Study Material Downloaded from Vedantu
FREE
LIVE ONLINE
MASTER CLASSES FREE Webinars by Expert Teachers
About Vedantu Vedantu is India’s largest LIVE online teaching platform with best teachers from across the country. Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB & State Boards for
Register for FREE
Students Studying in 6-12th Grades and Droppers.
Awesome Master Teachers Anand Prakash
Pulkit Jain
Namo Kaul
B.Tech, IIT Roorkee Co-Founder, Vedantu
B.Tech, IIT Roorkee Co-Founder, Vedantu
B.Tech, Computer Science VIT-Vellore
My mentor is approachable and guides me in my future aspirations as well.
My son loves the sessions and I can
Student - Ayushi
Parent - Sreelatha
6,80,900+
Hours of LIVE Learning
3,13,100+ Happy Students
FREE MASTER CLASS SERIES
For Grades 6-12th targeting JEE, CBSE, ICSE & much more.
Free 60 Minutes Live Interactive classes everyday.
Learn from the Master Teachers - India’s best.
already see the change.
95%
Top Results
95% Students of Regular Tuitions on Vedantu scored above 90% in exams!
Register for FREE Limited Seats!
TRIGONOMETRY
TRIGONOMETRY TRIGONOMETRIC RATIOS & IDENTITIES
Gon p sides
Angle (T T)
T–Ratio
1. The meaning of Trigonometry Tri p 3
Trigonometric Ratios of Standard Angles
p
0°
30°
45°
60°
sin
0
1 2
1 2
3 2
1
cos
1
3 2
1 2
1 2
0
tan
0
1 3
1
3
f
cot
f
3
1
1 3
0
sec
1
2 3
2
cosec
f
Metron p Measure
Hence, this particular branch in Mathematics was developed in ancient past to measure 3 sides, 3 angles and 6 elements of a triangle. In today’s time–trigonometric functions are used in entirely different shapes. The 2 basic functions are sine and cosine of an angle in a right–angled triangle and there are 4 other derived functions.
sin T
cos T
tan T
cot T
sec T
cosec T
P H
B H
P B
B P
H B
H P
2
2
2
2 3
90°
f
1
2. Basic Trigonometric Identities (a) sin2T + cos2T = 1 : –1d sinTd 1; –1d cosTd 1 TR (b) sec2T – tan2T = 1 : | secT| t 1 TR (c) cosec2T – cot2T = 1 : | cosecT| t 1 TR
The sign of the trigonometric ratios in different quadrants are as under :
TRIGONOMETRY
3. Trigonometric Ratios of Allied Angles Using trigonometric ratio of allied angles, we could find the trigonometric ratios of angles of any magnitude.
sin (–T) = – sin T
cos (–T) = cos T
§S · sin ¨ T ¸ cos T 2 © ¹
§S · cos ¨ T ¸ sin T 2 © ¹
tan (–T) = – tan T
cot (–T) = –cot T
§S · tan ¨ T ¸ cot T ©2 ¹
§S · cot ¨ T ¸ ©2 ¹
cosec (–T) = – cosec T
sec (–T) = sec T
§S · sec ¨ T ¸ cos ecT 2 © ¹
§S · cos ec ¨ T ¸ sec T 2 © ¹
§S · sin ¨ T ¸ cos T ©2 ¹
§S · cos ¨ T ¸ sin T ©2 ¹
sin S T
cos S T
sin T
tan T
cos T
§S · tan ¨ T ¸ cot T ©2 ¹
§S · cot ¨ T ¸ tan T ©2 ¹
tan S T
cot S T
tan T
cot T
§S · sec ¨ T ¸ cosecT ©2 ¹
§S · cos ec ¨ T ¸ sec T ©2 ¹
sec S T
sec T
cosec S T
sin S T
sin T
cos S T
cos ec T cos T
