. 2
-3
56
78
1
9,
9:
<#; 2
%&
(
$ "$
23
-01 /
-. ,+
'
)
4
* ! *
1 , ? 2 / 6 5
. -3 2
2
@
E
/ -
7 A 2 3 26
2 B1 76 0 3 26
8 7:A 9 , -3 2 2 / 5 1-
:, / -
D
C
5 /3 26
2. 6 A ,
/ F
D
4
< ;
A 6/ 3 76 0 ,+ * !
R
2. 0 6 5, 1 ? 2 = : >
X≥0
"#!
x∈E
E
E
/ -
7 A 2 9: , 15 3 6/ -3 2
/ -
D
C
H
K
N
O
O
R >
P
M
J
K
J
I
H
G
Q
L
X E(X)
E(X) :=
x pX (x)dx E(X) :=
Z
x pX (x) X
pX X E=R
X≥0 xp(x)
X
• X : Ω→E ⊂ R
X
WV
U
TS
( '
O
O H
J
L
H M
J
I O
G
I I G
K
G
M
M
J
MJ
G
O
JO
2
a
a+b = 2 1 x dx = xp(x)dx = x b − a 2(b − a) [a,b]
b E(X) =
k≥1
kp(1 − p)k−1 = 1/p E(T ) =
Z
Z
[a, b] X •
T •
X
P •E(1A ) = 0 × P(1A = 0) + 1P(1A = 1) = P(A) E
X
WV
U
TS
M
O
H NG M
J
I G
H
J
G
I
O M
M H
(
(
2
.
2 : 2:
, 6
'
? ?
Ω
2 9: , 15 3 6/ -3 2
C
(i.e E(|X|) < ∞). 7 A
X / -
X≥0
X(ω)P(dω) E(X) =
Z
X
•X : Ω 7→ R
•(Ω, A, P)
X
WV
U
TS
M
M H H
J
J
O
K
O
N
L
E E
23
,B 2 6 A
26 / 7 F *
L
3
!
I
N
O
K
O M
M
H
J
E
7 1 :
2 9: , -1 2A
D
;
8 4
E
2 1/ : /0A 3
D
1 , ? 6
2 9: , 15 3 /6
7 A
/ -
C
<
23
-01 /
-. ,+ * !
< A 6/ 3 76 0 ,+
!
*
E(f (X)) =
J
f (x)pX (x)dx X
R
f (x)PX (x) x
E(f (X)) =
P
E Ω
E(f (X)) =
f (X) f ≥0
f (x)PX (dx) f (X(ω))P(dω) =
Z Z
f : E 7→ R X : Ω 7→ E
X
X
WV
U
TS
(
%
3 26 / 7 F
'
'
'
)
*
*
!
2 9: , 15 3 6/
7 A 2 B / 3/ 7
2 / 17 3 5 , : -, 2 9: / , B1 , 2
.
?
C
<5 3/ 15 , 6/ : * !
* !
E(1) = 1,
%&
(
$ "$
'
" !
E(aX + bY ) = aE(X) + bE(Y )
E
0 76
. 23 D
(X ≤ Y ) ⇒ (E(X) ≤ E(Y )) / -
X≥0 /3
3/ 7
-
/
B
<5
?
!
*
E(X) ≥ 0
X, Y
M
G
J
N
I
K
K
O M M
H
M J K
I
NG O I
G
&
'
X
X
WV
U
TS
J
I
H
M
K
E(Xi ) = 0P(Xi = 0) + 1P(Xi = 1) = p.
