8. Esfuerzos En Pavimentos Flexibles I.pdf

  • Uploaded by: Andres F. Valencia
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 8. Esfuerzos En Pavimentos Flexibles I.pdf as PDF for free.

More details

  • Words: 1,386
  • Pages: 61
Curso De Pavimentos ESFUERZOS EN PAVIMENTOS FLEXIBLES

ESFUERZOS EN PAVIMENTOS Conceptos Generales 

Respuesta de un pavimento flexible ante las cargas del tránsito Desde los años 60, el método empírico – analítico ha ido

ganando popularidad entre los ingenieros de pavimentos Este método emplea propiedades físicas fundamentales y un modelo teórico para predecir las respuestas del pavimento (esfuerzos, deformaciones y deflexiones) ante las cargas del tránsito Aunque las respuestas de los materiales difieran de las asunciones de la teoría, el conocimiento de ésta es indispensable para reconocer los factores fundamentales en los cuales se basan los diseños de pavimentos

ESFUERZOS EN PAVIMENTOS Conceptos Generales 3



La función estructural del pavimento es disminuir y distribuir los esfuerzos generados por las cargas que aplican los vehículos.

ESFUERZOS EN PAVIMENTOS Conceptos Generales 4

las deformaciones unitarias son pequeñas y en gran parte elásticas o recuperables. La recuperación no es inmediata y se requiere que transcurra un cierto tiempo para que ocurra totalmente, lo cual puede originar un estado o condición elasto-plástica generadora de un componente acumulable el cual puede conducir a un nivel de servicio inadecuado.

ESFUERZOS EN PAVIMENTOS Conceptos Generales

Evolución de la teoría multicapa 

UNA CAPA. Boussinesq 1885



DOS CAPAS.



TRES CAPAS (Carga circular)

Cálculo de esfuerzos, deformaciones y desplazamientos en función, de z/a y r/a (Burmister, 1943.).

Expresiones analíticas para cálculo de esfuerzos y desplazamientos Burmister, 1945 Tablas para determinar esfuerzos normales y radiales en la intersección del eje de carga con las interfaces (Acum y Fox, 1951) Soluciones gráficas para el cálculo de los esfuerzos verticales Peattie, 1962 

n CAPAS (Carga circular) Huang, 1967

ESFUERZOS EN PAVIMENTOS Conceptos Generales

ESFUERZOS EN PAVIMENTOS Conceptos Generales 7

Capa

Espesor



h1 1

h2

H1

2

H2

3

H3

4

Características del material

Capa asfáltica Єr1



E1 μ1 1 E1, E2 μ2

Capa granular

E2, 2 E3 μ3

Єz3

subrasante

E3, 3 E4, 4

ESFUERZOS EN PAVIMENTOS Conceptos Generales 8

RELACION DE POISSON DE MATERIALES PARA PAVIMENTOS

ESFUERZOS EN PAVIMENTOS Conceptos Generales





La presión ejercida por un neumático (qo) es del orden de 0.2 a 0.7 MPa, Existen modelos estructurales que simulan este comportamiento

ESFUERZOS EN PAVIMENTOS Conceptos Generales

ESFUERZOS EN PAVIMENTOS Conceptos Generales

ESFUERZOS EN PAVIMENTOS Conceptos Generales

ESFUERZOS EN PAVIMENTOS Conceptos Generales

ESFUERZOS EN PAVIMENTOS Conceptos Generales

ESFUERZOS EN PAVIMENTOS Conceptos Generales 

Distribución de la carga por rueda

Cuando una carga se aplica sobre un área circular, los valores críticos de esfuerzo, deformación y deflexión ocurren en el eje de simetría bajo el centro del área Circular. La carga aplicada a un pavimento por un neumático es similar a una placa flexible con radio a y presión de contacto uniforme q.

ESFUERZOS EN PAVIMENTOS Conceptos Generales

ESFUERZOS EN PAVIMENTOS Conceptos Generales

ESFUERZOS EN PAVIMENTOS Conceptos Generales 

Calcular el valor de a (radio del área cargada) si la presión de inflado es de 5.6 kg/cm2

8.2 T

ESFUERZOS EN PAVIMENTOS Conceptos Generales 

Calcular el valor de a (radio del área cargada) para una llanta del eje tridem doble, si la presión de inflado es de 5.6 kg/cm2. La carga máxima legal del eje es de 23 tn.

ESFUERZOS EN PAVIMENTOS 20

HIPOTESIS SIMPLIFICADORAS DE ANALISIS 



Los

materiales

de

las

capas

del

pavimento

son

homogéneos.

Las capas son de un espesor finito, con excepción de la capa inferior del sistema que tiene un espesor infinito.



