4ach03(more About Polynomials)

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 4ach03(more About Polynomials) as PDF for free.

More details

  • Words: 16,170
  • Pages: 27
Certificate Mathematics in Action Full Solutions 4A

More about Polynomials

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Activity

4.



Activity 3.1 (p. 143)

2.

=0

∴ ∵

f (3) =33 −2(3) 2 −5(3) +6 =27 −18 −15 +6 =0

1.

(a)

= −1 −2 +5 +6

Yes. Since f (3) = 0 , i.e. when f(x) is

=8 ≠0



factor of x 3 − 2 x 2 − 5 x + 6 . ∵

≠0

∴ ∵

f ( −2) = ( −1)3 −2( −1) 2 −5( −1) +6 = −1 −2 +5 +6 =8 ≠0 f ( −2) = 0 , therefore x + 2 is a factor of x 3 − 2 x 2 − 5 x + 6 ; f ( −1) = 8 ,

=0



x + 2 is a factor of f(x).



f (3) =33 −2(3) 2 −5(3) +6 = 27 −18 −15 +6 =0

x3 − 2 x 2 − 5 x + 6 .

∴ ∵

Activity 3.2 (p. 149)

= −24

= x 2 + ax 2 + bx 2 + abx + cx + ac = x 3 + ( a + b) x 2 + (ab + c) x + ac



≠0 x +3 is not a factor of f(x). f (6) = 6 3 −2(6) 2 −5(6) +6

By comparing the coefficients,

ac = 6



∴ The product of a and c is 6.

∴ ∵

3. √

x −1



x +1



x −2



x +2



x −3



x +3

x −4

x +4

x −5

x +5

= 216 −72 −30 +6 =120

The possible values of a are ± 1, ± 2, ± 3, ± 6. a is a factor of the constant term of f(x).



x −3 is a factor of f(x).

f ( −3) = ( −3)3 −2( −3) 2 −5( −3) +6 = −27 −18 +15 +6

f ( x) = ( x + a)( x 2 + bx + c )

x −6

x − 2 is not a factor of f(x).

f ( −2) =( −2) 3 −2( −2) 2 −5( −2) +6 =−8 −8 +10 +6

therefore x +1 is not a factor of

≠0 x −6 is not a factor of f(x).

f ( −6) = ( −6)3 −2(−6) 2 −5(−6) +6 = −216 −72 +30 +6 = −252

x +6 5.

59

= 8 −8 −10 +6 = −4

f ( −2) = ( −2)3 −2( −2) 2 −5( −2) +6 = −8 −8 +10 +6 =0



x +1 is not a factor of f(x). f ( 2) = 2 3 −2( 2) 2 −5( 2) +6

(b)

2.

x −1 is a factor of f(x).

f ( −1) =( −1) 3 −2( −1) 2 −5( −1) +6

divided by x −3 , the remainder is 0, it means that f(x) is divisible by x −3 , so x −3 is a

1.

f (1) =13 −2(1) 2 −5(1) +6 =1 −2 −5 +6

∴ ∴

≠0 x + 6 is not a factor of f(x). One of the factors of f(x) is x −3 , x −1 or x +2 .



The factor of f(x) are x −3 , x −1 and

More about Polynomials x +2 . ∴

f ( x ) =( x − 3)( x − 1)( x +2)

60

Certificate Mathematics in Action Full Solutions 4A

Follow-up Exercise

( 4 x − x 2 ) + x ( x +1)( x −1) −( x 3 − 2) = ( 4 x − x 2 ) +[ x( x ) + x (1)]( x −1) −( x 3 − 2)

p.130

1.

= ( 4 x − x 2 ) + ( x 2 + x )( x −1) −( x 3 − 2)

(5 − x −4 x 2 ) +(7 x 3 − x +1)

= ( 4 x − x 2 ) + ( x 2 + x )( x ) + ( x 2 + x )( −1) −( x 3 − 2)

= 5 − x −4 x 2 +7 x 3 − x +1

= ( 4 x − x 2 ) + x 3 + x 2 − x 2 − x −( x 3 − 2)

= 7 x 3 −4 x 2 − x − x +5 +1

= 4 x − x 2 + x3 − x − x3 + 2

= 7 x 3 − 4 x 2 −2 x + 6

= x3 − x3 − x 2 + 4 x − x + 2 = − x 2 +3 x + 2

Alternative Solution −4 x 2 −x +5

p. 132

+) 7 x 3 +0 x 2 −x +1

(5 x 3 + 4 x ) ÷ x

7 x −4 x −2 x +6 3

2

(3 x 3 +7 x 2 − 2 x +1) −( x 3 −2 x −5) 2.

1.

(a)

= 3 x 3 +7 x 2 −2 x +1 − x 3 + 2 x +5 = 3 x 3 − x 3 +7 x 2 − 2 x + 2 x +1 +5

5 x3 + 4 x x 3 5x 4x = + x x 2 = 5x + 4 =

= 2 x 3 +7 x 2 + 6

(8 x 3 + 4 x 2 + 4 x) ÷ 2 x

Alternative Solution 3 x 3 +7 x 2 −2 x +1 −)

(b)

x 3 +0 x 2 −2 x −5 2 x 3 +7 x 2 +0 x +6

∴ The answer is 2x3 + 7x2 + 6.

8 x3 + 4 x 2 + 4 x 2x 3 8x 4x2 4x = + + 2x 2x 2x 2 = 4x + 2x + 2 =

3.

3x − 2

( 2 x 3 +4 x −1)( 2 −3 x ) =( 2 x 3 −4 x −1)( −3 x +2) =( 2 x 3 +4 x −1)( −3 x ) +( 2 x 2 +4 x −1)( 2)

2.

(a)

=−6 x 4 −12 x 2 +3 x +4 x 3 +8 x −2 =−6 x 4 +4 x 3 −12 x 2 +3 x +8 x −2

x 3x 2 − 2 x 3x − 2x − 2x

=−6 x 4 +4 x 3 −12 x 2 +11 x −2

3x 2 + 4 x + 3

Alternative Solution 2x3 ×) −6 x

4

+0 x

3

−12 x

2

4x3 + 0x 2

+) −6 x

4

+4 x

3

2 x 6 x3 + 8 x 2 + 6 x −1

+0 x 2 +4 x −1 −3 x +2

−12 x

2

+3 x +8 x −2

6 x3 (b)

8x2 8x2

+11 x −2

6x 6x

4.

−1 p.135

61

3

x −1 x −1 x 2 − 2 x + 3 x2

1.

2 ∴



The quotient is x −1 and the remainder is 2.

2.

Remainder = f  −

(e)

Remainder = f (0)



(f)

Remainder = f ( 2)

(a)

Let f ( x ) = x 3 − 4 . = f (1) Remainder =13 −4

3x + 2

=−3

2 x +1 6 x 2 + 7 x − 5 6 x 2 + 3x 4x − 5 4x + 2

2.