G O
H
G N
H M
J
I O
G
I I G
K
O
H J H
M
M
I
I
K N
G
M
J
N
MN H
G
J M
i=1
M
MI
I
H
( '
E(Xi ) = np =
k=0 k=0
E(Sn ) =
n X
. kCnk pk (1 − p)n−k kPSn (k) =
n X n X
S ∼ B(n, p), • S n = X1 + . . . + X n
Xi : Ω→{0, 1} i •
Ω = {0, 1}n . n
X
X
WV
U
TS
)
*
N O
K
JO
G
I
O
G
K
I
M H
M M
H M
J
JO
K K
M H
M
O
K G
O MI
G
O M
M
HG
N
J H
O
K
G
OG
G
O
O J
J
K
H
JO
O
I
K
M H
JO
M
M
M
O
I
G
G
I
M H
c
'
!
I
J
b
%&
(
$ "$ "
( '
I
a
P
R
N
K
J M
H
J K
I
O
JO
J
M
M
H
K
O
G
O
J
k
N
N
X
X
WV
U
TS
= −b + (a + b + c)P(N > k). k∗ = min{k : P(N > k) ≤ b/(a + b + c)}.
L
O
E(Gk+1 ) − E(Gk ) = −bP(N ≤ k) + (a + c)P(N > k)
G
M
K
−b si N ≤ k, Gk+1 − Gk = a + c si N > k
aN − b(k − N ) = (a + b)N − bk si N ≤ k, Gk = ak − c(N − k) = (a + c)k − cN si N ≥ k
Gk
X
X
WV
U
TS
E E
5
1 1 , 0 2
.
2 : 2: 5
1 B, 2 6 A .
,
'
)
*
4
E
1 , ? 2 / 6 5
. -3 2
2 / 2 9:
D
C
@
;
'
1 , ?
23
)
E
K
JO
K O M
G
G
K
G
J M
H
J
I
M
J
•V ar(aX + b) = a2 Var(X)
=
%&
(
$
"$ "#!
, 15
(
= E(X 2 ) − [E(X)]2
3 6/
•Var(X) = E(X 2 ) − 2E(XE(X)) + [E(X)]2
p σ(X) := Var(X)
Var(X) := E (X − E(X))
i 2
h
E(X) X •
E(X 2 ) < ∞
X
X X
WV
U
TS
M
H
H
J
O
K
G
(
&
(
%&
(
$
"$
' )
*
" !
( '
M
O
N
G
K
K
M
X
1 pX (x) = √ exp(−x2 /2). 2π
M
J
N
I=
Z
pX (x)dx = 1.
R
I2 =
Z Z
M
JH
G
O
G
G
Z Z 1 pX (x)pX (y)dxdy = exp(−(x2 + y 2 )/2)dxdy 2π Z ∞ Z 2π 2 1 = e−r /2 rdrdθ = 1. 2π 0 0
M
( '
Var(X) = E(X 2 ) − E(X)2 = E(X) − E(X)2 = p(1 − p).
P(X = 1) = p = 1 − P(X = 0).
X
L
X
X
WV
U
TS
1
X X
WV
U
TS
M
G
J J
O
N
L
M
O
K N
N
G
G
I
J
J
M
G
M
K
L
JO
Y = µ + σX
M
J M
x2 pX (x)dx = 1.
M
J N
G
Q
J
E(X 2 ) =
Z
J
I
K
M
σ 2 . Y ∼ N (µ, σ)
Q X X
WV
U
TS
K
O
M
G G
G
L
µ
X ∼ N (0, 1) µ ∈ R, σ ∈ R+ •
xpX (x)dx = 0,
X ∼ N (0, 1) X
E(X) =
Z
)
*
J
M
H
J
M
G I
N
G
N N
G
L
O
M
M
OG
O
&
JO
M H N
MN H G
K
I
G
J N H
G G
L
E(Z) P (Z ≥ b) ≤ b
M
1Z≥b ≤ Z/b
'
"$
'
"#!
