PHY 5347 Homework Set 2 Solutions – Kimel 1. 8.5 a)
R
L For the TM modes, we saw in class the resonance frequencies are TM:
ω mnp =
1 μ
x 2mn p2π2 + R2 L2
p = 0, 1, 2, . . . . m = 0, 1, 2, . . . . n = 1, 2, 3, . . . .
TE:
ω ′mnp =
1 μ
p2π2 x ′2 mn + L2 R2
p = 1, 2, 3, . . . . m = 0, 1, 2, . . . . n = 1, 2, 3, . . . .
Thus ω mnp 1 μ
ω ′mnp 1 μ
=
x 2mn p2π2 + 2 R L2
=
x ′2 p2π2 mn + R2 L2
The lowest four frequencies are (in these units) ω 010 = 2. 405 ω 110 = 3. 832 ω ′111 =
1. 841 2 + π 2
R L
2
ω ′211 =
3. 054 2 + π 2
R L
2
2. 405, 3. 832, 1. 841 2 + π 2 x 2 , 3. 054 2 + π 2 x 2
10 8 6 4 2
0
0.2
0.4
0.6
0.8
1 x
1.2
1.4
1.6
1.8
2
where x = R/L. The answer is ”No.” ω ′111 and ω 010 cross when 1. 841 2 + π 2 x 2 = 2. 405 or x = 0. 492 58. For frequencies smaller than this cross over frequency, ω ′111 is lowest, whereas for larger frequencies, ω 010 is lowest.