(b) Let f ( x ) = 2 x 3 −3 x 2 + x +1 . Remainder = f ( −2) = 2( −2) 3 −3( −2) 2 +( −2) +1

−7 ∴ -7.

3  2

(d)

−x − x +3 − x +1

More about Polynomials

The quotient is 3 x + 2 and the remainder is

= −16 −12 −2 +1 = −29

x 2 − 7 x + 23 x + 3 x3 − 4 x 2 + 2 x + 1 x3 + 3x 2 − 7 x2 + 2x

3.

(c)

− 7 x 2 − 21 x 23 x + 1 23 x + 69 − 68 ∴

The quotient is x − 7 x + 23 and the remainder is −68. 2

2x − 5

1  = f  3 3

2

1  1  1  = 27   −18   + 3  − 5 3 3     3 = 1 − 2 +1 − 5 = −5

2 x 2 + x + 1 4 x3 − 8 x 2 + 0 x + 7

(d) Let f ( x ) = x 4 + x 2 + 3 .

4 x3 + 2 x 2 + 2 x

4.

Let f ( x ) = 27 x 3 −18 x 2 +3 x −5 . Remainder

 1 = f −   2

− 10 x 2 − 2 x + 7 − 10 x 2 − 5 x − 5

4

3 x + 12 ∴

The quotient is 2 x − 5 and the remainder is 3 x +12 .

p.141 1.

(a)

Remainder = f (1) (b) (c)

Remainder = f (−2)

1   5 

Remainder = f 

2

 1  1 = −  + −  + 3 Remainder  2  2 1 1 = + +3 16 4 53 = 16 3.

Let f ( x ) = 3 x 3 + 4 x 2 + ax + b . When f(x) is divided by x +1 ,

f ( −1) = 4 3( −1) + 4( −1) + a ( −1) +b = 4 …… − a +b = 3 3

2

62

Certificate Mathematics in Action Full Solutions 4A f (3) = 2(3) 3 −5(3) 2 −3 +1

(1)

=54 −45 −3 +1

(a)

When f(x) is divided by

=7

,

x −2 f ( 2) = 28

≠0



x −3 is not a factor of

2 x − 5 x 2 − x +1 . 3

3( 2) + 4( 2) + a ( 2) + b = 28 …… (2) 2a + b = −12 3

2

(b)

(2) − (1), 3a = −15 a = −5

f ( −4) = 2( −4)3 −5( −4) 2 −( −4) +1 = −128 −80 +4 +1

By substituting a = −5 into (1), we have −( −5) +b = 3 . b = −2

= −203 ∴

≠0 x + 4 is not a factor of

2 x 3 − 5 x 2 − x +1 .

p.146

(c) Let f ( x ) = x − 4 x − 7 x +10 . 3

1. (a)

2

3

=0



x −1 is a factor of

x 3 − 4 x 2 − 7 x +10 . f ( 2) = 23 −4( 2) 2 −7( 2) +10

2 x 3 − 5 x 2 − x +1 .

=8 −16 −14 +10

(b)

3

≠0

x − 2 is not a factor of x 3 − 4 x 2 − 7 x +10 .

(c)

f ( −1) = ( −1)3 −4( −1) 2 −7( −1) +10 = −1 −4 +7 +10

2 x 3 − 5 x 2 − x +1 .

=12 ∴

≠0 x +1 is not a factor of

x 3 − 4 x 2 − 7 x +10 . (d)

3.

Let f ( x ) = 4 x 3 − kx 2 + 9 x − 2 .



4 x 3 − kx 2 + 9 x − 2 is divisible by

4 x −1 . ∴

By the converse of the factor theorem,

1 f =0 2

f ( −2) = ( −2)3 −4( −2) 2 −7( −2) +10 = −8 −16 +14 +10 =0



x + 2 is a factor of x 3 − 4 x 2 − 7 x +10 .

2.

63

2

1 1 1 1 f   = 2  − 5  −   + 1 2 2 2 2 1 5 1 (d) = − − +1 4 4 2 1 =− 2 ≠0 ∴ 2 x −1 is a factor of

= −12 ∴

2

 1  1  1  1 f  −  = 2 −  − 5 −  −  −  + 1 2 2      2  2 1 5 1 = − − + +1 4 4 2 =0 ∴ 2 x +1 is a factor of

f (1) =13 −4(1) 2 −7(1) +10 =1 −4 −7 +10

Let f ( x ) = 2 x 3 −5 x 2 − x +1 .

3

2

1 1 1 4  − k   + 9  − 2 = 0 4 4 4 . 1 k 9 − + −2 = 0 16 16 4 k 5 = 16 16 k =5

3

4.

(a)

f (3) = 33 −5(3) 2 +8(3) −6



= 27 −45 + 24 −6 =0

(b)

x 2 − x − 12 x + 3 x 3 + 2 x 2 − 15 x − 36 x3 + 3 x 2

x −3 is a factor of f(x).



More about Polynomials

− x 2 − 15 x

By long division,

− x2

x2 − 2x + 2

− 3x − 12 x − 36

x − 3 x3 − 5 x 2 + 8 x − 6

− 12 x − 36

x3 − 3x 2 − 2x2 + 8x − 2x2 + 6x 2x − 6 2x − 6 Hence,

f ( x ) =( x −3)( x 2 −2 x +2)

∴ x 3 +2 x 2 −15 x −36 = ( x +3)( x 2 −x −12 ) = ( x −4)( x +3) 2

∴ x 3 +2 x 2 −15 x −36 = ( x +3)( x 2 −x −12 ) = ( x −4)( x +3) 2

p.152 1.

3. Let f ( x) = x 3 + 2 x 2 − x − 2 .



f (1) =13 +2(1) 2 −1 −2 =0



x −1 is a factor of f(x).

Let f ( x) = x 3 − 7 x + 6 .



f (1) =13 −7(1) +6 =0



x −1 is a factor of f(x).

By long division,

x2 + x − 6

By long division,

x 2 + 3x + 2

x −1 x 3 + 0 x 2 − 7 x + 6

x −1 x 3 + 2 x 2 − x − 2

x3 − x 2

x3 − x 2

x2 − 7 x x2 −

3x 2 − x 3x − 3x 2

− 6x + 6 − 6x + 6

2x − 2 2x − 2 ∴



x 3 +2 x 2 −x −2 =( x −1)( x 2 +3 x +2) =( x −1)( x +1)( x +2)

2. ∵

Let f ( x ) = x 3 + 2 x 2 −15 x −36 .

f (1) =13 +2(1) 2 −15 (1) −36 =−48 ≠0 3

f ( −1) =( −1) +2( −1) 3

f ( 2) =2 +2( 2)

2

2

−15 ( −1) −36 =−20 ≠0

−15 ( 2) −36 =−50 ≠0

4.

x 3 −7 x 2 +6 =( x −1)( x 2 + x −6) =( x −2)( x −1)( x +3)

Let f ( x ) = x 3 + 3 x 2 − x −3 .



f (1) =13 +3(1) 2 −1 −3 =0



x −1 is a factor of f(x).

