5.1 Economic dispatch of thermal units
5.1.1
System of N thermal generating units: PG1
F1 1
G PG2
F2 2
G PL PGN
FN N
G
Input for each thermal unit is the fuel cost per hour Fi with the dimension [$/h]. The electrical outputs PGi are connected to a single busbar serving a total load PL.
5.1 Economic dispatch of thermal units
5.1.2
Typical production cost curve for a steam turbine generating unit: Fi $ h ε
dFi = tan ε dPGi
=Incremental Cost
0 0
PGimin
PGimax
PGi [MW]
Fi: Fuel cost per hour [$/h]; PGi: Net electrical power [MW] The Fi(PGi) characteristic shown is idealized as a smooth and convex curve.
5.1 Economic dispatch of thermal units
Economic dispatch as a problem of constrained optimisation: Objective function: N
F = ∑ Fi (PGi ) = F1(PG1 ) + F2 (PG2 ) + L + FN (PGN ) i =1
Minimize: N
F = ∑ Fi (PGi ) i=1
Subject to the equality constraint N
∑P
Gi
= PL
i=1
and to the inequality constraints PGimin ≤ PGi ≤ PGimax
5.1.3
5.1 Economic dispatch of thermal units
5.1.4
Example with three generating units: Unit 1
Unit 2
Coal fired steam plant
Coal fired steam plant
max PG1
= 500 MW
PG2 = 500 MW
PG1 = 100 MW
PG2 = 100 MW
Input-output curve:
Input-output curve:
max min
min
2
2
H1 = 952.4 + 11.429 PG1 + 0.00762 PG1 [GJ/h] H2 = 1428.6 + 13.333 PG2 + 0.00952 PG2 [GJ/h] Fuel cost coal:
FC1 = 1.05
[$/GJ] 2
F1 = 1000 + 12 PG1 + 0.008 PG1 [$/h]
Fuel cost coal:
FC2 = 1.05
[$/GJ] 2
F2 = 1500 + 14 PG2 + 0.01 PG2 [$/h]
5.1 Economic dispatch of thermal units
5.1.5
Unit 3 Oil fired steam plant max
PG3 = 500 MW min
PG3 = 100 MW Input-output curve: 2
H3 = 2105.3 + 16.842 PG3 + 0.01263 PG3 [GJ/h] Fuel cost oil:
FC3 = 0.95
[$/GJ] 2
F3 = 2000 + 16 PG3 + 0.012 PG3
[$/h]
5.1 Economic dispatch of thermal units Unit 1
5.1.6 Unit 2
Unit 3
F1 [$/h]
F2 [$/h]
F3 [$/h]
10000
10000
10000
5000
5000
5000
0
0
0
0
100 200 300 400 500
PG1 [MW]
0
100 200 300 400 500
PG2 [MW]
0
100 200 300 400 500
PG3 [MW]
5.1 Economic dispatch of thermal units dF1 dPG1
Unit 1
dF2 dPG2
5.1.7 Unit 2
dF3 dPG3
Unit 3
$ MWh 30
$ MWh 30
$ MWh 30
20
20
20
10
10
10
0
0
0
0
100 200 300 400 500
PG1[MW]
0
100 200 300 400 500
PG2[MW]
0
100 200 300 400 500
PG3[MW]
5.1 Economic dispatch of thermal units
• All three units are committed • Lower and upper limits of generating units 1, 2, 3 are not considered • Find the operating point with the minimal fuel cost when a total load PL = 800 MW has to be served x1
Variables:
PG1
x 2 = PG2 x3
PG3
Objective function: F = 1000 + 12x1 + 0.008x12 + 1500 + 14x 2 + 0.01x 22 + 2000 + 16x 3 + 0.012x 32 Equality constraint: x1 + x 2 + x 3 = PL
5.1.8
5.1 Economic dispatch of thermal units
5.1.9
Lagrange function: L = 1000 + 12 x1 + 0.008x12 + 1500 + 14x 2 + 0.010x 22 + 2000 + 16 x 3 + 0.012x32
+ λ (PL − x1 − x 2 − x 3 )
Necessary conditions for an extremum are: ∂L =0 ∂x1
; 0.016 x1 + 12 − λ = 0
(1)
∂L = 0 ; 0.02 x 2 + 14 − λ = 0 ∂x 2
(2)
∂L = 0 ; 0.024 x 3 + 16 − λ = 0 ∂x 3
(3)
∂L =0 ∂λ
(4)
; PL − x1 − x 2 − x 3 = 0
5.1 Economic dispatch of thermal units
5.1.10
With PL = 800, equations (1) ... (4) can be solved directly for the unknowns x1, x2, x3, and λ . x1 = 432.4 x2 = 245.9 x3 = 121.6 = 18.919
PG1 = 432.4 MW PG2 = 245.9 MW PG3 = 121.6 MW
F = 17 354.9 $/h
= 18.919 $/MWh
Dispatch with minimal cost is achieved, when all units operate at equal incremental costs dF1 dF2 dF3 = = dPG1 dPG2 dPG3
λ=
and their individual production PGi add up to the total load PL 3
∑1 P i=
Gi
= PL
5.1 Economic dispatch of thermal units dF1 dPG1
Unit 1
dF2 dPG2
$ MWh 30
5.1.11 Unit 2
dF3 dPG3
Unit 3
$ MWh 30
$ MWh 30
20
20
10
10
10
0
0
0
λ = 18.919
0
100 200 300
500 432.4
PG1[MW]
0
100 200 300 400 500 245.9
800 MW
PG2[MW]
0
200 300 400 500 121.6
PG3[MW]