595c8970e4b0e7266fabdfae_5ba3e3dae4b0639d7c27ddc3_1538203349685.pdf

  • Uploaded by: aniket
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 595c8970e4b0e7266fabdfae_5ba3e3dae4b0639d7c27ddc3_1538203349685.pdf as PDF for free.

More details

  • Words: 2,335
  • Pages: 8
Study Material  Downloaded from Vedantu

FREE

LIVE ONLINE

MASTER CLASSES FREE Webinars by Expert Teachers

About Vedantu Vedantu is India’s largest LIVE online teaching platform with best teachers from across the country. Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB & State Boards for

Register for FREE

Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers Anand Prakash

Pulkit Jain

Namo Kaul

B.Tech, IIT Roorkee Co-Founder, Vedantu

B.Tech, IIT Roorkee Co-Founder, Vedantu

B.Tech, Computer Science VIT-Vellore

My mentor is approachable and guides me in my future aspirations as well.

My son loves the sessions and I can

Student - Ayushi

Parent - Sreelatha

6,80,900+

Hours of LIVE Learning

3,13,100+ Happy Students

FREE MASTER CLASS SERIES 

For Grades 6-12th targeting JEE, CBSE, ICSE & much more.



Free 60 Minutes Live Interactive classes everyday.



Learn from the Master Teachers - India’s best.

already see the change.



95%

Top Results

95% Students of Regular Tuitions on Vedantu scored above 90% in exams!

Register for FREE Limited Seats!

TRIGONOMETRY

TRIGONOMETRY TRIGONOMETRIC RATIOS & IDENTITIES

Gon p sides

Angle (T T)

T–Ratio

1. The meaning of Trigonometry Tri p 3

Trigonometric Ratios of Standard Angles

p



30°

45°

60°

sin

0

1 2

1 2

3 2

1

cos

1

3 2

1 2

1 2

0

tan

0

1 3

1

3

f

cot

f

3

1

1 3

0

sec

1

2 3

2

cosec

f

Metron p Measure

Hence, this particular branch in Mathematics was developed in ancient past to measure 3 sides, 3 angles and 6 elements of a triangle. In today’s time–trigonometric functions are used in entirely different shapes. The 2 basic functions are sine and cosine of an angle in a right–angled triangle and there are 4 other derived functions.

sin T

cos T

tan T

cot T

sec T

cosec T

P H

B H

P B

B P

H B

H P

2

2

2

2 3

90°

f

1

2. Basic Trigonometric Identities (a) sin2T + cos2T = 1 : –1d sinTd 1; –1d cosTd 1  TR (b) sec2T – tan2T = 1 : | secT| t 1  TR (c) cosec2T – cot2T = 1 : | cosecT| t 1  TR

The sign of the trigonometric ratios in different quadrants are as under :

TRIGONOMETRY

3. Trigonometric Ratios of Allied Angles Using trigonometric ratio of allied angles, we could find the trigonometric ratios of angles of any magnitude.