By long division,

x2 + 4x + 3 x −1 x 3 + 3 x 2

− x −3

x3 − x 2

f ( −2) =( −2) 3 +2( −2) 2 −15 ( −2) −36 =−6 ≠0

4x2 −

f (3) =33 +2(3) 2 −15 (3) −36 =−36 ≠0

x

4x2 − 4x

f ( −3) =( −3) 3 +2( −3) 2 −15 ( −3) −36 =0 ∴

x

x + 3 is a factor of f(x).

3x − 3 3x − 3

By long division, ∴

64

Certificate Mathematics in Action Full Solutions 4A ( 2 x −3 x 2 +1) −(3 x 2 −4 x +1)

x 3 +3 x 2 −x −3 =( x −1)( x 2 +4 x +3) =( x −1)( x +1)( x +3)

3.

= −3 x 2 −3 x 2 +2 x +4 x +1 −1

5. 2 x 3 + 2 x 2 −16 x − 24 = 2( x 3 + x 2 −8 x −12 )

= −6 x 2 +6 x

Let f ( x ) = x 3 + x 2 −8 x −12 . ∵ f (1) =13 +12 −8(1) −12 =−18 ≠0

(3 x 2 −2 x 3 −7 x −4) −( 4 x 2 −6 x −5)

4.

= −2 x 3 − x 2 − x +1

f ( 2) =2 3 +2 2 −8( 2) −12 =−16 ≠0

( 4 x 2 +3 x +1)( x +1)

f ( −2) =( −2) 3 +( −2) 2 −8( −2) −12 =0

x + 2 is a factor of f(x).

= ( 4 x 2 +3 x +1)( x ) +( 4 x 2 +3 x +1)(1) 5.

By long division,

= 4 x 3 +7 x 2 +4 x +1

x 3 + x 2 −8 x −12 = ( x −3)( x + 2) 2

( x +3)( x 2 −2 x )

∴ 2 x 3 +2 x 2 − 16 x −24 =2( x −3)( x +2) 2

6. ∴ ∴

6.

= ( x +3)( x 2 ) +( x +3)( −2 x ) = x 3 +3 x 2 −2 x 2 −6 x = x 3 + x 2 −6 x

Let f ( x ) = 2 x 3 + 7 x 2 − 44 x + 35 .

f (1) =2(1) 3 +7(1) 2 −44 (1) +35 =0

= 4 x 3 +3 x 2 + x +4 x 2 +3 x +1 = 4 x 3 +3 x 2 +4 x 2 + x +3 x +1

x 3 + x 2 −8 x −12 = ( x + 2)( x 2 − x − 6) ∴

= 3 x 2 −2 x 3 −7 x −4 −4 x 2 +6 x +5 = −2 x 3 +3 x 2 −4 x 2 −7 x +6 x −4 +5

f ( −1) =( −1) 3 +( −1) 2 −8( −1) −12 =−4 ≠0



= 2 x −3 x 2 +1 −3 x 2 +4 x −1

7.

x −1 is a factor of f(x).

(3 x −2)( 2 x 2 −4 x −1)

By long division,

= (3 x −2)( 2 x 2 ) +(3 x −2)( −4 x ) +(3 x −2)( −1)

2 x 3 +7 x 2 −44 x +35 =( x −1)( 2 x 2 +9 x −35 ) =( x −1)( 2 x −5)( x +7)

= 6 x 3 −4 x 2 −12 x 2 +8 x −3 x +2 = 6 x 3 −16 x 2 +5 x +2

8.

Exercise

( 2 x +1)( x 2 − x +1) +( 2 x +1) 2 = ( 2 x +1)( x 2 ) +( 2 x +1)( −x) +( 2 x +1)(1) +

Exercise 3A (p.130)

( 4 x 2 +4 x +1)

Level 1

= 2 x 3 + x 2 −2 x 2 − x +2 x +1 +4 x 2 +4 x +1 = 2 x 3 + x 2 −2 x 2 +4 x 2 − x +2 x +4 x +1 +1

( x 3 −5 x + 4) + ( x 3 + 2 x 2 −5) 1.

= x 3 + x 3 + 2 x 2 − 5 x + 4 −5 = 2 x 3 + 2 x 2 −5 x −1 (6 x 3 −3 x + 2) + ( −2 x 3 − 4 x 2 + 2 x −1)

2.

= 2 x 3 +3 x 2 +5 x +2

= x 3 − 5 x + 4 + x 3 + 2 x 2 −5

Level 2 9.

= 6 x 3 −3 x + 2 − 2 x 3 − 4 x 2 + 2 x −1

( 4 x 3 −3 x −7) −( 2 x 3 − 4 x 2 −7 x ) −(6 x 2 −5 x −5)

= 6 x 3 − 2 x 3 − 4 x 2 −3 x + 2 x + 2 −1

= 4 x 3 −3 x − 7 − 2 x 3 + 4 x 2 + 7 x − 6 x 2 + 5 x + 5

= 4 x 3 − 4 x 2 − x +1

= 4 x 3 − 2 x 3 + 4 x 2 −6 x 2 −3 x + 7 x +5 x −7 +5 = 2 x 3 − 2 x 2 +9 x − 2 10.

65

3

More about Polynomials

(5 x 3 − 6 x 2 − x + 3) + (7 x 3 − 5 x 2 − x + 3) −

Q 2 − PQ

( x 3 − 2 x 2 + 2 x − 5)

= (3 x 2 −5) 2 −( x 2 −3 x −5)( 3 x 2 −5)

= 5 x3 − 6 x 2 − x + 3 + 7 x3 −5 x 2 − x + 3 −

= 9 x 4 −30 x 2 + 25 − ( x 2 −3 x −5)( 3 x 2 ) −

x3 + 2 x 2 − 2 x + 5

( x 2 −3 x −5)( −5)

= 5 x3 + 7 x3 − x3 − 6 x 2 − 5 x 2 + 2 x 2 − x − x −

= 9 x 4 −30 x 2 + 25 −3 x 4 + 9 x 3 +15 x 2 + 5 x 2 −

2x +3 +3 +5

15 x − 25

= 11 x − 9 x − 4 x +11 3

= 9 x 4 −3 x 4 + 9 x 3 −30 x 2 +15 x 2 + 5 x 2 −15 x + 25 − 25

2

11.

= 6 x 4 + 9 x 3 −10 x 2 −15 x ( 2 x 2 −3 x −5)( x 2 −2) = ( 2 x 2 −3 x −5)( x 2 ) +( 2 x 2 −3 x −5)( −2) = 2 x 4 −3 x 3 −5 x 2 −4 x 2 +6 x +10 = 2 x 4 −3 x 3 −9 x 2 +6 x +10

Exercise 3B (p.136) Level 1

x +3

12.

( x 2 + 2 x −1)( 3 x 2 − 5 x − 2)

1.