§ 3S · sin ¨ T ¸ cos T 2 © ¹
§ 3S · cos ¨ T ¸ sin T 2 © ¹
tan S T
cot S T
tan T
cot T
§ 3S · tan ¨ T ¸ cot T © 2 ¹
§ 3S · cot ¨ T ¸ © 2 ¹
tan T
sec S T
cosec S T
cosec T
sec T
§ 3S · sec ¨ T ¸ cosec T 2 © ¹
§ 3S · cos ec ¨ T ¸ sec T 2 © ¹
§ 3S · sin ¨ T ¸ cos T © 2 ¹
§ 3S · cos ¨ T ¸ sin T © 2 ¹
sin 2S T
cos 2S T
sin T
cos T
§ 3S · tan ¨ T ¸ cot T 2 © ¹
§ 3S · cot ¨ T ¸ tan T 2 © ¹
tan 2S T
cot 2S T
§ 3S · sec ¨ T¸ © 2 ¹
tan T
cos ec T
cot T
§ 3S · cos ec ¨ T ¸ sec T © 2 ¹
sec 2S T
sec T
cosec 2S T
cosec T
sin 2S T
sin T
cos 2S T
cos T
tan 2S T
tan T
cot 2S T
cot T
sec 2S T
sec T
cosec 2S T
cosec T
TRIGONOMETRY
4. Trigonometric Functions of Sum or
5. Multiple Angles and Half Angles
Difference of Two Angles (a) sin 2A = 2 sin A cos A ; sin T = 2 sin (a) sin (A + B) = sin A cos B + cos A sin B (b) sin (A – B) = sin A cos B – cos A sin B (c) cos (A + B) = cos A cos B – sin A sin B
(b) cos 2A = cos2A – sin2A = 2 cos2A – 1 = 1 – 2 sin2 A ; 2cos2
T T = 1 + cos T, 2 sin2 = 1 – cos T 2 2
(d) cos (A – B) = cos A cos B + sin A sin B
tan A tan B 1 tan A tan B
(e) tan (A B)
(f) tan (A B)
tan A tan B 1 tan A tan B
T T cos 2 2
2 tan A ; tan T = (c) tan 2A = 1 tan 2 A
(d) sin 2A =
T 2 2 T 1 tan 2
2 tan
2 tan A 1 tan 2 A ; cos 2A = 2 1 tan A 1 tan 2 A
(e) sin 3A = 3 sin A – 4 sin3 A (f) cos 3 A = 4 cos3 A – 3 cos A
(g) cot (A + B) =
cot A cot B 1 cot B cot A
cot A cot B 1 (f) cot (A - B) = cot B cot A
(h) sin2 A – sin2 B = cos2B – cos2A = sin (A + B) . sin (A – B) (i) cos2 A – sin2 B = cos2B – sin2A = cos (A + B) . cos (A – B)
(j) tan (A + B + C) = tanA tanB tanC tanAtanBtanC 1 tanAtanB tanBtanC tanCtanA
(g) tan 3A =
3tan A tan A 1 3tan 2 A
6. Transformation of Products into Sum or Difference of Sines & Cosines
(a) 2 sin A cos B = sin (A + B) + sin (A – B) (b) 2 cos A sin B = sin (A + B) – sin (A – B) (c) 2 cos A cos B = cos (A + B) + cos (A – B) (d) 2 sin A sin B = cos (A – B) – cos (A + B)
TRIGONOMETRY
7. Factorisation of the Sum or Difference of
9. Conditional Identities
Two Sines or Cosines
If A + B + C = S then : (i) sin 2A + sin2 B + sin 2C = 4 sin A sin B sin C
(a) sin C + sin D = 2 sin
C D CD cos 2 2
(ii) sin A + sin B + sin C = 4 cos
A B C cos cos 2 2 2
(iii) cos 2A + cos 2B + cos 2C = –1 – 4cosA cosB cosC
CD CD (b) sin C – sin D = 2 cos sin 2 2
(iv) cos A + cos B + cos C = 1 + 4sin
(v) tan A + tan B + tan C = tanA tanB tanC
CD CD (c) cos C + cos D = 2 cos cos 2 2
(d) cos C – cos D = – 2 sin
(vi) tan
CD CD sin 2 2
A B B C C A tan tan tan tan tan 1 2 2 2 2 2 2
(vii) cot
A B C cot cot 2 2 2
cot
A B C .cot .cot 2 2 2
(viii) cot A cot B + cot B cot C + cot C cot A = 1
8. Important Trigonometric Ratios (a) sin n S = 0 ; cos n S = (–1)n ; tan nS = 0 where n Z
A B C sin sin 2 2 2
10. Range of Trigonometric Expression E = a sin T + b cos T
