6. The Logarithms Of Physics

  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 6. The Logarithms Of Physics as PDF for free.

More details

  • Words: 7,026
  • Pages: 9
SERIES  ARTICLE

Snippets of Physics 6. The Logarithms of Physics T Padmanabhan

S c a lin g a rg u m e n ts a n d d im e n sio n a l a n a ly sis a re p o w e rfu l to o ls in p h y sic s w h ich h e lp y o u to so lv e se v e ra l in te r e stin g p ro b le m s. A n d w h e n th e sc a lin g a rg u m e n ts fa il, a s in th e e x a m p le s d isc u sse d h e r e , w e a re le d to a m o re fa sc in a tin g situ a tio n . T Padmanabhan works at IUCAA, Pune and is interested in all areas of theoretical physics, especially those which have something to do with gravity.

L et u s b eg in th is tim e b y rev isitin g a p ro b lem w h ich is b ea ten to d ea th in sta n d a rd tex tb o o k s in electro d y n a m ics { ex cep t th a t w e w ill d o it in a slig h tly d i® eren t m a n n er a n d g et o u rselv es a ll tied u p in k n o ts. C o n sid er a n in ¯ n ite stra ig h t lin e ch a rg e lo ca ted a lo n g th e y ¡ a x is w ith th e ch a rg e d en sity p er u n it len g th b ein g ¸ . W e a re in terested in d eterm in in g th e electric ¯ eld ev ery w h ere d u e to th is lin e ch a rg e. T h e sta n d a rd so lu tio n to th is p ro b lem is rid icu lo u sly sim p le. Y o u ¯ rst a rg u e, b a sed o n th e sy m m etry, th a t th e electric ¯ eld a t a n y g iv en p o in t is in th e x ¡ z p la n e a n d d ep en d s o n ly o n th e d ista n ce fro m th e lin e ch a rg e. S o w e ca n a rra n g e th e co o rd in a te sy stem su ch th a t th e p o in t a t w h ich w e w a n t to ca lcu la te th e ¯ eld is a t (x ;0 ;0 ). If w e n ow en clo se th e lin e ch a rg e b y a n im a g in a ry co n cen tric cy lin d rica l su rfa ce o f ra d iu s x a n d len g th L , th e o u tw a rd ° u x o f electric ¯ eld th ro u g h th e su rfa ce is 2 ¼ x L E w h ich sh o u ld b e eq u a l to 4 ¼ tim es th e ch a rg e en clo sed b y th e cy lin d er, w h ich is 4 ¼ L ¸ . T h is im m ed ia tely g iv es E = (2 ¸ = x ). [Y o u w o u ld h av e n o ticed to y o u r su rp rise th a t I a m u sin g th e cg s u n its; th e S I p eo p le sh o u ld rep la ce 4 ¼ b y (1 = ² 0 ).] D im en sio n a lly, electric ¯ eld is ch a rg e d iv id ed b y sq u a re o f th e len g th a n d sin ce ¸ is ch a rg e p er u n it len g th , ev ery th in g is ¯ n e.

Keywords Logarithm, potential theory.

510

RESONANCE  June 2008

SERIES  ARTICLE

W e w ill n ow d o it d i® eren tly a n d in { w h a t sh o u ld b e { a n eq u iva len t w ay. W e w a n t to co m p u te th e electro sta tic p o ten tia l Á a t (x ;0 ;0 ) d u e to th e lin e ch a rg e a lo n g th e y ¡ a x is a n d o b ta in th e electric ¯ eld b y d i® eren tia tin g . O b v io u sly, th e p o ten tia l Á (x ) ca n o n ly d ep en d o n x a n d ¸ a n d m u st h av e th e d im en sio n o f ch a rg e p er u n it len g th . If w e ta k e Á » ¸ n x m , d im en sio n a l a n a ly sis im m ed ia tely g iv es n = 1 a n d m = 0 , so th a t Á (x ) / ¸ a n d is in d ep en d en t o f x ! T h e p o ten tia l is a co n sta n t a n d th e electric ¯ eld va n ish es! W e a re in tro u b le. A n ex p licit co m p u ta tio n o f th e p o ten tia l fro m ¯ rst p rin cip les m a k es m a tters w o rse. A n in ¯ n itesim a l a m o u n t o f ch a rg e d q = ¸ d y lo ca ted b etw een y a n d y + d y w ill lea d to a n electro sta tic p o ten tia l d q= r a t th e ¯ eld p o in t, w h ere r = (x 2 + y 2 )1 = 2 . S o th e to ta l p o ten tia l is g iv en by Z+ 1 Z+ 1 dy dy p p Á (x ) = ¸ : (1 ) = 2¸ x2 + y2 x 2 + y2 ¡1 0 C h a n g in g va ria b les fro m y to u = y = x , th e in teg ra l b eco m es Á (x ) = 2 ¸