= ( x 2 + 2 x −1)( 3 x 2 ) + ( x 2 + 2 x −1)( −5 x) +

7 x 7 x 2 + 21 x 7 x2 21 x

( x 2 + 2 x −1)( −2)

21 x

= 3 x 4 + 6 x 3 − 3 x 2 − 5 x 3 −10 x 2 + 5 x − 2 x 2 − 4 x + 2 = 3 x 4 + 6 x 3 − 5 x 3 − 3 x 2 −10 x 2 − 2 x 2 + 5 x − 4 x + 2 = 3 x 4 + x 3 −15 x 2 + x + 2

5x

13.

5 P −( x −1)Q

2.

= 5( x 2 −3 x −5) −( x −1)( 3 x 2 −5)

− 3x

3 x 15 x 3 − 9 x 2 15 x 3 − 9x2

= 5 x 2 −15 x −25 −3 x 3 +3 x 2 +5 x −5

− 9x2 ∴ The quotient is 5 x 2 −3 x and the remainder is 0.

= −3 x 3 +8 x 2 −10 x −30

a +3

(3 − x )( Q − P ) = (3 − x )[( 3 x −5) −( x −3 x −5)] 2

2

a a 2 + 3a + 2

= ( −x +3)( 3 x −5 − x +3 x +5) 2

2

= ( −x +3)( 3 x 2 − x 2 +3 x −5 +5) = ( −x +3)( 2 x 2 +3 x ) = ( −x +3)( 2 x 2 ) + ( −x +3)( 3 x) = −2 x 3 + 6 x 2 −3 x 2 +9 x = − 2 x +3 x +9 x 3

15.

2

= 5 x 2 −15 x −25 −( x −1)( 3 x 2 ) −( x −1)( −5) = −3 x 3 +5 x 2 +3 x 2 −15 x +5 x −25 −5

14.

∴ The quotient is x + 3 and the remainder is 0.

3.

a2 3a 3a 2

2

∴ The quotient is a + 3 and the remainder is 2.

66

Certificate Mathematics in Action Full Solutions 4A

x−2

3x + 8

2x 2x2 − 4x + 3 4.

2x2

2x − 3 6x2 + 7 x + 2 9.

6x2 − 9x

− 4x − 4x

16 x + 2 16 x − 24 3

26

∴ The quotient is x − 2 and the remainder is 3.

∴ The quotient is 3 x +8 and the remainder is 26.

4 a −1

p +2 p +1 p 2 + 3 p + 5 p2 + p

5.

4a +1 16 a 2 + 0a − 4 10.

2 p +5 2 p +2

− 4a − 4 − 4a − 1

3

−3 ∴ The quotient is 4a −1 and the remainder is −3.

∴ The quotient is p + 2 and the remainder is 3.

z −8

s 2 − 4 s +11

z + 3 z 2 − 5z + 6 6.

16 a 2 + 4a

s + 2 s 3 − 2 s 2 + 3s + 2

z 2 + 3z

s3 + 2s 2

−8z + 6 − 8 z − 24

− 4 s 2 + 3s

11.

− 4 s 2 − 8s

30

11 s + 2 11 s + 22

∴ The quotient is z −8 and the remainder is 30.

− 20

2r 7.

∴ The quotient is s 2 −4 s +11 and the remainder is −20.

r − 2 2r − 4r + 1 2

2r 2 − 4r

2h 2 + 3h +10

1 ∴ The quotient is

2d − 1 4d − 4d + 1 2

4d 2 − 2d − 2d + 1 − 2d + 1 ∴ The quotient is 2d −1 and the remainder is 0.

67

2 h − 6h 3

2r and the remainder is 1.

2d − 1 8.

h − 3 2h3 − 3h 2 + h − 12.

5

2

3h 2 + h 3h 2 − 9h 10 h − 5 10 h − 30 25 ∴ The quotient is 2h 2 + 3h +10 and the remainder is 25.

3 2 x −9 .

2x2 − 4x + 2 2 x +1 4 x 3 − 6 x 2 + 0 x − 7 4x + 2x 3

x −2

2

x 2 + x + 3 x3 − x 2 + 3x − 3

−8 x + 0 x 2

13.

More about Polynomials

x3 + x 2 + 3x

17.

−8 x − 4 x 2

− 2x2 + 0x − 3

4 x −7

− 2x2 − 2x − 6

4x +2

2x + 3

−9

∴ The quotient is x − 2 and the remainder is 2x +3 .

∴ The quotient is 2 x 2 − 4 x + 2 and the remainder is −9.

p

3m 2 + 2m +1 3m + 2 9m +12 m + 7 m − 5 3

2

18.

p 2 + 2 p − 1 p3 + 2 p 2 − 5 p + 1 p3 + 2 p 2 − p

9m 3 + 6m 2

− 4p + 1

6m 2 + 7 m

14.

6m 2 + 4m

∴ The quotient is p and the remainder is −4 p +1 .

3m − 5 3m + 2

2z + 3

−7 ∴ The quotient is 3m 2 + 2m +1 and the remainder is −7.

z 2 − 3z − 2 2 z 3 − 3z 2 − 19.

3w − 2 w + 1

3z 2 − 9 z − 6 12 z + 10

4 w + 3 12 w3 + w2 − 2 w + 3 12 w + 9 w

15.

2

3z 2 + 3z + 4

2

3

z+4

2z − 6z − 4z 3

2

∴ The quotient is 2 z + 3 and the remainder is 12 z +10 .

− 8w2 − 2 w − 8w2 − 6 w

2d + 5

4w + 3 4w + 3 ∴ The quotient is 3w 2 − 2 w +1 and the remainder is 0.

d 2 − 3d − 4 2d 3 − d 2 − 24d − 18 20.

2 d 3 − 6 d 2 − 8d 5d 2 − 16d − 18 5d 2 − 15d − 20 −d+ 2

Level 2

x +6 x2 − x + 2 x3 + 5 x 2 − 2 x + 3 16.

∴ The quotient is 2d + 5 and the remainder is −d + 2 .

x3 − x 2 + 2 x 6x2 − 4x + 3 6 x 2 − 6 x + 12 2x − 9 ∴ The quotient is x + 6 and the remainder is

68

Certificate Mathematics in Action Full Solutions 4A

3q − 4

3e −

2q 2 + 5q − 2 6q 3 + 7 q 2 − 23q + 2

2e 2 + 1 6e3 − 5e 2 + 7e + 1

6q 3 + 15q 2 − 6q

21.

5 2

− 8q 2 − 17q + 2

25.

− 8q − 20q + 8 2

+ 3e

6e3

− 5e + 4e + 1 2

3q − 6 ∴ The quotient is 3q −4 and the remainder is 3q −6 .

3s + 5

∴ The quotient is 3e −

3s − 2 s − 1 9 s + 9 s − 16 s − 4 2

3

2

9 s 3 − 6 s 2 − 3s

22.