sin (–T) = – sin T

cos (–T) = cos T

§S · sin ¨  T ¸ cos T 2 © ¹

§S · cos ¨  T ¸ sin T 2 © ¹

tan (–T) = – tan T

cot (–T) = –cot T

§S · tan ¨  T ¸ cot T ©2 ¹

§S · cot ¨  T ¸ ©2 ¹

cosec (–T) = – cosec T

sec (–T) = sec T

§S · sec ¨  T ¸ cos ecT 2 © ¹

§S · cos ec ¨  T ¸ sec T 2 © ¹

§S · sin ¨  T ¸ cos T ©2 ¹

§S · cos ¨  T ¸  sin T ©2 ¹

sin S  T

cos S  T

sin T

tan T

 cos T

§S · tan ¨  T ¸  cot T ©2 ¹

§S · cot ¨  T ¸  tan T ©2 ¹

tan S  T

cot S  T

 tan T

 cot T

§S · sec ¨  T ¸  cosecT ©2 ¹

§S · cos ec ¨  T ¸ sec T ©2 ¹

sec S  T

 sec T

cosec S  T

sin S  T

 sin T

cos S  T

cos ec T  cos T

§ 3S · sin ¨  T ¸  cos T 2 © ¹

§ 3S · cos ¨  T ¸  sin T 2 © ¹

tan S  T

cot S  T

tan T

cot T

§ 3S · tan ¨  T ¸ cot T © 2 ¹

§ 3S · cot ¨  T ¸ © 2 ¹

tan T

sec S  T

cosec S  T

 cosec T

 sec T

§ 3S · sec ¨  T ¸  cosec T 2 © ¹

§ 3S · cos ec ¨  T ¸  sec T 2 © ¹

§ 3S · sin ¨  T ¸  cos T © 2 ¹

§ 3S · cos ¨  T ¸ sin T © 2 ¹

sin 2S  T

cos 2S  T

 sin T

cos T

§ 3S · tan ¨  T ¸  cot T 2 © ¹

§ 3S · cot ¨  T ¸  tan T 2 © ¹

tan 2S  T

cot 2S  T

§ 3S · sec ¨  T¸ © 2 ¹

 tan T

cos ec T

 cot T

§ 3S · cos ec ¨  T ¸  sec T © 2 ¹

sec 2S  T

sec T

cosec 2S  T

 cosec T

sin 2S  T

sin T

cos 2S  T

cos T

tan 2S  T

tan T

cot 2S  T

cot T

sec 2S  T

sec T

cosec 2S  T

cosec T

TRIGONOMETRY

4. Trigonometric Functions of Sum or

5. Multiple Angles and Half Angles

Difference of Two Angles (a) sin 2A = 2 sin A cos A ; sin T = 2 sin (a) sin (A + B) = sin A cos B + cos A sin B (b) sin (A – B) = sin A cos B – cos A sin B (c) cos (A + B) = cos A cos B – sin A sin B

(b) cos 2A = cos2A – sin2A = 2 cos2A – 1 = 1 – 2 sin2 A ; 2cos2

T T = 1 + cos T, 2 sin2 = 1 – cos T 2 2

(d) cos (A – B) = cos A cos B + sin A sin B

tan A  tan B 1  tan A tan B

(e) tan (A  B)

(f) tan (A  B)

tan A  tan B 1  tan A tan B

T T cos 2 2

2 tan A ; tan T = (c) tan 2A = 1  tan 2 A

(d) sin 2A =

T 2 2 T 1  tan 2

2 tan

2 tan A 1  tan 2 A ; cos 2A = 2 1  tan A 1  tan 2 A

(e) sin 3A = 3 sin A – 4 sin3 A (f) cos 3 A = 4 cos3 A – 3 cos A

(g) cot (A + B) =

cot A cot B  1 cot B  cot A

cot A cot B  1 (f) cot (A - B) = cot B  cot A

(h) sin2 A – sin2 B = cos2B – cos2A = sin (A + B) . sin (A – B) (i) cos2 A – sin2 B = cos2B – sin2A = cos (A + B) . cos (A – B)

(j) tan (A + B + C) = tanA  tanB  tanC  tanAtanBtanC 1  tanAtanB  tanBtanC  tanCtanA

(g) tan 3A =

3tan A  tan  A 1  3tan 2 A

6. Transformation of Products into Sum or Difference of Sines & Cosines

(a) 2 sin A cos B = sin (A + B) + sin (A – B) (b) 2 cos A sin B = sin (A + B) – sin (A – B) (c) 2 cos A cos B = cos (A + B) + cos (A – B) (d) 2 sin A sin B = cos (A – B) – cos (A + B)

