57
Fe Mössbauer Spectroscopy :
a Tool for the Remote Characterization of Phyllosilicates?
Enver Murad Marktredwitz, Germany
Basic principles of Mössbauer spectroscopy
Free emitting and absorbing atoms
E m is s io n
A b s o r p tio n
R e c o il
Energy of recoil
2 γ
E ER = 2 2mc
γ-ray energy Mass of atom
Emitting and absorbing atoms fixed in a lattice
E m is s io n
A b s o r p tio n
N o r e c o il
2 Mössbauer spectroscopy is the γrecoil-free emission R and absorption of gamma rays 2
E E = 2Mc
Mass of particle
Appearance of Mössbauer spectra
Symmetric charge No magnetic field
Asymmetric charge No magnetic field
Bhf
Magnetic hyperfine field
Δ
Quadrupole splitting
δ
Isomer shift
Depending on the local environments of the Fe atoms and the magnetic properties, Mössbauer spectra of iron oxides can consist of a singlet, a doublet, or a sextet.
Symmetric or asymmetric charge Magnetic field (internal or external)
R e la t iv e T r a n s m is s io n
∆
Fe3+
Fe2+
δ
-4
-2
0
V e lo c ity ( m m /s )
2
4
T r a n s m is s io n
∆ = 0 .4 1 m m /s [ ∆ = 0 .0 0 m m /s ] -1 0
-5
0
V e lo c ity ( m m /s )
5
10
Use of Mössbauer spectroscopy as a “fingerprinting” technique Isomer shifts and quadrupole splittings of Fe-bearing phases vary systematically as a function of Fe oxidation, Fe spin states, and Fe coordination. Knowledge of the Mössbauer parameters can therefore be used to “fingerprint” an unknown phase.
Hyperfine parameters of Fe3+ oxides Hematite
≤ 950
Magnetite
≤ 850
Magnetic hyperfine fields RT: Bhf (T) 4.2 K: Bhf (T) Δ (mm/s) ≤ 51.8 ≤ 53.5 -0.20 / 54.2 +0.41 ≤ 49.2 + 46.1 ≤ 50.6 { + 36 – 52 } #
Maghemite
≤ ~ 950
≤ 50.0 + 50.0 ≤ 52.0 + 53.0 ≤|0.02|
Goethite
≤ 400
≤ 38.0
Akaganéite
≤ 299
–
≤ 47.3 + 47.8 + 48.9
Lepidocrocite ≤ 77 Feroxyhyte ≤ 450
–
≤ 45.8
Mineral
Ferrihydrite Bernalite
Ordering temperature (K)
25 – 115 * ≤ 427
* Magnetic blocking temperature
0.02
≤ 53 + 52 ~0.0
≤ 41
–
47 – 50 -0.02 – -0.07
≤ 41.5 # several
≤ 50.6 -0.25
≤ 56.2 ≤|0.01|
B-site subspectra below 120 K
Iron in phyllosilicates
O
Fe3+
1:1 phyllosilicates
Si O H ,O
Fe2+, Fe3+
Al
O
Fe2+,
2:1 phyllosilicates
Si
Fe3+ Al
Fe3+
O H Si O
Classification of clay-sized phyllosilicates (clay minerals sensu stricto) Layer type
Octahedral occupancy
Octahedral charge 1
Central cation(s)
Group
Common species
1:1
Di 2
0
Al, (Fe)
Kaolin
Kaolinite, halloysite
1:1
Tri 3
0
Mg, (Fe)
Serpentine
Lizardite, chrysotile
2:1
Di
< 0.2
Al, (Fe)
Pyrophyllite
Pyrophyllite
2:1
Tri
< 0.2
Mg, (Fe)
Talc
Talc, minnesotaite
2:1
Di / Tri
0.2 – 0.6
Al, Mg, Fe
Smectite
Montmorillonite, nontronite
2:1
Di / Tri
0.6 – 0.9
Al, Mg, Fe
Vermiculite
Vermiculite
2:1
Di / Tri
> 0.9
Al, Mg, Fe
Mica
Illite, glauconite
2 : 1 (: 1)
Di / Tri
Al, Mg, Fe
Chlorite
Clinochlore, chamosite
1 Per
formula unit [O10(OH)2], 2/3 Dioctahedral/Trioctahedral
Mössbauer spectra of selected “simple” (pure) clay minerals
The “simplest” clay mineral: kaolinite [Al2Si2O5(OH)4] 100
T r a n s m is s io n ( % )
9 9 .5
O
99
Si 9 8 .5
O H ,O 98
Al -7 .5
-5
-2 .5
0
V e lo c ity ( m m /s )
2 .5
5
7 .5
Kaolin / Jari @ 295 K
T r a n s m is s io n ( % )
100
99
98
97 -1 0
-5
0
V e lo c ity ( m m /s )
5
10
Kaolin / Jari @ 4.2 K
Mössbauer parameters of clay minerals Mineral
Temp
Isomer shift Quadruple (δ/Fe) splitting (Δ)
Kaolinite
RT
0.35 *
0.51*
* Average values. Isomer shift relative to α-Fe at room temperature. Only Fe3+ considered.