5 2

4e +

7 2

− 5e 2

4e +

15s 2 − 13s − 4

5 and the remainder is 2

7 . 2

x +3

15s 2 − 10 s − 5 − 3s + 1

x 2 − 3x − 2 x3 + 0 x 2 + 2 x − 5

∴ The quotient is 3s + 5 and the remainder is −3s +1 .

x3 − 3x 2 − 2 x

26.

3x 2 + 4 x − 5 3x 2 − 9 x − 6

2 x + 2 x −1 2

13 x + 1

2 x − x + 2 4 x4 + 2 x3 + 0 x 2 + 6 x − 3 2



4 x 4 − 2 x3 + 4 x 2 4 x3 − 4 x 2 + 6 x

23.

x −1

4 x3 − 2 x 2 + 4 x − 2x2 + 2x − 3 − 2x2 + x − 2 x −1

x 2 + x +1 x 3 + 0 x 2 + 0 x +1 27.

∴ The quotient is 2 x 2 + 2 x −1 and the remainder is x −1 .

− x2 −

x +1

− x2 −

x −1

∴ The quotient is x −1 and the remainder is 2.

4w2 + w − 2 8w3 − 10w2 − 9 w + 1 24.

x3 + x 2 + x

2

2w − 3

x 2 − 5 x + 20

8w + 2 w − 4 w 3

The quotient is x + 3 and the remainder is 13 x +1 .

2

x 2 + 3 x −1 x 4 − 2 x3 + 4 x 2 − 3 x − 5

− 12w − 5w + 1 2

− 12w − 3w + 6

x 4 + 3x3 −

2

− 2w − 5 ∴ The quotient is 2 w −3 and the remainder is −2 w −5 .

28.

x2

− 5 x3 + 5 x 2 − 3x − 5 x 3 − 15 x 2 + 5 x 20 x 2 − 8 x − 5 20 x 2 + 60 x − 20 − 68 x + 15 ∴ The quotient is x 2 − 5 x + 20 and the

69

3 = f (1)

remainder is −68 x +15 .

3 2 Remainder =1 +1 +2(1) +1 =1 +1 +2 +1 =5

29.

[( 3 x 3 + 2 x − 3) − ( x 3 − 4 x 2 + 4)] ÷ ( x 2 − 3 x + 5) = (3 x 3 + 2 x − 3 − x 3 + 4 x 2 − 4) ÷ ( x 2 − 3 x + 5) = (3 x 3 − x 3 + 4 x 2 + 2 x − 3 − 4) ÷ ( x 2 − 3 x + 5)

3.

= ( 2 x 3 + 4 x 2 + 2 x − 7) ÷ ( x 2 − 3 x + 5)

2 x + 10 4.

2 x 3 − 6 x 2 + 10 x

Let f ( x ) = x 3 + 7 x 2 −5 x +1 . = f ( 2) 3 2 Remainder = 2 +7( 2) −5( 2) +1 =8 +28 −10 +1 = 27

10 x − 8 x − 7 2

10 x 2 − 30 x + 50 22 x − 57

Let f ( x ) = 2 x 3 − x 2 + 7 x +1 . = f ( −1) 3 2 Remainder =2( −1) −( −1) +7( −1) +1 =−2 −1 −7 +1 =−9

By long division,

x 2 − 3x + 5 2 x3 + 4 x 2 + 2 x − 7

More about Polynomials

5.

∴ The quotient is 2 x +10 and the remainder is 22 x −57 .

Let f ( x ) = 2 x 3 −3 x 2 − 4 x + 5 . Remainder = f ( −3) = 2( −3) 3 −3( −3) 2 −4( −3) +5

30.

= −54 −27 +12 −5 = −64

[( 2t −1)( t 2 +1)] ÷(t 2 +2t +1) =[( 2t −1)( t 2 ) +( 2t −1)(1)] ÷(t 2 +2t +1) =( 2t 3 −t 2 +2t −1) ÷(t 2 +2t +1)

6.

By long division,

3 2 Remainder = 5 + 4(5) −5 −3 =125 +100 −5 −3 = 217

2t − 5 t 2 + 2t + 1 2t 2 − t 2 + 2t − 1 2t 3 + 4t 2 + 2t

Let f ( x ) = x 3 + 4 x 2 − x −3 . = f (5)

7.

− 5t + 0t − 1 2

Let f ( x ) =27 x 3 −6 x +2 .

 1 = f −   3

− 5t − 10t − 5 2

10t + 4

Remainder

∴ The quotient is 2t − 5 and the remainder is 10 t + 4 . Exercise 3C (p.142) Level 1 1.

Let f ( x ) = x 3 −8 x −7 . = f (3) 3 Remainder =3 −8(3) −7 =27 −24 −7 =−4

2.

8.

3

 1  1 = 27  −  − 6 −  + 2  3  3 = −1 + 2 + 2 =3

Let f ( x ) = 4 x 3 − x 2 +8 x −11 .

1 = f  4 3

2

1 1 1  −   + 8  −11 4 4 4 1 1 = − + 2 −11 16 16 = −9

Remainder = 4

Let f ( x) = x 3 + x 2 + 2 x +1 .

70

Certificate Mathematics in Action Full Solutions 4A 9.

Let f ( x ) =8 x 3 −2 x +1 .

 1 f  −  = 13  3

1  = f  2

4

3

1 1  Remainder = 8    − 2  +1 2 = 1 −1 +1

2

=1 10. Let f ( x ) = 2 x 3 + 2 x 2 − 4 x + 7 .

3 = f  2 3

2

3 3 3 = 2   + 2  − 4   + 7 Remainder 2 2 2 27 9 = + −6 +7 4 2 49 = 4 11.

Let f ( x ) =3 x 3 +7 x 2 +kx −5 . By the remainder theorem, we have f ( −3) = 4

3( −3)3 + 7( −3) 2 + k ( −3) −5 = 4 −81 + 63 −3k −5 = 4 3k = −27 k = −9

3

 1  1  1 4 −  + 30  −  + 18  −  + 20 3 3      3 k 10 − − 6 + 20 81 9 k 81 k

= 13 = 13 1 9 =9 =

15. Let f ( x ) = 2 x 3 −5 x 2 + 4kx − 7 . By the remainder theorem, we have

1  f   = −6 2 3

2

1  1  1  2  − 5  + 4k   − 7 2 2 2 1 5 − + 2k − 7 4 4 2k k

= −6 = −6 =2 =1

16. Let f ( x ) = x1997 −1 . = f ( −1) 1997 −1 Remainder =( −1) =−1 −1

=−2 12. Let f ( x ) = 2 x 3 +kx 2 +5 x +4 . By the remainder theorem, we have f ( 2) = 6

2(2) 3 + k ( 2) 2 + 5(2) + 4 = 6 16 + 4k +10 + 4 = 6 4k = −24

17. Let f ( x ) = x100 −1 . = f (1) 100 −1 Remainder =1 =1 −1 =0

k = −6 13. Let f ( x) = x 2 −kx −2 . By the remainder theorem, we have f (k ) = k k 2 −k (k ) −2 = k k 2 −k 2 −2 = k k = −2 14. Let f ( x ) = kx 4 +30 x 3 +18 x + 20 . By the remainder theorem, we have