Z+ 1 0

p

du : 1 + u2

(2 )

T h is resu lt is clea rly in d ep en d en t o f x a n d h en ce a co n sta n t w h ich is w h a t d im en sio n a l a n a ly sis to ld u s. M u ch w o rse, it is a n in ¯ n ite co n sta n t sin ce th e in teg ra l d iv erg es a t th e u p p er lim it. W h a t is g o in g o n in su ch a sim p le, cla ssic, tex tb o o k p ro b lem ? A s a ¯ rst a ttem p t in g ettin g a sen sib le resu lt, let u s cu to ® th e in teg ra l a t so m e len g th sca le y = ¤ . (Y o u m ay th in k o f th e in ¯ n ite lin e ch a rg e a s th e lim it o f a lin e ch a rg e o f len g th 2 ¤ w ith ¤ À x .) U sin g th e su b stitu tio n y = x sin h µ a n d ta k in g th e lim it ¤ À x , w e g et

RESONANCE  June 2008

511

SERIES  ARTICLE

The problem has to

Á (x ) =

do with logarithms which allow a dimensionless function like ln (x/2) to occur in the electrostatic potential without the electric field depending on the arbitrary scale .



Z¤ 0

dy p = 2 ¸ sin h ¡1 x 2 + y2

µ ¶ ³x ´ ¤ ¼ ¡ 2 ¸ ln ; x 2¤ (3 )

w h ere w e h av e u sed ¤ À x in a rriv in g a t th e ¯ n a l eq u a lity. T h is p o ten tia l d o es d iv erg e w h en ¤ ! 1 . B u t n o te th a t th e p h y sica lly o b serva b le q u a n tity, th e electric ¯ eld E = ¡ r Á is in d ep en d en t o f th e cu t-o ® p a ra m eter ¤ a n d is co rrectly g iv en b y E x = 2 ¸ = x . B y in tro d u cin g a cu to ® , w e seem to h av e sav ed th e situ a tio n . It is n ow clea r w h a t is g o in g o n . A s th e title o f th is a rticle im p lies, th e p ro b lem h a s to d o w ith lo g a rith m s w h ich a llow a d im en sio n less fu n ctio n lik e ln (x = 2 ¤ ) to o ccu r in th e electro sta tic p o ten tia l w ith o u t th e electric ¯ eld d ep en d in g o n th e a rb itra ry sca le ¤ . T h is req u ires a d d itiv ity o n th e ¤ d ep en d en ce; th a t is w e n eed a fu n ctio n f (x = ¤ ) w h ich w ill red u ce to f (x ) + f (¤ ). C lea rly o n ly a lo g a rith m w ill d o . O n ce w e k n ow w h a t is h a p p en in g , it is ea sy to ¯ g u re o u t o th er w ay s o f g ettin g a sen sib le a n sw er. O n e ca n , fo r ex a m p le, o b ta in th is resu lt fro m a m o re stra ig h tfo rw a rd sca lin g a rg u m en t b y co n cen tra tin g o n th e p o ten tia l di® eren ce Á (x )¡ Á (a ), w h ere a is so m e a rb itra ry sca lin g d ista n ce w e in tro d u ce in to th e p ro b lem . F ro m d im en sio n a l a n a ly sis, it fo llow s th a t th e p o ten tia l d i® eren ce m u st h av e th e fo rm Á (x ) ¡ Á (a ) = ¸ F (x = a ), w h ere F is a d im en sio n less fu n ctio n . E va lu a tin g th is ex p ressio n fo r a = 1 , say, in so m e u n its w e g et ¸ F (x ) = Á (x ) ¡ Á (1 ). S u b stitu tin g b a ck , w e h av e th e rela tio n Á (x ) ¡ Á (a ) = Á (x = a ) ¡ Á (1 ). T h is fu n ctio n a l eq u a tio n h a s th e u n iq u e so lu tio n s Á (x ) = A ln x + Á (1 ). D im en sio n a l a n a ly sis a g a in tells y o u th a t A / ¸ . B u t, o f co u rse, sca lin g a rg u m en ts ca n n o t d eterm in e th e p ro p o rtio n a lity co n sta n t. H ow ev er, o n e ca n co m p u te th e p o ten tia l d i® eren ce b y th e ex p licit in teg ra l

512

RESONANCE  June 2008

SERIES  ARTICLE

Á (x ) ¡ Á (a ) = 2 ¸

Z1 0

dy

Ã

1

1 p ¡ p x2 + y2 a2 + y2

!