%&
(
M
$
b = a2 M
G
K
J
Z = (X − E(X))2
P (|X − E(X)| ≥ 10 σX ) ≤ 1%
b>0 Z
1 Var(X) 2 a ∀a > 0, P (|X − E(X)| ≥ a) ≤
X X
WV
U
TS
I
G
K
M
O
J
I
O
M J
H N J
I
H N
G
M M H H
M H H
O
O
K O
H
M
J M H
M H
H
H
M
O
K
O
L
Xi , = • P Xi ,
X, = • PX ,
X = (X1 , . . . , Xn ) : Ω 7→ E1 × . . . × En •
E i = R ni Xi : Ω 7→ Ei , i = 1, . . . , n
X
WV
U
TS
J
G
K
G
MI
*
!
PX (x1 , x2 , . . . , xn )
x2 ,...,xn M
O I
G
*
!
Z Z PX1 (A) = [ A
pX (x1 , . . . , xn )dx2 . . . dxn ]dx1 E2 ×...×En
O
pX1 (x1 ) =
Z
pX (x1 , . . . , xn )dx2 . . . dxn E2 ×...×En
PX1 (x1 ) =
X
PXi (A) = PX (E1 × . . . × Ei−1 × A × Ei+1 × . . . × En ).
X
X
TS
X
X
WV
U
%&
K
O
J
M JH
I
MI J H M
I
G
J
I N
I H
Q
G
O
I
H
J
JM
O
K
O
M H
M J
H N
O
K
I
I
J
M
M
1 p(X,Y ) (x, y) = 1{x2 +y2 ≤1} π
*
H
)
( '
" !
"$
$
(
M
'
R
MJ
O
K
O
M H
G
G
K
G
O
I
J
M H H
H H
(R, Θ) X = Rcos(Θ), Y = R sin(Θ)
√ − 1−x2
p(X,Y ) (x, y)dy =
X
√ 1−x2
1[−1,1] (x) 2p dy = 1 − x2 1[−1,1] (x) π π pX (x) =
(X, Y ) =
Z Z
1
X
X
WV
U
TS
M H H
H J H
K O
I
I
O
K
O
I
O
M H
M J
H N
J
I
G
M
Y = ϕ(X)?
(
%
%&
(
$
'
'
)
*
"#!
"$
X : Ω→Rd 3 2 1B 7 A 6 A 1 , ? 2 5 3 7 1 ?
pX (x)dx = 1. O
5 3/ 26
2.
2. / 17 3 5 , : , 12 A 3 20 B
6 A
3 26
8 6/ 3 76 0 3 76 -
23
2 B / 3 20 / 9 -3 2
<2
-8 /
D
? 7 1 78 5 /
. 6 A
E 2 9: / , 3 26 5 1 /
.
5 /3 26
2.
. -3 2
7 1 :
pY (y) = pX (ϕ−1 (y))|Jac ϕ−1 (y)|1O0 (y)
∂ϕi )i,j ∂xj
,
8 1 53
2
/6
6
3
( Jac ϕ =
Y = ϕ(X)
ϕ−1 ϕ ϕ ϕ : O 7→ O 0
O ⊂ Rd : pX Z
PX X •
X X
WV
U
TS
H
J M
M J M
N
J
J
G
JO
R >
O M
I
O
L
M
M H
O
L
H
M
J
G
K
I
L
O
pY (y) = pX (ϕ−1 )(y)|Jac ϕ−1 (y)|1O0 (y)
O K
K
P> H
N
O0
J O
G
K
G
O
J MJ J
M
J
O
G
J
H
J
O
G
O
O M
J
J H G
K
M
G
O
K
O
H
M JH
1 Jac ϕ(ϕ−1 (y)) .
&
ϕ ◦ ϕ−1 = Id ⇒ Jac ϕ−1 (y) =
h(y)pX (ϕ−1 (y))|Jac ϕ−1 (y)|dy =
Z
h(ϕ(x))pX (x)dx E[h(Y )] =
Z
h
X X
WV
U
TS
%
(
%&
(
$
"$ '
' ) *
" !