TRIGONOMETRY

7. Factorisation of the Sum or Difference of

9. Conditional Identities

Two Sines or Cosines

If A + B + C = S then : (i) sin 2A + sin2 B + sin 2C = 4 sin A sin B sin C

(a) sin C + sin D = 2 sin

C D CD cos 2 2

(ii) sin A + sin B + sin C = 4 cos

A B C cos cos 2 2 2

(iii) cos 2A + cos 2B + cos 2C = –1 – 4cosA cosB cosC

CD CD (b) sin C – sin D = 2 cos sin 2 2

(iv) cos A + cos B + cos C = 1 + 4sin

(v) tan A + tan B + tan C = tanA tanB tanC

CD CD (c) cos C + cos D = 2 cos cos 2 2

(d) cos C – cos D = – 2 sin

(vi) tan

CD CD sin 2 2

A B B C C A tan  tan tan  tan tan 1 2 2 2 2 2 2

(vii) cot

A B C  cot  cot 2 2 2

cot

A B C .cot .cot 2 2 2

(viii) cot A cot B + cot B cot C + cot C cot A = 1

8. Important Trigonometric Ratios (a) sin n S = 0 ; cos n S = (–1)n ; tan nS = 0 where n Z

A B C sin sin 2 2 2

10. Range of Trigonometric Expression E = a sin T + b cos T

(b) sin 15º or sin

S 12

3 1 5S ; = cos 75º or cos 12 2 2

3 1 S 5S ; cos 15º or cos = = sin 75º or sin 12 12 2 2

E

§ a   b 2 sin(T  D), ¨ where tan D ©

b· ¸ a¹

E

§ a 2  b 2 cos(T  E), ¨ where tan E ©

a· ¸ b¹

Hence for any real value of T,  a 2  b 2 d E d a 2  b 2 tan 15º =

tan 75º =

(c) sin

3 1 3 1

3 1 3 1

2  3 = cot 75º ;

11. Sine and Cosine Series (a)

nE 2 sin (D  n  1 E) = E 2 sin 2 sin

2  3 = cot 15º

S or sin 18º = 10

5 1 & 4

sin D + sin (D + E) + sin (D + E) + ..... + sin (D + n  1 E )

(b)

cos D + cos ( D + E) + cos (D + 2E) + ...... + cos (D + n  1 E ) nE 2 cos (D  n  1 E) = E 2 sin 2 sin

cos 36º or cos

S 5

5 1 4

TRIGONOMETRY

12. Graphs of Trigonometric Functions (a)

(d)

y = cot x, x  R – {nS; n  z}; y  R

(e)

y = cosec x, x R – {nS; n Z}; y  –f–]‰[1, f)

y = sin x, x  R ; y  [–1, 1]

(b)

y = cos x, x  R ; y  [–1, 1]

(f)

(c)

y = tan x,

S ­ ½ x  R  ® 2n  1 ; n  Z ¾ ; y  R 2 ¯

y = sec x,

S ­ ½ x  R  ® 2n  1 ; n  Z ¾ ; y  –f–]‰[1, f) 2 ¯

TRIGONOMETRY

TRIGONOMETRIC EQUATIONS

4.

ª S Sº D  « , » ¬ 2 2¼

13. Trigonometric Equations The equations involving trigonometric functions of unknown angles are known as Trigonometric equations. e.g.,

cos T= 0, cos2T– 4 cos T= 1.

5.

cos T= cos DœT= 2nS± D, where D[0, S].

6.

§ S S· tan T= tan DœT= n S+ D, where D  ¨  , ¸ © 2 2¹

7.

sin2T= sin2 DœT= n S± D.

8.

cos2 T= cos2 DœT= n S± D.

9.

tan2 T= tan2 DœT= n S± D.

A solution of a trigonometric equation is the value of the unknown angle that satisfies the equation.

e.g.,

sin T

1 ŸT 2

S or T 4

sin T = sin D œ T = n S + ( – 1) n D, where

S 3S 9S 11S , , , ,... 4 4 4 4

Thus, the trigonometric equation may have infinite number of solutions and can be classified as :

10. sin T= 1 œT= (4n +1)

S . 2

(i)

Principal solution

11. cos T= 1 œT= 2n S.

(ii)

General solution

12. cos T= – 1 œT= (2n + 1) S.

14. General Solution

13. sin T= sin Dand cos T= cos DœT= 2n S+ D.

Since, trigonometric functions are periodic, a solution generalised by means of periodicity of the trigonometrical functions. The solution consisting of all possible solutions of a trigonometric equation is called its general solution.

14.1 Results

1. Every where in this chapter ‘n’ is taken as an integer, if not stated otherwise.

1.

sin T= 0 œT= n S

2.

S cos T= 0 œT(2n + 1) 2

3.

tan T= 0 œT= n S

2. The general solution should be given unless the solution is required in a specified interval or range. 3. D is taken as the principal value of the angle. (i.e., Numerically least angle is called the principal value).



Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES FREE Webinars by Expert Teachers

FREE MASTER CLASS SERIES 

For Grades 6-12th targeting JEE, CBSE, ICSE & much more.



Free 60 Minutes Live Interactive classes everyday.



Learn from the Master Teachers - India’s best.

Register for FREE Limited Seats!

More Documents from "aniket"

Dateissue.txt
June 2020 9
May 2020 7
Forging Defects.pdf
November 2019 18
Pim.pdf
December 2019 18