:

(4 )

phenomena, in which naive scaling arguments break

It is ea sy to see th a t th is in teg ra l is ¯ n ite. Y o u ca n w o rk it o u t b y fa irly stra ig h tfo rw a rd p ro ced u res a n d o b ta in th e resu lt Á (x ) ¡ Á (a ) = ¡ 2 ¸ ln (x = a ):

It turns out that such

(5 )

T h e n u m erica l va lu e o f Á (x ) in th is ex p ressio n is in d ep en d en t o f th e len g th sca le a in tro d u ced in th e p ro b lem . In th a t sen se th e sca le o f Á is d eterm in ed o n ly b y ¸ w h ich , a s w e sa id b efo re, h a s th e co rrect d im en sio n s. B u t to en su re ¯ n ite va lu es fo r th e ex p ressio n s, w e n eed to in tro d u ce a n a rb itra ry len g th sca le a w h ich is th e k ey fea tu re I w a n t to em p h a size in th is d iscu ssio n . It tu rn s o u t th a t su ch p h en o m en a , in w h ich n a iv e sca lin g a rg u m en ts b rea k d ow n d u e to th e o ccu rren ce o f lo g a rith m ic fu n ctio n , is a v ery g en era l fea tu re in sev era l a rea s o f p h y sics esp ecia lly in th e stu d y o f ren o rm a liza tio n g ro u p in h ig h en erg y p h y sics. W h a t w e h av e h ere is a v ery elem en ta ry m a n ifesta tio n o f th is resu lt. In a ll th ese ca ses w e n eed to sm u g g le in to th e p ro b lem a len g th sca le to m a k e so m e u n o b serva b le q u a n tities (lik e th e p o ten tia l) ¯ n ite b u t a rra n g e m a tters su ch th a t o b serva b le q u a n tities rem a in in d ep en d en t o f th is sca le w h ich w e b rin g in .

down due to the occurrence of logarithmic function, is a very general feature in several areas of physics especially in the study of renormalization group in high energy physics.

If y o u th o u g h t th is w a s to o sim p le, h ere is a m o re so p h istica ted o ccu rren ce o f a lo g a rith m fo r essen tia lly th e sa m e rea so n . C o n sid er th e S ch rÄo d in g er eq u a tio n in tw o d im en sio n s fo r a n a ttra ctiv e D ira c d elta fu n ctio n p o ten tia l V (x ) = ¡ V 0 ± (x ) w ith V 0 > 0 . T h e v ecto r x is in tw o d im en sio n a l sp a ce a n d w e lo o k fo r a sta tio n a ry b o u n d sta te

RESONANCE  June 2008

513

SERIES  ARTICLE

w av efu n ctio n à (x ) w h ich sa tis¯ es th e eq u a tio n µ ¶ ~2 2 ¡ r ¡ V 0 ± (x ) à (x ) = ¡ jE jà (x ); 2m

(6 )

w h ere ¡ jE j is th e n eg a tiv e b o u n d sta te en erg y. R esca lin g th e va ria b les b y in tro d u cin g ¸ = 2 m V 0 = ~2 a n d E = 2 m jE j= ~2 , th is eq u a tio n red u ces to ¡ 2 ¢ r + ¸ ± (x ) Ã (x ) = E Ã (x ): (7 )

