x2 pX (x)dx = 1.







M

J N



G

 Q

J

E(X 2 ) =

Z

 





 

J



I

K







 M

σ 2 . Y ∼ N (µ, σ) 



Q X X



  WV

U





 TS





K



O





 M











G G 

 

G



    L

µ

 



X ∼ N (0, 1) µ ∈ R, σ ∈ R+ •

xpX (x)dx = 0,

X ∼ N (0, 1) X

E(X) =

Z







)

*

J

M

H

J 

M

G I



N   

G 



N N

G



L







O

M





M

OG





O





 





&



JO















M H N 

MN  H G 

K

I 

G





J  N H

G G



 

L

E(Z) P (Z ≥ b) ≤ b

 

 





 M 



1Z≥b ≤ Z/b

   







 

'







"$



 



'

"#!

%&





(



M



  

 









 













$



  





 





b = a2 M



 G 

K 

J 



Z = (X − E(X))2

 



P (|X − E(X)| ≥ 10 σX ) ≤ 1%

b>0 Z

1 Var(X) 2 a ∀a > 0, P (|X − E(X)| ≥ a) ≤

X X



  WV

U







 TS



    



 





 

 





 















 



 









 



 





 





   

 I  

   G

K

 M

O 





 J

 I 



O

 M J

H  N  J

 I 



 H N



G

 

M  M H H

M H H



O

O 



K O 



H

M 

J M H

 M H

H

H

M

 



O 





K



O



L

Xi , = • P Xi ,

X, = • PX ,





X = (X1 , . . . , Xn ) : Ω 7→ E1 × . . . × En •

E i = R ni Xi : Ω 7→ Ei , i = 1, . . . , n

X



  WV

U





 TS



    



 







































J



G

K

G

MI



 *

!

PX (x1 , x2 , . . . , xn )

x2 ,...,xn M

 



O I

G

 *

 !



Z Z PX1 (A) = [ A

pX (x1 , . . . , xn )dx2 . . . dxn ]dx1 E2 ×...×En

  

O

pX1 (x1 ) =

Z

pX (x1 , . . . , xn )dx2 . . . dxn E2 ×...×En







PX1 (x1 ) =

X











 



























PXi (A) = PX (E1 × . . . × Ei−1 × A × Ei+1 × . . . × En ).

X



X









TS



X



X







WV

U







   













 



%&





K





O

J

M JH 



I

MI J H M

I

G









J

 I N   

I  H



Q



G

O





I





H

J

 

JM



O

K



O

 M H

M J

H  N 





O



K

I





I



J

M



M 



1 p(X,Y ) (x, y) = 1{x2 +y2 ≤1} π

 





 

*

H



)





 









( '



" !

"$

$



(

M



'



 

R





 

MJ



O

K



O

 M H

 

G

G













K







G



O



I



J

M H H

H H 





(R, Θ) X = Rcos(Θ), Y = R sin(Θ)

√ − 1−x2

p(X,Y ) (x, y)dy =





X

√ 1−x2

1[−1,1] (x) 2p dy = 1 − x2 1[−1,1] (x) π π pX (x) =

(X, Y ) =

Z Z

1

X

 X



  WV

U





 TS



    



 









M H H

H J H



K O 

  I

I









O

K



O

I

O

M H

M J

H  N 

J

 I 

G



M 

Y = ϕ(X)?

(









 







%















%&

(

 $



 



 







'

'

)



*

"#!

"$



X : Ω→Rd 3 2 1B 7 A 6 A 1 , ? 2 5 3 7 1 ?

pX (x)dx = 1. O

 

 





 





 













 



















 



5 3/ 26

2.

2. / 17 3 5 , : , 12 A 3 20 B

6 A

3 26

8 6/ 3 76 0 3 76 -

23

2 B / 3 20 / 9 -3 2

<2

-8 /

D

? 7 1 78 5 /

. 6 A





E 2 9: / , 3 26 5 1 /

.





5 /3 26

2.

. -3 2

7 1 :

pY (y) = pX (ϕ−1 (y))|Jac ϕ−1 (y)|1O0 (y)



  















 



 

∂ϕi )i,j ∂xj 

,

8 1 53

2

/6

6

3

( Jac ϕ =





Y = ϕ(X)

ϕ−1 ϕ ϕ ϕ : O 7→ O 0

O ⊂ Rd : pX Z

PX X •

X X



  WV

U





 TS



    



 







H

J M 

M J M



 

N

 

 

J

J

G



JO







R  >

 O M

I

O 



L





M

 M H

 

O

L

H

M

J

G

  



K









 I

L

 



O

pY (y) = pX (ϕ−1 )(y)|Jac ϕ−1 (y)|1O0 (y)





 



O K

K



P> H

 N

O0







J   O



G

K







G



O

J  MJ J

M



J

O









G





J



H

 J



O



   















 



 

G

O



O M

 J 





J H G



K



M 

 

G

O





K

O

H

M JH





1 Jac ϕ(ϕ−1 (y)) . 



&



 





ϕ ◦ ϕ−1 = Id ⇒ Jac ϕ−1 (y) =





h(y)pX (ϕ−1 (y))|Jac ϕ−1 (y)|dy =

Z

h(ϕ(x))pX (x)dx E[h(Y )] =

Z

h

X X



  WV

U





 TS



    



 



















%





(









%&

(



$

"$ '

' ) *

" !