( '
1 π 1{|u|≤1}
L
q(u) =
M
H H
H
H
K
O
G
(R, Θ)
M
pX,Y (x, y) = q(x2 + y 2 )
N
G
K
K
G
M
(X, Y )
ϕ : R2 \ {x ≥ 0, y = 0} 7→]0, +∞[×]0, 2π[, (x, y) → (r, θ) cos(θ) −r sin(θ) −1 , Jac(ϕ−1 )(r, θ) = r. Dϕ (r, θ) = sin(θ) r cos(θ) M
K
N
G
(R, Θ) : pR,Θ (r, θ) = rq(r 2 )1{r>0} × 1θ∈]0,2π[
O
L
Θ
JO
MJ
O
K
M
H
H
M
J
M
N
G
R : pR (r) = 2πrq(r 2 )1{r>0}
•
•X = R cos(Θ), Y = R sin(Θ).
X
X
WV
U
TS
%&
(
$
23
/ F
D
'
)
*
"$ "#!
= E(XY ) − E(X)E(Y ) .
cov(X, Y ) = E[(X −E(X))(Y −E(Y ))]
I
J N G
J H
K
JO
K
N
H
M
G
O M M
J H
J G
G
N
N
H
J
H
L
1≤i<j≤n
i=1
i=1
Xi ) = Var(
• Var(X + Y ) = Var(X) + Var(Y ) + 2cov(X, Y )
cov(Xi , Xj ) Var(Xi ) + 2
X n X n X
Y X
E(Y 2 ) < ∞ E(X 2 )
X X
WV
U
TS
M J
M
K
G N
L
M G
M G
O
p(1 − p) Sn Var( ) = n n
G O
K
N
H
JH
i=j
M
M
M
MI
I
H
( '
i=1
i 6= j 0 cov(Xi , Xj ) = E(Xi Xj ) − p2 = p − p2
Var(Xi ) = np(1 − p) Var(Sn ) =
Xi ∈ {0, 1} =
n X
Xi . i=1
Sn =
Pn
X X
WV
U
TS
GI Q
N
Q
K
M
M
H N
N
L
I O
K
Sn − p| ≥ a) = 0. limn→∞ P(| n
1 Sn − p| ≥ a) ≤ p(1 − p) P(| n na2
⇒
J
G
G
O
K
K
I
O
K
G
J
H M
M H H
M JH
M
J G
I
G
L
X X
WV
U
TS
E E
%&
(
$ "$
2 3/ . 3 76 -
23
,B
2 A
'
)
*
"#!
%
%
/ -
'
P(X ∈ I, Y ∈ J) = P(X ∈ I)P(Y ∈ J). =
2 / 1 .
-3 2 +
PX,Y (I × J) = PX (I)PY (J) <
23
-01 /
-. ,+
!
*
PX,Y (x, y) = PX (x)PY (y) < A 6/ 3 76 0 ,+
!
*
pX,Y (x, y) = pX (x)pY (y).
Y X
X
WV
U
TS
'
)
*
M
MI
G O
J
I
N
G
K
H
M
H
J
G
K
N
MK
G
O
H
M
J
G
G
P(Xi = ωi ) P(X1 = ω1 , . . . , Xn = ωn ) =
Y
%&
(
$ "$ " !
( '
(1 − p) Ω = {0, 1} , P(ω) = p
X1 , . . . , X n
ωi P n− ωi P n
Xi (ω) = ωi
n
X
WV
U
TS
G K
G
O
H
J I G
K
N MK
G
H
J
I
G
N
G
O
G
K
O
H
M
JH
O
OK
I G
JO
H M G
2
1 1]0,2π] . pR (r) = 2πrq(r )1{r>0} , pΘ (θ) = 2π
G
O
M
H
J
MJ
K
O
M H
M
pR,Θ (r, θ) = rq(r 2 )1{r>0} × 1θ∈]0,2π[
( '
1 pX,Y (x, y) = 1{x2 +y2 ≤1} π
2p pX (x) = pY (x) = 1 − x2 1[−1,1] (x) π R, Θ M
Y {x2 + y 2 ≤ 1} X M = (X, Y )
X
WV
U
TS
*
2
1/
:
A
0/
3
1 D
, ?