(b) sin 15º or sin
S 12
3 1 5S ; = cos 75º or cos 12 2 2
3 1 S 5S ; cos 15º or cos = = sin 75º or sin 12 12 2 2
E
§ a b 2 sin(T D), ¨ where tan D ©
b· ¸ a¹
E
§ a 2 b 2 cos(T E), ¨ where tan E ©
a· ¸ b¹
Hence for any real value of T, a 2 b 2 d E d a 2 b 2 tan 15º =
tan 75º =
(c) sin
3 1 3 1
3 1 3 1
2 3 = cot 75º ;
11. Sine and Cosine Series (a)
nE 2 sin (D n 1 E) = E 2 sin 2 sin
2 3 = cot 15º
S or sin 18º = 10
5 1 & 4
sin D + sin (D + E) + sin (D + E) + ..... + sin (D + n 1 E )
(b)
cos D + cos ( D + E) + cos (D + 2E) + ...... + cos (D + n 1 E ) nE 2 cos (D n 1 E) = E 2 sin 2 sin
cos 36º or cos
S 5
5 1 4
TRIGONOMETRY
12. Graphs of Trigonometric Functions (a)
(d)
y = cot x, x R – {nS; n z}; y R
(e)
y = cosec x, x R – {nS; n Z}; y –f–][1, f)
y = sin x, x R ; y [–1, 1]
(b)
y = cos x, x R ; y [–1, 1]
(f)
(c)
y = tan x,
S ½ x R ® 2n 1 ; n Z ¾ ; y R 2 ¯
y = sec x,
S ½ x R ® 2n 1 ; n Z ¾ ; y –f–][1, f) 2 ¯
TRIGONOMETRY
TRIGONOMETRIC EQUATIONS
4.
ª S Sº D « , » ¬ 2 2¼
13. Trigonometric Equations The equations involving trigonometric functions of unknown angles are known as Trigonometric equations. e.g.,
cos T= 0, cos2T– 4 cos T= 1.
5.
cos T= cos DT= 2nS± D, where D[0, S].
6.
§ S S· tan T= tan DT= n S+ D, where D ¨ , ¸ © 2 2¹
7.
sin2T= sin2 DT= n S± D.
8.
cos2 T= cos2 DT= n S± D.
9.
tan2 T= tan2 DT= n S± D.
A solution of a trigonometric equation is the value of the unknown angle that satisfies the equation.
e.g.,
sin T
1 T 2
S or T 4
sin T = sin D T = n S + ( – 1) n D, where
S 3S 9S 11S , , , ,... 4 4 4 4
Thus, the trigonometric equation may have infinite number of solutions and can be classified as :
10. sin T= 1 T= (4n +1)
S . 2
(i)
Principal solution
11. cos T= 1 T= 2n S.
(ii)
General solution
12. cos T= – 1 T= (2n + 1) S.
14. General Solution
13. sin T= sin Dand cos T= cos DT= 2n S+ D.
Since, trigonometric functions are periodic, a solution generalised by means of periodicity of the trigonometrical functions. The solution consisting of all possible solutions of a trigonometric equation is called its general solution.
14.1 Results
1. Every where in this chapter ‘n’ is taken as an integer, if not stated otherwise.
1.
sin T= 0 T= n S
2.
S cos T= 0 T(2n + 1) 2
3.
tan T= 0 T= n S
2. The general solution should be given unless the solution is required in a specified interval or range. 3. D is taken as the principal value of the angle. (i.e., Numerically least angle is called the principal value).
Thank You for downloading the PDF
FREE LIVE ONLINE
MASTER CLASSES FREE Webinars by Expert Teachers
FREE MASTER CLASS SERIES
For Grades 6-12th targeting JEE, CBSE, ICSE & much more.
Free 60 Minutes Live Interactive classes everyday.
Learn from the Master Teachers - India’s best.
Register for FREE Limited Seats!