( '



 

1 π 1{|u|≤1}



L



q(u) =



M

H H

H

H 

K

O





G







(R, Θ)



M



pX,Y (x, y) = q(x2 + y 2 )

N

G

K

K



G



M

(X, Y )



ϕ : R2 \ {x ≥ 0, y = 0} 7→]0, +∞[×]0, 2π[, (x, y) → (r, θ)   cos(θ) −r sin(θ) −1  , Jac(ϕ−1 )(r, θ) = r.  Dϕ (r, θ) = sin(θ) r cos(θ) M 

K

N

G





(R, Θ) : pR,Θ (r, θ) = rq(r 2 )1{r>0} × 1θ∈]0,2π[







O



L 



Θ

JO





MJ

O





K









M

H

H

M



J



M

N

G





R : pR (r) = 2πrq(r 2 )1{r>0}

















 





























•X = R cos(Θ), Y = R sin(Θ).



X

X







WV

U



 

TS



   









 



%&

(

 $

23

/ F

D

'

)

*

"$ "#!

 













= E(XY ) − E(X)E(Y ) .



  

 



   

cov(X, Y ) = E[(X −E(X))(Y −E(Y ))]



 

















 







I





J  N G



J H 

K 

JO  





K

N



 H

M

 G











O M M

J H

J G





G

N

N



 H

J 

H





L

1≤i<j≤n

i=1

i=1





 

Xi ) = Var(





• Var(X + Y ) = Var(X) + Var(Y ) + 2cov(X, Y )

cov(Xi , Xj ) Var(Xi ) + 2

X n X n X

Y X

E(Y 2 ) < ∞ E(X 2 )

X X



  WV

U







 TS



    



 



 

 



M J

 M

 







K

  G N 



L

M G

M G

 



O 

p(1 − p) Sn Var( ) = n n

  

G O 

K

N





H

JH

i=j



 

















M



M

 M 

 

MI

  

I

 H

 





( '





i=1

i 6= j   0 cov(Xi , Xj ) = E(Xi Xj ) − p2 =  p − p2





 

Var(Xi ) = np(1 − p) Var(Sn ) =





Xi ∈ {0, 1} =

n X

Xi . i=1

Sn =

Pn

X X



  WV

U







 TS



    



 



 







GI Q 







N

 Q 

K



 M 

M

H N 

N 

L

I O

K 



Sn − p| ≥ a) = 0. limn→∞ P(| n



  

 

1 Sn − p| ≥ a) ≤ p(1 − p) P(| n na2



 



















 







J

G

 G

O 

K



K

I









O



K

G



J

H M



M H H

M JH

M



 J  G

I 

G



L

X X



  WV

U







 TS



    



 







 





























 











E E



%&

(

$ "$





2 3/ . 3 76 -

23

,B

 2 A



'

)

*

"#!



   





 





 %



 %

/ -

'

P(X ∈ I, Y ∈ J) = P(X ∈ I)P(Y ∈ J). =



2 / 1 .

 -3  2 +

PX,Y (I × J) = PX (I)PY (J) <



23

-01 /

-. ,+

!

*

PX,Y (x, y) = PX (x)PY (y) < A 6/ 3 76 0 ,+

 ! 

*

pX,Y (x, y) = pX (x)pY (y).

 



 











 







  











Y X

X

  WV

U







 TS



    



 





 













 

 







'

)

*

 M





MI











G O





 J



I



N

G





K







 H

 M

H

J



 



 

G



K



N

MK 

G

O

H

M

J

G

  

 G



P(Xi = ωi ) P(X1 = ω1 , . . . , Xn = ωn ) =

Y





%&

(

 $ "$ " !





( '





(1 − p) Ω = {0, 1} , P(ω) = p

 

 

X1 , . . . , X n

ωi P n− ωi P n







Xi (ω) = ωi

n

X

  WV

U







 TS



    



 









 

G K

 G 

O





 

  H











J I G



K



N MK 

G













 

 H









J



I



G

N

G

O



G

K





O

H

M

JH

 O

OK

I G

JO

H M G 













2

1 1]0,2π] . pR (r) = 2πrq(r )1{r>0} , pΘ (θ) = 2π



G 

O



M

H

J

 

MJ

K



O

 M H

M



pR,Θ (r, θ) = rq(r 2 )1{r>0} × 1θ∈]0,2π[









( '





1 pX,Y (x, y) = 1{x2 +y2 ≤1} π





 











 

 





 











2p pX (x) = pY (x) = 1 − x2 1[−1,1] (x) π R, Θ M

Y {x2 + y 2 ≤ 1} X M = (X, Y )

X

  WV

U







 TS



    



 







*

2

1/

:

A

0/

3

1 D

, ?