W e co u ld h av e d o n e ev ery th in g u p to th is p o in t in a n y sp a tia l d im en sio n . In D d im en sio n , th e D ira c d elta fu n ctio n ± (x ) h a s th e d im en sio n L ¡ D . T h e k in etic en erg y o p era to r r 2 , o n th e o th er h a n d , a lw ay s h a s th e d im en sio n L ¡ 2 . T h is lea d s to a p ecu lia r b eh av io u r w h en D = 2 . W e ¯ n d th a t, in th is ca se, ¸ is d im en sio n less w h ile E h a s th e d im en sio n o f L ¡ 2 . S in ce th e sca led b in d in g en erg y E h a s to b e d eterm in ed en tirely in term s o f th e p a ra m eter ¸ , w e h av e a p ro b lem in o u r h a n d s. T h ere is n o w ay w e ca n d eterm in e th e fo rm o f E w ith o u t a d im en sio n a l co n sta n t { w h ich w e d o n o t h av e. T o see th e m a n ifesta tio n o f th is p ro b lem m o re clea rly, let u s so lv e (7 ). T h is is fa irly ea sy to d o b y F o u rier tra n sfo rm in g b o th sid es a n d in tro d u cin g th e m o m en tu m sp a ce w av efu n ctio n Á (k ) b y Z Á (k ) = d 2 x à (x ) ex p (¡ ik ¢ x ): (8 ) T h e left-h a n d sid e o f lea d s to th e term [¡ k 2 Á (k )+ ¸ à (0 )], w h ile th e rig h t-h a n d sid e g iv es E Á (k ). E q u a tin g th e tw o w e g et ¸ à (0 ) Á (k ) = 2 : (9 ) k + E W e n ow in teg ra te th is eq u a tio n ov er a ll k . T h e left-h a n d sid e w ill th en g iv e (2 ¼ )2 à (0 ) w h ich ca n b e ca n celled o u t o n b o th sid es b y a ssu m in g à (0) 6= 0 . (T h is is, o f co u rse,

514

RESONANCE  June 2008

SERIES  ARTICLE

n eed ed fo r Á (k ) in (9 ) to b e n o n zero a n d h en ce is n o t a n a d d itio n a l a ssu m p tio n .) W e th en g et th e resu lt 1 1 = ¸ 4¼ 2

Z

d2k 1 = 2 k + E 4¼ 2

Z

d2s : s2 + 1

The Dirac delta function, in spite of the nomenclature,

(1 0 )

is strictly not a function but what

T h e seco n d eq u a lity is o bp ta in ed b y ch a n g in g th e in teg ra tio n va ria b le to s = k = E . T h is eq u a tio n is su p p o sed to d eterm in e th e b in d in g en erg y E in term s o f th e p a ra m eter in th e p ro b lem ¸ b u t th e la st ex p ressio n sh ow s th a t th e rig h t h a n d sid e is in d ep en d en t o f E ! T h is is sim ila r to th e situ a tio n in th e electro sta tic p ro b lem in w h ich w e g o t th e in teg ra l w h ich w a s in d ep en d en t o f x . In fa ct, ju st a s in th e electro sta tic ca se, th e in teg ra l o n th e rig h t h a n d sid e d iv erg es, co n ¯ rm in g o u r su sp icio n . O f co u rse, w e a lrea d y k n ow th a t d eterm in in g E in term s o f ¸ is im p o ssib le d u e to d im en sio n a l m ism a tch .

mathematicians call a distribution.

O n e ca n , a t th is sta g e, ta k e th e p o in t o f v iew th a t th e p ro b lem is sim p ly ill-d e¯ n ed a n d o n e w o u ld b e q u ite co rrect. T h e D ira c d elta fu n ctio n , in sp ite o f th e n o m en cla tu re, is strictly n o t a fu n ctio n b u t w h a t m a th em a ticia n s ca ll a d istrib u tio n . It is d e¯ n ed a s a lim it o f a seq u en ce o f fu n ctio n s. F o r ex a m p le, su p p o se w e co n sid er a seq u en ce o f p o ten tia ls · ¸ V0 jx j2 V (x ) = ¡ ; ex p ¡ 2¼ ¾ 2 2¾ 2

(1 1 )

w h ere x is a 2 -D v ecto r a n d ¾ is a p a ra m eter w ith th e d im en sio n o f len g th . In th is ca se, w e w ill a g a in g et (7 ) b u t w ith th e D ira c d elta fu n ctio n rep la ced b y th e G a u ssia n in (1 1 ). B u t n ow w e h av e a p a ra m eter ¾ w ith th e d im en sio n o f len g th a n d o n e ca n im a g in e th e b in d in g en erg y b ein g co n stru cted o u t o f th is. W h en w e ta k e th e lim it ¾ ! 0 , th e p o ten tia l in (1 1 ) red u ces to o n e p ro p o rtio n a l to th e D ira c d elta fu n ctio n . (T h is is w h a t w e m ea n t b y say in g th e d elta fu n ctio n is d e¯ n ed a s a lim itin g ca se o f seq u en ce o f fu n ctio n s. H ere th e fu n ctio n s a re G a u ssia n s

