5. Murad

  • Uploaded by: sriharivelaga
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 5. Murad as PDF for free.

More details

  • Words: 1,534
  • Pages: 32
57

Fe Mössbauer Spectroscopy :

a Tool for the Remote Characterization of Phyllosilicates?

Enver Murad Marktredwitz, Germany

Basic principles of Mössbauer spectroscopy

Free emitting and absorbing atoms

E m is s io n

A b s o r p tio n

R e c o il

Energy of recoil

2 γ

E ER = 2 2mc

γ-ray energy Mass of atom

Emitting and absorbing atoms fixed in a lattice

E m is s io n

A b s o r p tio n

N o r e c o il

2 Mössbauer spectroscopy is the γrecoil-free emission R and absorption of gamma rays 2

E E = 2Mc    

 

Mass of particle

Appearance of Mössbauer spectra

Symmetric charge No magnetic field

Asymmetric charge No magnetic field

Bhf

Magnetic hyperfine field

Δ

Quadrupole splitting

δ

Isomer shift

Depending on the local environments of the Fe atoms and the magnetic properties, Mössbauer spectra of iron oxides can consist of a singlet, a doublet, or a sextet.

Symmetric or asymmetric charge Magnetic field (internal or external)

R e la t iv e T r a n s m is s io n



Fe3+

Fe2+

δ

-4

-2

0

V e lo c ity ( m m /s )

2

4

T r a n s m is s io n

∆ = 0 .4 1 m m /s [ ∆ = 0 .0 0 m m /s ] -1 0

-5

0

V e lo c ity ( m m /s )

5

10

Use of Mössbauer spectroscopy as a “fingerprinting” technique Isomer shifts and quadrupole splittings of Fe-bearing phases vary systematically as a function of Fe oxidation, Fe spin states, and Fe coordination. Knowledge of the Mössbauer parameters can therefore be used to “fingerprint” an unknown phase.

Hyperfine parameters of Fe3+ oxides Hematite

≤ 950

Magnetite

≤ 850

Magnetic hyperfine fields RT: Bhf (T) 4.2 K: Bhf (T) Δ (mm/s) ≤ 51.8 ≤ 53.5 -0.20 / 54.2 +0.41 ≤ 49.2 + 46.1 ≤ 50.6 { + 36 – 52 } #

Maghemite

≤ ~ 950

≤ 50.0 + 50.0 ≤ 52.0 + 53.0 ≤|0.02|

Goethite

≤ 400

≤ 38.0

Akaganéite

≤ 299



≤ 47.3 + 47.8 + 48.9

Lepidocrocite ≤ 77 Feroxyhyte ≤ 450



≤ 45.8

Mineral

Ferrihydrite Bernalite

Ordering temperature (K)

25 – 115 * ≤ 427

* Magnetic blocking temperature

0.02

≤ 53 + 52 ~0.0

≤ 41



47 – 50 -0.02 – -0.07

≤ 41.5 # several

≤ 50.6 -0.25

≤ 56.2 ≤|0.01|

B-site subspectra below 120 K

Iron in phyllosilicates

O

Fe3+

1:1 phyllosilicates

Si O H ,O

Fe2+, Fe3+

Al

O

Fe2+,

2:1 phyllosilicates

Si

Fe3+ Al

Fe3+

O H Si O

Classification of clay-sized phyllosilicates (clay minerals sensu stricto) Layer type

Octahedral occupancy

Octahedral charge 1

Central cation(s)

Group

Common species

1:1

Di 2

0

Al, (Fe)

Kaolin

Kaolinite, halloysite

1:1

Tri 3

0

Mg, (Fe)

Serpentine

Lizardite, chrysotile

2:1

Di

< 0.2

Al, (Fe)

Pyrophyllite

Pyrophyllite

2:1

Tri

< 0.2

Mg, (Fe)

Talc

Talc, minnesotaite

2:1

Di / Tri

0.2 – 0.6

Al, Mg, Fe

Smectite

Montmorillonite, nontronite

2:1

Di / Tri

0.6 – 0.9

Al, Mg, Fe

Vermiculite

Vermiculite

2:1

Di / Tri

> 0.9

Al, Mg, Fe

Mica

Illite, glauconite

2 : 1 (: 1)

Di / Tri

Al, Mg, Fe

Chlorite

Clinochlore, chamosite

1 Per

formula unit [O10(OH)2], 2/3 Dioctahedral/Trioctahedral

Mössbauer spectra of selected “simple” (pure) clay minerals

The “simplest” clay mineral: kaolinite [Al2Si2O5(OH)4] 100

T r a n s m is s io n ( % )

9 9 .5

O

99

Si 9 8 .5

O H ,O 98

Al -7 .5

-5

-2 .5

0

V e lo c ity ( m m /s )

2 .5

5

7 .5

Kaolin / Jari @ 295 K

T r a n s m is s io n ( % )

100

99

98

97 -1 0

-5

0

V e lo c ity ( m m /s )

5

10

Kaolin / Jari @ 4.2 K

Mössbauer parameters of clay minerals Mineral

Temp

Isomer shift Quadruple (δ/Fe) splitting (Δ)

Kaolinite

RT

0.35 *

0.51*

* Average values. Isomer shift relative to α-Fe at room temperature. Only Fe3+ considered.