Illite: (K,H3O)x+y(Al2-xMx)(Si4-yAly)O10(OH)2 T r a n sTmr ai sn ss i om n i s ( s%i o ) n ( % )
100 99
Fe3+: 2 Δ
98 97 100 96 99 95 9 8 -6
-3
0
-3
0
Fe3 3+: P(Δ) 6
97 96 95
(% )
16
-6
3
6
12
P
8 4 0 0
0 .2 5
0 .5
0 .7 5
1
1 .2 5
(m m /s )
1 .5
1 .7 5
2
2 .2 5
Illite OECD #5
Mössbauer parameters of clay minerals Mineral
Temp
Isomer shift Quadruple (δ/Fe) splitting (Δ)
Kaolinite
RT
0.35
0.51
Illite
RT
0.35
0.59 – 0.73 *
* Average values for Fe-poor (≤ 3% Fe) and Fe-rich (> 5% Fe) samples, respectively
Nontronite: MxFe3+ 2 (Si4-xFex)O10(OH)2 T r a n s m T i rs as ni os nm (i s% s )i o n ( % )
100
RT
23.46 % Fe
90
80
70 100 -1 0
-5
95
0
V e lo c ity ( m m /s )
5
10
77 K
1.44 % Fed → 2.3 % Gt From Asext → 1.4 % Gt
90 85 -1 0
-5
0
V e lo c ity ( m m /s )
5
10
Nontronite API H33a
Nontronite: MxFe3+ 2 (Si4-xFex)O10(OH)2 Fe2+/(Fe2++Fe3+) = 0.15
100
DCB T ra n s m is s io n (% )
98
96 100 98
-4
-2
-4
-2
96
0
2
4
0
2
4
V e lo c it y ( m m / s )
Reoxidized 644 days in air → no Fe2+
94 92
V e lo c ity ( m m /s )
Nontronite API H33a
Mössbauer parameters of clay minerals Mineral
Temp
Isomer shift Quadruple (δ/Fe) splitting (Δ)
Kaolinite
RT
0.35
0.51
Illite
RT
0.35
0.59 – 0.73
Nontronite
RT
0.35
0.35
Complex natural clays : “The real world”
Na+ H2O
CH4 Fe3+
Fe2+
Phyllosilicate Note: Fe-containing with intercalated interlayer must interlayer interlayer: be frozen to show “Nature’s trashcan” Mössbauer Effect
Physics Today 61 (8)
1 0 0 .0
T ra n s m is s io n (% )
9 9 .8 9 9 .6
1 0 0 .0 9 9 .8 9 9 .6 DCB-treated
-1 0
-5
−0.11 % goethite
0
V e lo c ity ( m m /s )
5
10
Kaolin “Wolfka” @ 4.2 K
T r a n s m i t t a n c e ( %T r )a n s m i s s i o n ( % )
100
98
B X -N 96 100
-1 0
-5
0
V e lo c ity ( m m /s )
5
10
99
295 K
3 x D C B
98 -1 0
-5
0
V e lo c ity ( m m /s )
5
Bauxite 10
100 98
295 K
96 94
T r a n s m is s io n ( % )
92 100
120 K
98 96 100
77 K
98 96 100
4 .2 K
98
Red soil
96 -1 0
-5
0
V e lo c it y ( m m / s )
5
10
Extraterrestrial Mössbauer spectroscopy Lunar samples In situ Mössbauer spectroscopy on Mars
Lunar “soil” 10084 N a n o p h a s e ir o n
M e ta llic ir o n
R e s o n a n t a b s o r p tio n
F e 2 + in o liv in e F e 2 + in ilm e n ite F e 2 + in p y r o x e n e F e 2 + in g la s s
W a n g e t a l., 1 9 9 5 -5
0 V e lo c ity ( m m /s )
5
S.S. Hafner, 1975: “The data should not ... be interpreted in an isolated form, but ... correlated with the results of other techniques ...”. For lunar samples, this is possible !
——— Fe2+ sulfate ?
?
?
“The shouldthe notbroad ... bedoublet interpreted in aninisolated form, “… data we assign present Mössbauer but ... correlated with thetoresults other 2+techniques ...” spectra of [Mars] soils be dueofto Fe sulfates rather NASA/JPL/University of Mainz (S.S. thanHafner olivine1975) … ” (Bishop et al. 2004)
Summar y
Strengths and weaknesses of 57Fe Mössbauer spectroscopy Strengths • Sensitive only to 57Fe (no matrix effects) • Sensitive to oxidation state • Allows distinction of magnetic phases • Very sensitive towards magnetic phases • Non-destructive • Resolution limited by uncertainty principle
Weaknesses • Sensitive only to 57Fe (“sees” only 57Fe) • Coordination ? to ± • Paramagnetic phase data often ambiguous • Diamagnetic element substitution & relaxation • Slow • If possible, use other techniques as well
Often a combination of Mössbauer spectroscopy with other techniques can help solve problems that cannot be resolved using Mössbauer spectroscopy alone.