6
&
E(f (X)g(Y )) =
Z Z
f (x)g(y)PX,Y (dxdy)
PX,Y (A × B) = PX (A)PY (B) Z Z Z Z f (x)g(y)PX (dx)PY (dy) f (x)g(y)PX,Y (dxdy) =
O
K
I
K
N
MK
G
J
M
=
Z
f (x)PX (dx)
Z
g(y)PY (dy).
?
) E
cov(X, Y ) = 0
-
7
1
:
F
'
, D
-
6
,
.
26
5
.
6/
3
76
-
23
/
'
E[f (X)g(Y )] = E[f (X)]E[g(Y )]
%&
(
$
"$
"#!
Y
2
3
∀f, g ≥ 0,
X
X
WV
U
TS
M
G N
G
JM
K
M
M K
G
K
N
MK
K
M
G
N
G
K
M
H
J M
M
G
N
K M
L
M M
J
O
Q
G
I
M
J N
H
O
N
J
J
O M M
M
J O
L
Xn ∼ m
K
J
G G
JO
L
n
X1 +X2 + . . . Xn n X n :=
•
m := E(X1 )
•X1 , X2 . . .
X
WV
U
TS
, * E
(
2 3 6 -3, 76 0 :, 2 1B
'
=
2 / 1 .
-3 2 +
D
(
%
&
*
!
O
M
G Q
N
Q
M
G
J
Var(Xn ) σ2 P [|X n − m| > ε] ≤ = 2 −→ 0 2 nε
%
)
2 3/ -
i≤n
%
'
(
%&
(
$ "$
'
"#!
A
X 1 1 Var(X n ) = 2 Var( Xi ) = σ 2 . n n
σ 2 = Var(X1 ) < ∞
∀ > 0, limn→∞ P |Xn − m| > ε = 0. E(X12 ) < ∞
m = E(X1 ) (X n )
X
WV
U
TS
%
%
2 3/ A
,
'
)
%&
(
$ "$
*
" !
E
E E
&
2 3 6 -3, 76 0 :, 2 1B
,B 2
.
'
=
2 / 1 .
-3 2 +
D
%&
(
$ "$
'
)
*
" !
( '
R
P
N
H
N
N
G
G
H
J
I
M
N
J
H
J
G
G N
K
N
G O
MK M
G
G
J M
H
I M
N
J
I
N
M
HG
J
M
K M
M
G
N
J
K
O
M
K M
G
G
G
O
H
M
J
H
N N O
JO
Q
K
I
M
O
H N M
J
K
K
O
O M
H
H H M
N
J
G
N
O M
J
J N
O
MI
M
J H
J
M
M
A : X n →P(A).
Xn = 1{ωn ∈A} E(Xn ) = P(A)
ω1 , ω 2 , . . . •
A ⊂ Ω,
ω∈Ω •
m = E(X1 ) (X n )
P limn→+∞ Xn = m = 1
X
WV
U
TS
J
%
&
*
!
4
E[(X n ) ] = n
X
−4
OG
G
G
O
JO
(
E(Xi4 ) < ∞
E(Xi ) = 0
E[(Xi1 . . . Xi4 ]
i1 ,...,i4
=n
−4
X
E(Xi4 )
+
i
E
E(Xi Xj3 )
+
i6=j
=n "
X
X
4 Xn
n
#
−4
X
E(Xi2 Xj2 )
+
i6=j
X
E(Xi2 )
+
i
<∞
⇒
X i6=j
X n
4 Xn
X
i1 6=i2 6=i3 6=i4
E[(Xi1 . . . Xi4 ]
E(Xi2 Xj2 ) = O(1/n2 )
< ∞ p.s.
⇒
X n → 0 p.s.
X
WV
U
TS