Los materiales que forman el pavimento y la subrasante son isótropicos.



Se desarrolla fricción total en las interfases.



No hay esfuerzos cortantes en la superficie.



Las soluciones de los esfuerzos y deformaciones se caracterizan por E y 

ESFUERZOS EN PAVIMENTOS Conceptos Generales 

Limitaciones

 Los materiales de los pavimentos sólo responden linealmente en los bajos rangos de esfuerzos  La respuesta de los materiales no es no – viscosa. Las mezclas asfálticas son materiales visco-elásticos  No todas las deformaciones son recuperables. Los materiales de los pavimentos requieren tiempo para recuperar totalmente las deformaciones  Algunas deformaciones plásticas se van acumulando tras la aplicación repetida de cargas

ESFUERZOS EN PAVIMENTOS Conceptos Generales

µ

ESFUERZOS EN PAVIMENTOS Conceptos Generales La aplicación de una carga circular uniforme genera esfuerzos (normales y tangenciales) en el pavimento.

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

µ

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

Solución de Boussinesq para el cálculo de esfuerzos verticales

σz

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

Represente gráficamente la variación de la deformación y el esfuerzo vertical con la profundidad

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 

Esfuerzos bajo el centro de una placa flexible

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 

Deflexiones bajo el centro de una carga circular

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

Ejemplo Determinar la deflexión en la superficie (z = 0) y el esfuerzo vertical a 0.30 metros bajo el centro de una carga circular, de acuerdo con la siguiente información: —Magnitud de la carga = 40,000 N —Radio de la placa = 0.15 m — µ = 0.5 — E = 4*107 N/m2

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 48

TEORIA BICAPA DE BURMISTER 

La primera solución para un sistema elástico multicapa generalizado fue presentado por Burmister (1945 – 1956)

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 49

TEORIA BICAPA DE BURMISTER 

De esta teoría la aplicación más usada es el cálculo de la deflexión en la superficie, es decir, la deflexión total del sistema. El sistema está constituido por dos capas: La superior de espesor finito h1, módulo de elasticidad E1 y una subyacente de espesor semi-infinito y módulo de elasticidad E2. Para el caso de los pavimentos, la capa 1 representaría la estructura del pavimento.

e=30cm

e=α

E1=2000 k/cm2

μ=0.50

CBR=7% E2=400 k/cm2

μ=0.50

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 

CURVAS DE INFLUENCIA DE ESFUERZOS EN SISTEMAS DE DOS CAPAS (D. M. BURMISTER)

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 

CURVAS DE INFLUENCIA DE ESFUERZOS EN SISTEMAS DE DOS CAPAS (D. M. BURMISTER)

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 54

DEFORMACION TOTAL

Si la carga se aplica mediante una llanta o una placa rígida y para  de 0.5

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos DEFORMACION TOTAL DEL PAVIMENTO Y EN LA SUBRASANTE

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

COEFICIENTE DE DEFORMACION Fw

56

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 57

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 58

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 59

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 60

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 62

DEFLEXION VERTICAL EN LA INTERFASE DE UN SISTEMA DE DOS CAPAS

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos Ejemplo

Calcular la deflexión superficial y en la interfaz de las dos capas, bajo el centro de una llanta de impronta circular, de acuerdo con los siguientes datos: — Radio huella = 0.15 metros — Presión de contacto = 5.6*105 N/m2 — Espesor capa superior (h1) = 0.30 metros — Módulo capa superior (E1 ) = 3*108 N/m2 —Módulo capa inferior( E2 ) = 6*107 N/m2

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 

Solución

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 65

TEORIA TRICAPA

1 2

3

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 

Sistema de tres capas o tricapa

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 

Tablas de Jones

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos GRAFICAS DE PEATTIE Las gráficas de Peattie suministran valores de factores de esfuerzos (ZZ1 y ZZ2), con los cuales se calculan los esfuerzos verticales: sz1 = q*(ZZ1) sz2 = q*(ZZ2)

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 

Sistema Multicapa

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos

Ejemplo: Calcular los esfuerzos verticales (sz1, sz2 ) para una estructura de tres capas, de las siguientes características: —h1 = 0.075 m —h2 = 0.30 m —E1 = 4*109 N/m2 —E2 =2 *108 N/m2 —E3 = 1*108 N/m2 —Presión de contacto =540 kPa —Radio área cargada = 0.15 metros

ESFUERZOS EN PAVIMENTOS Sistemas multicapas elásticos 73

8.2 T

Y

Y

Y

16.20cms

X

32.40cms

X

16.20cms

Related Documents


More Documents from "John Hower Mamani Ayque"