18. Let f ( x ) = x 3 + 2ax −b . ∵When f(x) is divided by x −3 , the remainder is 1. ∴ When f(x) − 1 is divided by x −3 , the remainder is 0. ∴ When f(x) − 1 + b is divided by x −3 , the remainder is b, and when f(x) −1 + b+ x2 − 9 is divided by x − 3, the remainder is also b (since x2 − 9 = 0 when x = 3). ∴ The required polynomial is x 3 + 2ax −1 or x 3 + x 2 + 2ax −10 . (or any other reasonable answers) 19. By the remainder theorem, we have

71

3 f ( −1) = 3

 k f  −  = 3k  2

( −1) + 2( −1) + k ( −1) + c = 3 3

More about Polynomials

2

−1 + 2 − k + c = 3 k = c −2

2

∴ k =1, c =3 or k = −1, c =1 or k = −3, c = −1 (or any other reasonable answers)

 k  k 4 −  − 2 −  +1 = 3k  2  2 k 2 + k +1 = 3k k 2 − 2k +1 = 0 ( k −1) 2 = 0 k =1

Level 2

24. When f(x) is divided by x −1 , f (1) =−1

20. Let f ( x) = x 2 + 2 x + 3 . By the remainder theorem, we have

2(1) 3 −12 + p (1) +q =−1 p +q =−2

k  f   = 11 2 2

k  k    + 2   + 3 = 11 2   2 2 k + k + 3 = 11 4

When f(x) is divided by x + 2 , f ( −2) = −31

2( −2)3 −( −2) 2 + p ( −2) +q = −31 −2 p +q = −11

k 2 + 4k −32 = 0 ( k +8)( k −4) = 0 k +8 = 0 k = −8

or or

k −4 = 0 k =4

21. Let f ( x ) = x 3 + ( k + 4) x 2 − 2 x −1 . By the remainder theorem, we have f ( −k ) = k 2 ( −k ) 3 +( k +4)( −k ) 2 −2( −k ) −1 = k 2 −k 3 +k 3 +4k 2 +2k −1 = k 2 3k 2 +2k −1 = 0

k +1 = 0

or

k = −1

or

( k +1)(3k −1) = 0 3k −1 = 0 1 k = 3

22. Let f ( x) = x 2 − 4 x −3 . By the remainder theorem, we have

f ( −k ) = −6

( −k ) −4( −k ) −3 = −6 2

k 2 + 4k +3 = 0 ( k +3)( k +1) = 0 k +3 = 0 k = −3

or or

k +1 = 0 k = −1

23. Let f ( x ) = 4 x − 2 x +1 . By the remainder theorem, we have 2

……(1)

……(2) (1) – (2), 3 p =9 p =3 By substituting p = 3 into (1), we have 3 +q = −2 q = −5 25. When f(x) is divided by x − 2 , f ( 2) = −5

2 3 − p ( 2) 2 + 2( 2) + q = −5 − 4 p + q = −17

……(1)

When f(x) is divided by x −3 , f (3) = −4

33 − p (3) 2 +2(3) +q = −4 −9 p +q = −37

……(2)

(1) – (2), 5 p = 20 p =4 By substituting p = 4 into (1), we have −4( 4) +q =−17 q =−1 26. Let f ( x ) = x 2 − mx +3 and

g ( x) = 2m − x .

When f(x) is divided by x − n , f ( n) =11

n 2 −mn +3 =11

……(1)

n 2 −mn −8 = 0

When g(x) is divided by

x−n

,

72

Certificate Mathematics in Action Full Solutions 4A g ( n) = 0

f ( −1) =1

2m − n = 0

( −1)99 +k =1 −1 +k =1

n = 2m

……(2)

k =2 By substituting (2) into (1), we have

(b)

( 2 m ) 2 − m( 2 m ) − 8 = 0 2m 2 − 8 = 0 m = ±2



When m = 2, n = 4 When m = −2, n = −4 ∴ The values of m and n are

+ 2 = ( x +1)Q ( x) +1

9 99 = (9 +1)Q(9) −1

∵The degree of ( x −1)( x +2) is 2, ∴ The highest possible degree of the remainder when P(x) is divided by ( x −1)( x +2) is 1.

=10 Q (9) −1 =10 [Q (9) −1] +9 ∴ The remainder when 999 is divided by 10 is 9.

Exercise 3D (p. 147) Level 1 1.

(a)

f (1) =13 −12 −3(1) +3 =1 −1 −3 +3 =0

∴ x − 1 is a factor of f(x).

By the remainder theorem, we have

P (1) = −4

(b)

f ( −1) =( −1)3 −( −1) 2 −3( −1) +3 = −1 −1 +3 +3

(1 −1)(1 + 2)Q (1) +a (1) +b = −4

=4

a +b = −4

≠0 ∴ x + 1 is not a factor of f(x).

……(1)

P ( −2) = −28

2.

(a)

f ( 2) = 2 3 + 2(2) 2 −5( 2) −6 =8 +8 −10 −6 =0

( −2 −1)( −2 +2)Q ( −2) +a ( −2) +b = −28

∴ x - 2 is a factor of f(x).

−2a +b = −28

f (3) = 33 +2(3) 2 −5(3) −6

……

= 27 +18 −15 −6

(b)

3a = 24 a =8 By substituting a = 8 into (1), we have 8 + b = −4 b = −12

= 24

(1) – (2),

∴ The remainder when P(x) is divided by ( x −1)( x +2) is 8 x −12 .

≠0 ∴ x - 3 is not a factor of f(x). 3.

(a)

f ( −4) =( −4)3 +5( −4) 2 +3( −4) +15 = −64 +80 −12 +15 =19

By the remainder theorem, we have

≠0 ∴ x + 4 is not a factor of f(x). (b)

73

……

By substituting x = 9 into (1), we have

P ( x ) = ( x −1)( x + 2)Q ( x ) + ax +b

28. (a)

x

(1)

(b) Let Q(x) and ax + b be the quotient and the remainder respectively when P(x) is divided by ( x −1)( x +2) . ∴

(2)

f ( x ) = ( x +1)Q ( x) +1 99

x 99 = ( x +1)Q ( x) −1

m= 2 m= −2 .  or   n= 4  n= −4 27. (a)

Let Q(x) be the quotient when f(x) is divided by x +1 .

3 f ( −5) = ( −5) 3 +5( −5) 2 +3( −5) +15

P ( x ) = ( x 2 + x − 2)( 2 x + 3)

= −125 +125 −15 +15

= 2 x 3 + 3x 2 + 2 x 2 + 3x − 4 x − 6

=0

∴ x + 5 is a factor of f(x). 4.

