58 Hyperbolic

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 58 Hyperbolic as PDF for free.

More details

  • Words: 1,916
  • Pages: 22
Hyperbolic Functions (Euler) ex + e−x 2 e − e−x

will be called the Hyperbolic Cosine, cosh x.

x

will be called the Hyperbolic Sine,

2 Symmetrically, sinh and cosh are derivatives,

sinh x.

and also antiderivatives, of each other. The Hyperbolic Tangent is their quotient: ex − e−x sinh x = x . tanh x ≡ −x cosh x e +e We also have 1 1 cosh x sech x ≡ , cosech x ≡ , cotanh x ≡ . cosh x sinh x sinh x

cosh2x − sinh2x = 1.  ex + e−x 2  ex − e−x 2 Proof. − 2 2  ex + e−x x −x  x e −e ex − e−x  e + e−x + − = 2 2 2 2  2 ex  2 e−x  = 1. = 2 2 d dx

Proof.

d sinh x dx cosh x

tanh x = sech 2x. =

(sinh x)0 cosh x − (cosh x)0 sinh x

cosh2x 1 cosh2x − sinh2x = = 2 cosh x cosh2x

y

1 (cos t, sin t)

x2 + y 2 = 1 Area =

0 0

t 2

1

x

(cosh t, sinh t)

y

1

x2 − y 2 = 1 Area =

0 0

t 2

1

x

x

1

x2 + y 2 = 1

Area =

x= 0 0

y = sin u dy = cos u du p 1 − y 2 = cos u

t 2

cos t sin t

(cos t, sin t)

y 1

y

Z =

=

= =

Z 1 2 1 2 t 2

sin t y=0 t

p 1 − y 2 dy

cos u cos u du u=0

Z 

− −

t u=0

1 + cos 2u du − +

t +

sin 2t 2



2 sin t cos t 4

− −

Z

sin t y=0

cos t sin t

cos t

sin t Z sin t

cos t sin t

y dy

y dy

y=0

"

y

2

2

#sin t

y=0

cos t sin2t sin t

2

cos t sin t 2

=

t 2

(cosh t, sinh t) x2 − y 2 = 1 x

1

y = sinh u

1

Area =

t 2

x=

0 0

dy = cosh u du p 1 + y 2 = cosh u cosh t sinh t

y

0

0

1

1

y

Z =

=

= =

Z Z 1 2 t 2

sinh t y=0 t

p 1 + y 2 dy 2

cosh u du



u=0 t

1 + cosh 2u 2

u=0



t +

+

du −

sinh 2t 2



2 sinh t cosh t 4



− −

Z

sinh t y=0

cosh t sinh t

cosh t sinh t Z sinh t

cosh t sinh t

y dy

y dy

y=0

"

y2 2

#sinh t y=0

cosh t sinh2t sinh t

2

cosh t sinh t 2

=

t 2

sinh (s + t) = sinh s cosh t + cosh s sinh t es − e−s et + e−t

Proof. =

2 2 2 eset − e−set + ese−t − e−se−t +

= =

+

es + e−s et − e−t 2

4 eset + e−set − ese−t − e−se−t 4

2 eset − 2 e−se−t 4 e(s+t) − e−(s+t) 2

sinh 2s = 2 sinh s cosh s

cosh (s + t) = cosh s cosh t + sinh s sinh t es + e−s et + e−t

Proof. =

2 2 2 eset + e−set + ese−t + e−se−t +

=

+

es − e−s et − e−t 2

4 eset − e−set − ese−t + e−se−t 4

2 eset + 2 e−se−t 4

=

e(s+t) + e−(s+t) 2

cosh 2s = cosh2s + sinh2s = 2 cosh2s − 1, = 1 + 2 sinh2s,

using using

sinh2s = cosh2s − 1,

cosh2s = 1 + sinh2s.

x

e = 1 + x + e

−x

ex + e−x 2

= 1 − x +

+

cos x = 1

2

2 x2 2

+ −

x3 6 x3 6

+ +

x4 24 x4 24

+ −

x5 120 x5 120

+ ... + ...

= =

∞ X xn

n=0 ∞ X n=0

n!

(−1)nxn n!

=

cosh x = 1

ex − e−x

x2



x2

+

2 x2

+

2

x4

+ ...

24 x4

+ ...

24

= =

∞ X x2n

n=0 ∞ X n=0

(2n)! (−1)nx2n (2n)!

=

sinh x = sin x =

x x

+ −

x3 6 x3 6

+ +

x5 120 x5 120

+ ... + ...

= =

∞ X

n=0 ∞ X n=0

x2n+1 (2n + 1)! (−1)nx2n+1 (2n + 1)!

Recall: i2 = −1, x

e = 1 + x e e

ix

ix

= 1 + ix = 1

i3 = −i, + − −



x2 2 x2 2

cos ix = 1

− +



x3

+

6 ix3 6

x2

x2

+ +

2

+ i x cos x = 1

+

i4 = 1,



x3 +

2 x2

+

sin x =

x



sin ix =

ix

+

x

3

6 ix3

We also have cosh ix = cos x, tan ix = i tanh x,

6

x4 24 x4 24

+ +

etc.

x5 120 ix5 120

x4

+ +

x4

x5 120

24 x4 24 + +

x5 120 ix5 120

=

...

