5. Polinomio De Taylor.pdf

  • Uploaded by: Pedro Melendez
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 5. Polinomio De Taylor.pdf as PDF for free.

More details

  • Words: 593
  • Pages: 2
POLINOMIO DE TAYLOR. TEOREMA DE TAYLOR. Funciones polin´ omicas. Dado el polinomio P (x) =

k=n X

bk (x − a)k = b0 + b1 (x − a) + b2 (x − a)2 + . . . + bn (x − a)n

k=0

y derivando se ve que sus coeficientes se pueden obtener como bk = En particular, si

P (k) (a) k!

P (x) = c0 + c1 x + c2 x2 + . . . + cn xn =⇒ ck =

P (k) (0) k!

Polinomio de Taylor Definici´ on. Si la funci´on f es derivable hasta orden n en x = a, de Taylor de grado n de f en a como Pn,f,a (x) =

k=n (k) X f (a) k=0

k!

(x − a)k = f (a) +

a ∈ Domf , se define polinomio

f 0 (a) f 00 (a) (x − a) + (x − a)2 + 1! 2!

f (n) (a) +... + (x − a)n n! Ejemplo. Calcular el polinomio de Taylor de

f (x) = ln(x)

en a = 1 hasta el orden 5.

Teorema de Taylor. Sea f derivable hasta el orden n + 1 en un entorno de x = a, a ∈ Dom f , se verifica que para todo punto de dicho entorno f (x) = f (a) +

f 0 (a) f 00 (a) f (n) (a) (x − a) + (x − a)2 + . . . + (x − a)n + 1! 2! n! f (n+1) (α) (x − a)n+1 (n + 1)! a < α < x o´ x < α < a +

f (n+1) (α) A Rn,a (x) = (x − a)n+1 se le llama Resto de Lagrange de orden n+1 (n + 1)! Ejemplos 1. Funci´on Exponencial f (k) (x) = ex ,

f (x) = ex

f (k) (0) = 1,

en a = 0

∀ k ∈ IN

ex = 1 + x +

x2 x3 xn eα + + ... + + xn+1 2! 3! n! (n + 1)! 0 < α < x o´ x < α < 0 1

2. Funci´on Logaritmo

f (k) (x) =

f (x) = ln(x)

(−1)k+1 (k − 1)! , xk

en a = 1

f (k) (1) = (−1)k+1 (k − 1)! ∀ k ≥ 1

ln(x) = (x − 1) −

(x − 1)n (x − 1)2 (x − 1)3 + − . . . + (−1)n+1 + 2 3 n +(−1)n+2

α−(n+1) (x − 1)n+1 (n + 1)

1 < α < x o´ 0 < x < α < 1 3. Funci´on seno

f (x) = sen x

f (2k) (x) = (−1)k sen x,

f (2k) (0) = 0

f (2k+1) (x) = (−1)k cos x, sen x = x −

en a = 0

f (2k+1) (0) = (−1)k ,

∀ k ∈ IN

x3 x5 x2n+1 cos α + − . . . + (−1)n + (−1)n+1 x2n+3 3! 5! (2n + 1)! (2n + 3)! 0 < α < x o´ x < α < 0

4. Funci´on coseno

f (x) = cos x

f (2k) (x) = (−1)k cos x,

f (2k) (0) = (−1)k

f (2k+1) (x) = (−1)k+1 sen x, cos x = 1 −

en a = 0

f (2k+1) (0) = 0,

∀ k ∈ IN

x 2 x4 x2n cos α + − . . . + (−1)n + (−1)n+1 x2n+2 2! 4! (2n)! (2n + 2)! 0 < α < x o´ x < α < 0

2

Related Documents

Polinomio Primo.docx
December 2019 17
Integral De Un Polinomio
December 2019 35
5 De
June 2020 6
De 5
November 2019 22

More Documents from ""

June 2020 10
August 2019 46
June 2020 1
April 2020 5