RESONANCE  June 2008

515

SERIES  ARTICLE

The essential idea is to accept that the theory requires an extra scale with proper dimensions for its interpretation and treat the coupling constant a function of the scale at which we probe the system.

in (1 1 ) p a ra m etrized b y ¾ . W h en w e ta k e th e lim it o f ¾ ! 0 th e fu n ctio n red u ces to d elta fu n ctio n .) T h e tro u b le is th a t, w h en w e let ¾ g o to zero , w e lo se th e len g th sca le in th e p ro b lem a n d w e d o n o t k n ow h ow to ¯ x th e b in d in g en erg y. O f co u rse, n o o n e a ssu red y o u th a t if y o u so lv e a d i® eren tia l eq u a tio n w ith a n in p u t fu n ctio n V (x ;¾ ) w h ich d ep en d s o n a p a ra m eter ¾ a n d ta k e a (so m ew h a t d u b io u s) lim it o f ¾ ! 0 , th en th e so lu tio n s w ill a lso h av e a sen sib le lim it. S o o n e ca n say th a t th e p ro b lem is ill-d e¯ n ed . R a th er th a n leav in g it a t th a t, w e w a n t to a ttem p t h ere so m eth in g sim ila r to w h a t w e d id in th e electro sta tic ca se. L et u s eva lu a te th e in teg ra l w ith a cu t-o ® a t so m e va lu e k m a x = ¤ w ith ¤ 2 À E . T h en w e g et µ ¶ E 1 1 ; = ¡ ln (1 2 ) ¸ 4¼ ¤2 w h ich ca n b e in v erted to g iv e th e b in d in g en erg y to b e: E = ¤ 2 ex p (¡ 4 ¼ = ¸ );

(1 3 )

w h ere th e sca le is ¯ x ed b y th e cu t-o ® p a ra m eter. O f co u rse th is is w h a t w e w o u ld h av e g o t if w e a ctu a lly u sed a p o ten tia l w ith a len g th sca le. T h ere is a w a y o f in terp retin g th is resu lt ta k in g a cu e fro m w h a t is d o n e in q u a n tu m ¯ eld th eo ry. T h e essen tia l id ea is to a ccep t u p fro n t th a t th e th eo ry req u ires a n ex tra sca le w ith p ro p er d im en sio n s fo r its in terp reta tio n a n d trea t th e co u p lin g co n sta n t a s a fu n ctio n o f th e sca le a t w h ich w e p ro b e th e sy stem . H av in g d o n e th a t w e a rra n g e m a tters so th a t th e o b serv ed resu lts a re a ctu a lly in d ep en d en t o f th e sca le w e h av e in tro d u ced . In th is ca se, w e w ill d e¯ n e a p h y sica l co u p lin g co n sta n t b y µ ¶ E 1 1 ¡1 ¡1 2 2 ¸ p h y (¹ ) = ¸ ¡ ; (1 4 ) ln (¤ = ¹ ) = ¡ ln ¹2 4¼ 4¼

516

RESONANCE  June 2008

SERIES  ARTICLE

w h ere ¹ is a n a rb itra ry b u t ¯ n ite sca le. O b v io u sly ¸ p h y (¹ ) is in d ep en d en t o f th e cu t-o ® p a ra m eter ¤ . T h e b in d in g en erg y is n ow g iv en b y E = ¹ 2 ex p (¡ 4 ¼ = ¸ p h y (¹ ))

(1 5 )

w h ich , in sp ite o f a p p ea ra n ce, is in d ep en d en t o f th e sca le ¹ . T h is is sim ila r to o u r eq u a tio n (5 ) in th e electro sta tic p ro b lem , in w h ich w e in tro d u ced a sca le a b u t Á (x ) w a s in d ep en d en t o f a .

The breaking down of naive scaling arguments and the appearance of logarithms are rather ubiquitous in such a case.

