744

  • Uploaded by: Silviu
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 744 as PDF for free.

More details

  • Words: 613
  • Pages: 3
Triangle Geometry Hojoo Lee In this short note, we give some well-known formulae in Triangle Geomtry : 1. Law of Sines

b c a = = = 2R sinA sinB sinC

2. Law of Cosines a = bcosC + ccosB b2 + c2 − a2 cosA = 2bc

3. Area S, semiperimeter s, x = s − a, y = s − b, z = s − c p S = s(s − a)(s − b)(s − c) p = xyz(x + y + z) s X X 1 a4 a2 b2 − 2 = 4 cyclic cyclic = = = = = 4. cos

A , 2

cos

sin

A = 2

A , 2

r

tan

1 1 1 bcsinA = casinB = absinC 2 2 2 2 2R sinAsinBsinC rs = (s − a)rA = (s − b)rB = (s − c)rC √ rrA rB rC abc 4R

A 2

A s(s − a) , sin = bc 2

r

s A (s − b)(s − c) , tan = bc 2

r (s − b)(s − c) = s(s − a) s−a

5. R, r, rA , rB , rC 1 1 1 1 = + + r rA rB rC xyz (x + y)2 (y + z)2 (z + x)2 r2 = , R2 = x+y+z 16xyz(x + y + z) xyz A B C r = , r = 4Rsin sin sin R 2(x + y)(y + z)(z + x) 2 2 2 r abc (x + y)(y + z)(z + x) 1 + = cosA + cosB + cosC, Rr = = R 4s 2(x + y + z) 4R + r = rA + rB + rC ,

6. O(circumcenter), G(centroid), H(orthocenter), I(incenter) ~ = 3OG ~ = OA ~ + OB ~ + OC ~ Euler Line OGH : OH 1 X 1 X XA2 − BC 2 3 cyclic 9 cyclic ¡ ¢ ¡ ¢ 3 XA2 + XB 2 + XC 2 ≥ BC 2 + CA2 + AB 2 3(GA2 + GB 2 + GC 2 ) = BC 2 + CA2 + AB 2 4 HG2 = 4R2 − (BC 2 + CA2 + AB 2 ) 9 OH 2 = 9R2 − (BC 2 + CA2 + AB 2 ) XG2 =

XI 2

X cyclic 2

a + abc = 2

X

aXA2

cyclic 2

aXA + bXB + cXC ≥ abc IA2 IB 2 IC 2 + + =1 bc ca ab Euler : OI 2 = R2 − 2rR X 1 ~ = ~ OI aOA a + b + c cyclic ! à X X 1 5 a2 − 6 ab IG2 = r2 + 36 cyclic cyclic v à u µ ¶2 ! b+c u a tbc 1 − AI = a+b+c b+c AH = 2RcosA ~ · IG ~ = − 2 r(R − 2r) IH 3

7. Trigonometric Identities x+y y+z z+x sin sin 2 2 2 x+y y+z z+x cosx + cosy + cosz − cos(x + y + z) = 4cos cos cos 2 2 2

sinx + siny + sinz − sin(x + y + z) = 4sin

X

A B C sinA = 4cos cos cos 2 2 2 cyclic X sin2A = 4sinAsinBsinC cyclic

X

A B C cosA = 1 + 4sin sin sin 2 2 2 cyclic X cos2A = −1 − 4cosAcosBcosC cyclic

X

cos2 A = 1 − 2cosAcosBcosC

cyclic

X

sin2 A = 2 + 2cosAcosBcosC

cyclic

X

tanA = tanAtanBtanC

cyclic

X

cotAcotB = 1

cyclic

X

cyclic

cot

A A B C = cot cot cot 2 2 2 2

Related Documents

744
December 2019 42
Kishkindha711-744
May 2020 13
Fluke 744
May 2020 6
744-slide.ppt
November 2019 18
Hal 742-744 .docx
June 2020 16
Abb Price Book 744
June 2020 6

More Documents from "Elias"

1214
December 2019 29
992
December 2019 27
960
December 2019 22
1482
December 2019 21
1463
December 2019 21
1465
December 2019 14