6 

 





&

E(f (X)g(Y )) =

Z Z

f (x)g(y)PX,Y (dxdy) 

PX,Y (A × B) = PX (A)PY (B) Z Z Z Z f (x)g(y)PX (dx)PY (dy) f (x)g(y)PX,Y (dxdy) = 

O

K





I

K



N

MK



G









 J 

M



=

Z

f (x)PX (dx)

Z

g(y)PY (dy).



?

) E



cov(X, Y ) = 0



-

7

1

:

F

'

, D

-

6

,

.

26

5

.

6/

3

76

-

23

/



'

E[f (X)g(Y )] = E[f (X)]E[g(Y )]





%&

(

$

"$











"#!









Y











2

3

















 











∀f, g ≥ 0,

X

X





WV

U



 



TS



   









 



 





 



















 



M

G  N

 G

JM

K







 M



 M K

 G



K



N

MK 

K



 

M

 G  





N

G

K

 M





H

J M 

 M

G

 

N

K M





L







M M

 

 J 





  O

Q



 

G 

I

 M





J  N 

H

O

N



 J 



J





O M M

M  

J O 

L





Xn ∼ m







  





 

   K





J 

G G

 JO



L

n

X1 +X2 + . . . Xn n X n :=

 





m := E(X1 )

•X1 , X2 . . .

X

  WV

U





 TS



    



 











, * E

 ( 

 



 











2 3 6 -3, 76 0 :, 2 1B

'



=



2 / 1 .

-3 2 +

D



( 









 



 %



 

&

*

!



O

M 













G Q 







N

 



 Q

M 

G

J



Var(Xn ) σ2 P [|X n − m| > ε] ≤ = 2 −→ 0 2  nε



 



%

)

 

  



2 3/ -

i≤n

 











%







'



 

(  





%&

(

$ "$

 







'

"#!



 



A

X 1 1 Var(X n ) = 2 Var( Xi ) = σ 2 . n n







  





 

σ 2 = Var(X1 ) < ∞

 



  ∀ > 0, limn→∞ P |Xn − m| > ε = 0. E(X12 ) < ∞

m = E(X1 ) (X n )

X

  WV

U





 TS



    



 















 

  





 



 













%



% 

 

2 3/ A

,

'

 )

 

 





%&

(

 $ "$









*

" !



 

E







  

E E













&







 



2 3 6 -3, 76 0 :, 2 1B

,B 2

.



'



=



2 / 1 .

-3 2 +

D



%&

(

$ "$

'

)

*

" !





( '





R

P



N



 H

N





N 

G





G



H

J

 

I

 M

N



J 



 

H

J



G

  G N 





 

K



N

G O

MK  M



G 

G

J M

H



I  M

N









J 







I

 

N





M



HG

J

M





K M

 M

G 

N 

J 







K



O





M

K M



  G





G

G

O

H

M

J

H



  N  N  O

 JO

Q



K 

 

I



M

 



O



H N M

J

K



K





O

O M

 H

H H M



N







J





G 





N 





O M

J

J N



O



MI



M



 









J H



J 

M

M

A : X n →P(A).

Xn = 1{ωn ∈A} E(Xn ) = P(A)

 



ω1 , ω 2 , . . . •

A ⊂ Ω,

ω∈Ω •

m = E(X1 ) (X n )

  P limn→+∞ Xn = m = 1



X

  WV

U





 TS



    



 



 















 









 

 

J











%







&





 

*

!

4

E[(X n ) ] = n

X

−4



OG



G

G





O







JO





(





E(Xi4 ) < ∞

E(Xi ) = 0

E[(Xi1 . . . Xi4 ]

i1 ,...,i4

=n

−4

 

X

E(Xi4 )

+

i

E

E(Xi Xj3 )

+

i6=j

=n "

X

X

4 Xn

n

#

−4

 

X

E(Xi2 Xj2 )

+

i6=j

X

E(Xi2 )

+

i

<∞



X i6=j

X n

4 Xn

X

i1 6=i2 6=i3 6=i4





E[(Xi1 . . . Xi4 ]

E(Xi2 Xj2 ) = O(1/n2 )

< ∞ p.s.



X n → 0 p.s.



X





WV

U



 

TS



   











Related Documents

A Lea To Ire 2
November 2019 21
A Lea To Ire 4
November 2019 17
A Lea To Ire 5
November 2019 16
A Lea To Ire 3
November 2019 16
A Lea To Ire 1
November 2019 18
A Lea To Ire 67
November 2019 6