Illite: (K,H3O)x+y(Al2-xMx)(Si4-yAly)O10(OH)2 T r a n sTmr ai sn ss i om n i s ( s%i o ) n ( % )

100 99

Fe3+: 2 Δ

98 97 100 96 99 95 9 8 -6

-3

0

-3

0

Fe3 3+: P(Δ) 6

97 96 95

(% )

16

-6

3

6

12

P

8 4 0 0

0 .2 5

0 .5

0 .7 5

1

1 .2 5

 (m m /s )

1 .5

1 .7 5

2

2 .2 5

Illite OECD #5

Mössbauer parameters of clay minerals Mineral

Temp

Isomer shift Quadruple (δ/Fe) splitting (Δ)

Kaolinite

RT

0.35

0.51

Illite

RT

0.35

0.59 – 0.73 *

* Average values for Fe-poor (≤ 3% Fe) and Fe-rich (> 5% Fe) samples, respectively

Nontronite: MxFe3+ 2 (Si4-xFex)O10(OH)2 T r a n s m T i rs as ni os nm (i s% s )i o n ( % )

100

RT

23.46 % Fe

90

80

70 100 -1 0

-5

95

0

V e lo c ity ( m m /s )

5

10

77 K

1.44 % Fed → 2.3 % Gt From Asext → 1.4 % Gt

90 85 -1 0

-5

0

V e lo c ity ( m m /s )

5

10

Nontronite API H33a

Nontronite: MxFe3+ 2 (Si4-xFex)O10(OH)2 Fe2+/(Fe2++Fe3+) = 0.15

100

DCB T ra n s m is s io n (% )

98

96 100 98

-4

-2

-4

-2

96

0

2

4

0

2

4

V e lo c it y ( m m / s )

Reoxidized 644 days in air → no Fe2+

94 92

V e lo c ity ( m m /s )

Nontronite API H33a

Mössbauer parameters of clay minerals Mineral

Temp

Isomer shift Quadruple (δ/Fe) splitting (Δ)

Kaolinite

RT

0.35

0.51

Illite

RT

0.35

0.59 – 0.73

Nontronite

RT

0.35

0.35

Complex natural clays : “The real world”

Na+ H2O

CH4 Fe3+

Fe2+

Phyllosilicate Note: Fe-containing with intercalated interlayer must interlayer interlayer: be frozen to show “Nature’s trashcan” Mössbauer Effect

Physics Today 61 (8)

1 0 0 .0

T ra n s m is s io n (% )

9 9 .8 9 9 .6

1 0 0 .0 9 9 .8 9 9 .6 DCB-treated

-1 0

-5

−0.11 % goethite

0

V e lo c ity ( m m /s )

5

10

Kaolin “Wolfka” @ 4.2 K

T r a n s m i t t a n c e ( %T r )a n s m i s s i o n ( % )

100

98

B X -N 96 100

-1 0

-5

0

V e lo c ity ( m m /s )

5

10

99

295 K

3 x D C B

98 -1 0

-5

0

V e lo c ity ( m m /s )

5

Bauxite 10

100 98

295 K

96 94

T r a n s m is s io n ( % )

92 100

120 K

98 96 100

77 K

98 96 100

4 .2 K

98

Red soil

96 -1 0

-5

0

V e lo c it y ( m m / s )

5

10

Extraterrestrial Mössbauer spectroscopy  Lunar samples  In situ Mössbauer spectroscopy on Mars

Lunar “soil” 10084 N a n o p h a s e ir o n

M e ta llic ir o n

R e s o n a n t a b s o r p tio n

F e 2 + in o liv in e F e 2 + in ilm e n ite F e 2 + in p y r o x e n e F e 2 + in g la s s

W a n g e t a l., 1 9 9 5 -5

0 V e lo c ity ( m m /s )

5

S.S. Hafner, 1975: “The data should not ... be interpreted in an isolated form, but ... correlated with the results of other techniques ...”. For lunar samples, this is possible !

——— Fe2+ sulfate ?

?

?

“The shouldthe notbroad ... bedoublet interpreted in aninisolated form, “… data we assign present Mössbauer but ... correlated with thetoresults other 2+techniques ...” spectra of [Mars] soils be dueofto Fe sulfates rather NASA/JPL/University of Mainz (S.S. thanHafner olivine1975) … ” (Bishop et al. 2004)

Summar y

Strengths and weaknesses of 57Fe Mössbauer spectroscopy Strengths • Sensitive only to 57Fe (no matrix effects) • Sensitive to oxidation state • Allows distinction of magnetic phases • Very sensitive towards magnetic phases • Non-destructive • Resolution limited by uncertainty principle

Weaknesses • Sensitive only to 57Fe (“sees” only 57Fe) • Coordination ? to ± • Paramagnetic phase data often ambiguous • Diamagnetic element substitution & relaxation • Slow • If possible, use other techniques as well

Often a combination of Mössbauer spectroscopy with other techniques can help solve problems that cannot be resolved using Mössbauer spectroscopy alone.

Related Documents

5. Murad
December 2019 6
Hadji Murad
May 2020 3
Ali Murad
November 2019 9
Cv Murad Bmd
November 2019 2
Murad Iv Of Turkey.docx
October 2019 5

More Documents from "Jahangir Milton"

5. Murad
December 2019 6