In q u a n tu m ¯ eld th eo ry a resu lt lik e th is w ill b e in terp reted a s fo llow s: S u p p o se o n e p erfo rm s a n ex p erim en t to m ea su re so m e o b serva b le q u a n tity (lik e th e b in d in g en erg y ) o f th e sy stem a s w ell a s so m e o f th e p a ra m eters d escrib in g th e sy stem (like th e co u p lin g co n sta n t). If th e ex p erim en t is p erfo rm ed a t a sca le co rresp o n d in g to ¹ (w h ich , fo r ex a m p le, co u ld b e th e en erg y o f th e p a rticles in a sca tterin g cro ss-sectio n m ea su rem en t, say ), th en o n e w ill ¯ n d th a t th e co u p lin g co n sta n t th a t is m ea su red d ep en d s o n ¹ . B u t w h en o n e va ries ¹ in a n ex p ressio n lik e (1 5 ), th e va ria tio n o f ¸ p h y w ill b e su ch th a t o n e g ets th e sa m e va lu e fo r E . W h en y o u th in k a b o u t it, y o u w ill ¯ n d th a t it m a k es a lo t o f sen se. A fter a ll th e p a ram eters w e u se to d escrib e o u r p h y sica l sy stem (lik e ¸ p h y ) a s w ell a s so m e o f th e resu lts w e o b ta in (lik e th e b in d in g en erg y E o r a sca tterin g cro ss-sectio n ) n eed to b e d eterm in ed b y su ita b le ex p erim en ts. In th e q u a n tu m m ech a n ica l p ro b lem s a lso o n e ca n th in k o f sca tterin g of a p a rticle w ith m o m en tu m k (rep resen ted b y a n in cid en t p la n e w av e, say ) b y a p o ten tia l. T h e resu ltin g scatterin g cro ss-sectio n w ill co n ta in in fo rm a tio n a b o u t th e p o ten tia l, esp ecia lly th e co u p lin g co n sta n t ¸ . If th e scatterin g ex p erim en t in tro d u ces a (m o m en tu m o r len g th ) sca le ¹ , th en o n e ca n in d eed im a g in e th e m ea su red co u p lin g co n sta n t to b e d ep en d en t o n th a t sca le ¹ . B u t w e w o u ld ex p ect p h y sica l p red ictio n s o f th e th eo ry (lik e E ) to b e in d ep en d en t

RESONANCE  June 2008

517

SERIES  ARTICLE

o f ¹ . T h is is p recisely w h a t h a p p en s in q u a n tu m ¯ eld th eo ry a n d th e toy m o d el a b ov e is a sim p le illu stra tio n . W e see fro m (7 ) th a t, in D = 1 , th e co u p lin g co n sta n t ¸ h a s th e d im en sio n s o f L ¡1 so th ere is n o d i± cu lty in o b ta in in g E / ¸ 2 . T h e o n e-d im en sio n a l in teg ra l co rresp o n d in g to (1 0 ) is co n v erg en t a n d y o u ca n ea sily w o rk th is o u t to ¯ x th e p ro p o rtio n a lity co n sta n t to b e 1 / 4 . T h e lo g a rith m ic d iv erg en ce o ccu rs in D = 2 , w h ich is k n ow n a s th e critica l d im en sio n fo r th is p ro b lem . T h e b rea k in g d ow n o f n a iv e sca lin g a rg u m en ts a n d th e a p p ea ra n ce o f lo g a rith m s a re ra th er u b iq u ito u s in su ch a ca se. (T h ere a re o th er fa scin a tin g issu es in D ¸ 3 a n d in sca tterin g b u t th a t is a n o th er sto ry.)

Address for Correspondence T Padmanabhan IUCAA, Post Bag 4 Pune University Campus Ganeshkhind Pune 411 007, India. Email: [email protected] [email protected]

T h e ex a m p les d iscu ssed h ere a re a ll ex p lo red ex ten siv ely in th e litera tu re a n d a g o o d sta rtin g p o in t w ill b e th e referen ces [1 -5 ]. Suggested Reading [1] L R Mead and J Godines, Am. J. Phys., Vol.59, No.10, pp.935–937, 1991. [2] P Gosdzinsky and R Tarrach, Am. J. Phys., Vol.59, No.1, pp.70–74 1991. [3] B R Holstein, Am. J. Phys., Vol.61, No.2, pp.142–147, 1993. [4] A Cabo, J L Lucio and H Mercado, Am. J. Phys., Vol.66, No.3, pp.240– 246, 1998. [5] M Hans, Am. J. Phys., Vol.51, No.8, pp.694–698, 1983.

518

RESONANCE  June 2008

Related Documents