Let f ( x ) = 2 x 3 −9 x 2 + 5 x − 4 .

f ( 4) = 2( 4)3 −9( 4) 2 +5( 4) − 4

∵

=128 −144 + 20 − 4

= 2 x 3 + 5x 2 − x − 6 ∴ The required polynomial is 2x3 + 3x2 – 2x – 3 or 2x3 + 5x2 – x – 6. (or any other reasonable answers) 10. ∵x3 + mx2 + nx + 5 is divisible by x – 1. ∴ By the converse of the factor theorem,

f (1) = 0

=0

13 + m(1) 2 + n(1) + 5 = 0

∴ x - 4 is a factor of 2 x 3 −9 x 2 +5 x −4 . 5.

More about Polynomials

1+ m + n + 5 = 0 n = −6 − m

Let f ( x) = x 3 − a 3 .

∴ m = –3, n = –3 or m = –1, n = –5 or m = 2, n = –8. (or any other reasonable answers)

3 3 ∵ f ( a ) = a − a 

=0

∴ x3 – a3 is divisible by x – a. 6.

Let f ( x ) = 2 x 3 + kx 2 − x − 6 .

∵ 2 x 3 + kx 2 − x − 6 is divisible by x + 2. ∴ By the converse of the factor theorem, f ( −2) = 0

11. Let f(x) = x3 + ax2 – x – b. ∵x + 2 is a factor of x3 + ax2 – x – b. ∴ By the converse of the factor theorem,

f ( −2) = 0

( −2) + a ( −2) − ( −2) − b = 0 − 8 + 4a + 2 − b = 0 b = 4a − 6 3

2( −2) +k ( −2) −( −2) −6 = 0 3

2

−16 + 4k +2 −6 = 0 4k = 20 k =5 7. Let f ( x ) = x 3 −2ax +15 . ∵x + 5 is a factor of x3 – 2ax + 15. ∴ By the converse of the factor theorem, f ( −5) = 0

( −5) 3 −2a ( −5) +15 = 0 −125 +10 a +15 = 0 10 a =110 a =11 8. Let f ( x) = 2 x 3 + x 2 − mx +12 . ∵x + 3 is a factor of 2x3 + x2 – mx + 12. ∴ By the converse of the factor theorem, f (3) = 0

2(3) 3 +3 2 − m(3) +12 = 0 54 +9 −3m +12 = 0 3m = 75 m = 25 9.

Let P(x) be the polynomial of degree 3 with 2x + 3 as one of its factors. ∵P(x) = (ax2 + bx + c)(2x + 3) where a, b and c are integers. By substituting a = 1, b = 0 and c = -1 into P(x), we have

P ( x) = ( x 2 −1)( 2 x + 3) = 2 x3 + 3x 2 − 2 x − 3

or by substituting a = 1, b = 1 and c = −2 into P(x), we have

2

∴ a = –3, b = –18 or a = –1, b = –10 or a =1, b = –2 (or any other reasonable answers)

Level 2 12. Let f(x) = 2x3 – x2 – 7x + 6. 3

2

3 3 3 3 f   = 2  −   − 7  + 6 2 2 2       2 ∵ 27 9 21 = − − +6 4 4 2 =0 ∴ 2x – 3 is a factor of 2x3 – x2 – 7x + 6.

13. Let f(x) = 8x3 – 14x2 + 7x – 1. 3

2

1 1 1 1 f   = 8  − 14   + 7  − 1 4 4 4 4 ∵ 1 7 7 = − + −1 8 8 4 =0 ∴ 8x3 – 14x2 + 7x –1 is divisible by 4x – 1.

14. (a) ∵

g ( −5) = ( −5)3 +12 ( −5) 2 + 41 ( −5) +30 = −125 +300 −205 +30 =0

∴ x + 5 is a factor of g(x). (b) By long division,

74

Certificate Mathematics in Action Full Solutions 4A x x

2

+ 7 x ∵x3+ – 4x2 + kx6 + 6 is divisible by x – 3.

∴ x By the 2 converse of the factor theorem, x + + 5 x + 1 2 + 4 1 3 0 3

x3

f (3) + 5x2

=0

2 7 x 1 x 33 −4(3) 2 + +k (3) +4 6 =0

7 x

2

+ 3 5 x

27 −36 +3k +6 = 0 6 3k = 3 6

Hence, g(x) = (x + 5)(x2 + 7x + 6) By the cross method, x2 + 7x + 6 = (x + 1)(x + 6) 1)( x ∴ g ( x ) =( x +5)( x +

x x

k =1 (b) By long division, + 6)

x x

15. (a) ∵

2

− x −

− 3 x3 − 4 x x3

3

+ 3 0 + 3 0

− 3x

− x 2

2

 3  3  3  3 f  −  = 4 −  − 8 −  − 15 −  + 9  2  2  2  2 27 45 =− − 18 + +9 2 2 =0

− x 2

Hence, f(x) = (x – 3)(x2 – x – 2) By the cross method, x2 – x – 2 = (x – 2)(x + 1) ∴

∴ 2x + 3 is a factor of f(x).

x 3 −4 x 2 +x +6 =( x −3)( x −2)( x + 1)

(b) By long division,

18. (a) Let f(x) = 8x3 + mx2 – 25x + 6. 3 2 ∵8x + mxx – 25x + 6 is divisible by 4x – 1. − 7 + 3 ∴ By the converse of the factor theorem, 3 2 + 3 4 x − 8x − 1 5 x 2 x

2 x

4 x

2

3

1 f  =0  42 

+ 6 x 2

− 1 4 x 2 − 1 5 x

− 1 42 x − 2 1 x 3 6 x 6 x

Hence, f(x) = (2x + 3)(2x2 – 7x + 3) By the cross method, 2x2 – 7x + 3 = (2x – 1)(x – 3) 1)( ∴ f ( x ) =( 2 x +3)( 2 x −

1  1 1 8  + m  − 25  + 6 = 0 4 4 4 1 m 25 + − +6 =0 8 16 4 m 1 = 16 8 m =2

x − 3)

16. (a) ∵ 3

2

 4  4  4  4 h −  = 3 −  + 4 −  − 75 −  −100 3 3 3        3 64 64 =− + + 100 −100 9 9 =0

(b) By long division, 2 x 4 x

2

+

− 1 8x 3 + 2 8x

3

− 2

4 x

4 x

∴ 3x + 4 is a factor of h(x). (b) By long division, x2

3x + 4 3x3 + 4x2 3x3 + 4x2

2 Hence, h( x ) =(3 x +4)( x −25 )

=(3 x +4)( x +5)( x −5)

17. (a) Let f(x) = x3 – 4x2 + kx + 6.

75

Hence, f(x) = (4x – 1)(2x2 + x – 6) By the cross method, 2x2 + x – 6 = (2x – 3)(x + 2) − 7 5 x − 1 0 0 ∴

− 2 5

8 x 3 +2 x 2 −25 x +6 =( 4 x − 1)( 2 x −3)( x +2)

− 7 5 x − 1 0 0 f(x)1 =0 x3 + px2 + qx + 2 and g(x) = x3 + qx2 + px – − 7 5 19.xLet− 0 6. ∵x – 2 is a common factor of x3 + px2 + qx + 2 and x3 + qx2 + px – 6.