=

...

∞ X xn

n!

n=0 ∞ n n X

i x

n=0

+

24 +

6

2

i5 = i,

...

+

...

+

...

+

...

+

...

+

...

sinh ix = i sin x, tanh ix = i tan x.

n!



= cos x + i sin x

= cosh x

= i sinh x

ex = cosh x + sinh x eix = cos x + i sin x e−ix = cos x − i sin x cos x = sin x =

eix + e−ix 2 eix − e−ix 2i

eiπ = cos π + i sin π = −1

eiπ + 1 = 0

If y equals arcsinh x, then x equals sinh y =

ey − e−y 2

.

2x = ey − e−y

ey − 2x − e−y = 0

e2y − 2xey − 1 = 0

√ 2x ± 4x2 + 4

p = x + x2 + 1 ey = 2p  2 y = ln x + x + 1  √ 2 arcsinh x = ln x + x + 1 1

2x



x2 + 1

x

+√ 1+ √ √ 2 2 1 2 x +1 x +1 x2 + 1 0 = =√ (arcsinh x) = √ √ 2 2 x+ x +1 x+ x +1 1 + x2

If y equals arccosh x, then x equals cosh y =

ey + e−y 2

.

2x = ey + e−y ey − 2x + e−y = 0

e2y − 2xey + 1 = 0

2x ±



4x2 − 4

p ey = = x + x2 − 1 2p  y = ln x + x2 − 1  √ arccosh x = ln x + x2 − 1 for x ≥ 1 1

2x



x2 − 1

x

1+ √ +√ √ 2 2 1 2 x −1 x −1 x2 − 1 0 = =√ (arccosh x) = √ √ x + x2 − 1 x + x2 − 1 x2 − 1

ey − e−y

If y equals arctanh x, then x equals tanh y = y . −y e +e  y −y y −y x=e −e e +e xey + xe−y = ey − e−y

0 = (1 − x)ey − (1 + x)e−y

(1 + x)e−y = (1 − x)ey 1+x = e2y 1−x   1+x 2y = ln 1− x  1 1+x y = ln 2 1−x   1+x 1 arctanh x = ln for −1 < x < 1 2 1−x

1

0

(arctanh x) =

2

ln



1+x 1−x

 !0

1

ln (1 + x) − ln (1 − x) 2   1 −1 1 − = 2 1+x 1−x =

= = (arctanh x)0 =

1 (1 − x) + (1 + x) 2 1

(1 + x)(1 − x) 2

2 (1 + x)(1 − x) 1 1 − x2

0

Integral Substitutions using

  a2 cosh2t − a2 sinh2t = a2,  a2 tanh2t + a2 sech2t = a2

If x = a sinh t : p p x2 + a2 = a2 sinh2t + a2 p = a sinh2t + 1 = a cosh t t = arcsinh

x a

= ln



x a

+



x2

+

a

a2



p = ln (x + x2 + a2) − ln a

If x = a cosh t : p p x2 − a2 = a2 cosh2t − a2 p = a cosh2t − 1 = a sinh t t = arccosh

x a

= ln



x a

+

= ln (x +



p

x2



a

a2



x2 − a2) − ln a

If x = a tanh t : p p a 2 − x2 = a2 − a2 tanh2t p = a 1 − tanh2t = a sech t   a+x 1 x = ln t = arctanh a 2 a−x

Every nonzero complex number x + iy can be written as its p absolute value r = x2 + y 2, which is real, times a number with absolute value equal to 1, which lies on the unit circle and which can be written as cos θ + i sin θ, where θ ± 2kπi is a x x certain angle satisfying cos θ = and sin θ = . Call θ the r r argument of z : θ = arg (z). Let ρ equal ln r. Since we have z = x + iy = r(cos θ + i sin θ) = eρeiθ = eρ+iθ , we can define the complex logarithm as a (multi- or singlevalued) inverse of the complex exponential as follows: ln z = ln x + iy = ρ + iθ =

1 2

ln (x2 + y 2) + i arg (z)

With this complex logarithm, the inverses of the (circular) trigonometric and hyperbolic functions can be listed:

arcsin z = arctan z =

arcsec z =

1 i

ln z +

1 2i 1 i

ln

ln



p

1−

1 + iz



z2



,

1 − iz √   1 + 1 − z2 z

p  2 arc sinh z = ln z + z + 1 , arctanhz =

1

2

ln

arcsechz = ln

,



1+z



,

1−z √   1 + 1 − z2 z

arccos z = arc cot z =

, arc csc z =

1 i

ln z +

1 2i 1 i

ln

ln



p

z2

z+i





−1 ,

,

z−i √   1 + z2 − 1 z

p  2 arccoshz = ln z + z − 1 , arccothz =

1

2

ln

, arccosechz = ln



z+1



,

z−1 √   1 + z2 + 1 z

.

,

Related Documents

58 Hyperbolic
November 2019 10
Hyperbolic)
October 2019 12
Hyperbolic Geometry
April 2020 13
58
December 2019 69
58
April 2020 31