3



More about Polynomials

f ( 2) = 0 3

g ( −1) = 8

2

2 + p ( 2) + q ( 2) + 2 = 0 2 p + q = −5 g ( 2) = 0

23 + q ( 2) 2 + p ( 2) − 6 = 0 p = −2q −1 By substituting (2) into (1), we have 2( −2q −1) +q =−5

s ( −1) + 9( −1) − t ( −1) − 5 = 8 t = s +4 3

…… (1)

2

…… (1) ∵x + 5 is a factor of g(x). ∴ By the converse of the factor theorem,

…… (2)

g (−5) = 0

s (−5) + 9( −5) −t ( −5) −5 = 0 − 25 s + t = −44 3

3q =3 q =1 By substituting q = 1 into (2), we have p =−2(1) −1

=−3 20. (a) ∵When f(x) is divided by x + 1, the remainder is 10. ∴ By the remainder theorem, we have

2

…… (2) By substituting (1) into (2), we have −25 s +s +4 =−44 24 s =48 s =2 By substituting s = 2 into (1), we have t =2 +4 =6

f ( −1) =10 2( −1) −( −1) + a ( −1) +b =10 3

2

− 2 −1 −a +b =10 a −b = −13

……

(1) ∵x – 1 is a factor of f(x). ∴ By the converse of the factor theorem,

(b) By long division,

f (1) = 0

x

3

+ 1 0



……



(1) + (2), 2a =−14 a =−7

Hence, g(x) = (x + 5)(2x2 – x – 1) By the cross method, 2x2 – x – 1 = (2x + 1)(x – 1) ∴ g ( x ) =( x −1)( x +5)( 2 x +1)

By substituting a = –7 into (2), we have −7 +b =−1 b =6

Exercise 3E (p. 152)

(b) By long division, 2 x x



+ 5 2 x 3 + 2 x

2(1) 3 −12 + a (1) + b = 0 a + b = −1 (2)

2

2 x

2

Level 1

+ x − 6

2 − 1 2 x 3 − 6 1. Letx f(x) = x3 – 3x2 –− 6x + 8. 7 x +

2 x

3

2 − 2 x ∵f(1) = 13 – 3(1)2 – 6(1) + 8 = 0

∴ xx – 1 is a factor − of f(x). 7 x 2 − x By x long division, 6 x3 – 3x2 – 6x + 8 = (x− – 1)(x2 –6 2x – 8) x + − 6 x + 6 ∴ 2

Hence, f(x) = (x – 1)(2x2 + x – 6) By the cross method, 2x2 + x – 6 = (2x – 3)(x + 2) 1)( 2 x − 3)( x +2) ∴ f ( x ) =( x − 21. (a)

∵When g(x) is divided by x + 1, the remainder is 8. ∴ By the remainder theorem, we have

x 3 −3 x 2 −6 x +8 =( x −4)( x − 1)( x +2)

Let f(x) = x3 – 7x – 6. f (1) =13 −7(1) −6 =−12 ∵ f ( −1) =( −1) 3 −7( −1) −6 =0 ∴ x + 1 is a factor of f(x). By long division, x3 – 7x – 6 = (x + 1)(x2 – x – 6) 3 ∴ x −7 x −6 =( x −3)( x +1)( x +2)

2.

76

Certificate Mathematics in Action Full Solutions 4A 3. Let f(x) = x3 + x2 – 10x + 8. ∵f(1) = 13 + 12 – 10(1) + 8 = 0 ∴ x – 1 is a factor of f(x). By long division, x3 + x2 – 10x + 8 = (x – 1)(x2 + 2x – 8) ∴ x

3

+x

2

− 10 x + 8 =( x −2)( x − 1)( x +4)

4. Let f(x) = x3 + 8x2 + 21x + 18. ∵  f (1) =13 +8(1) 2 +21 (1) +18 =48 f ( −1) =( −1) 3 +8(−1) 2 +21 ( −1) +18 =4 f ( 2) =2 3 +8( 2) 2 +21 ( 2) +18 =100 f ( −2) =( −2) 3 +8(−2) 2 +21 (−2) +18 =0 ∴ x + 2 is a factor of f(x). By long division, x3 + 8x2 + 21x + 18 = (x + 2)(x2 + 6x + 9) 3 2 2 ∴ x +8 x +21 x +18 =( x +2)( x +3)

f (1) =13 +3(1) 2 −25 (1) −75 =−96 f (−1) =( −1) 3 +3( −1) 2 −25 ( −1) −75 =−48 f (3) =33 +3(3) 2 −25 (3) −75 =−96 f ( −3) =( −3) 3 +3( −3) 2 −25 ( −3) −75 =0 ∴ x + 3 is a factor of f(x). By long division, x3 + 3x2 – 25x – 75 = (x + 3)(x2 – 25) ∴ x 3 +3 x 2 −25 x −75 =( x −5)( x +3)( x +5)

9.

Let f(x) = x3 + 4x2 – 11x – 30. ∵  f (1) =13 +4(1) 2 −11 (1) −30 =−36

f ( −1) =( −1) 3 +4( −1) 2 −11 (1) −30 =−16 f ( 2) =2 3 +4( 2) 2 −11 ( 2) −30 =−28 f ( −2) =( −2) 3 +4( −2) 2 −11 ( −2) −30 =0 ∴ x + 2 is a factor of f(x). By long division, x3 + 4x2 – 11x – 30 = (x + 2)(x2 + 2x – 15) ∴

5.

Let f(x) = x3 + 3x2 – 4x – 12. ∵ f (1) =13 +3(1) 2 −4(1) −12 =−12 f ( −1) =( −1) 3 +3( −1) 2 −4( −1) −12 =−6 3

2

f ( 2) =2 +3( 2) −4( 2) −12 =0 ∴ x – 2 is a factor of f(x). By long division, x3 + 3x2 – 4x – 12 = (x – 2)(x2 + 5x + 6) ∴ x 3 +3 x 2 −4 x − 12 =( x −2)( x +2)( x +3)

6.

7.

Let f(x) = x3 – 4x2 + 5x – 2. ∵f(1) = 13 – 4(1)2 + 5(1) – 2 = 0 ∴ x – 1 is a factor of f(x). By long division, x3 – 4x2 + 5x – 2 = (x –1)(x2 – 3x + 2) 3 3 2 ∴ x −4 x +5 x −2 =(x −2 )( x −1) Let f(x) = x3 + x2 – 8x – 12. ∵ 3

2

x 3 +4 x 2 −11 x −30 =( x −3)( x +2)( x +5)

10. 3x3 – 6x2 – 12x + 24 = 3(x3 – 2x2 – 4x + 8) Let f(x) = x3 – 2x2 – 4x + 8. ∵ f (1) =13 −2(1) 2 −4(1) +8 =3 f ( −1) =( −1) 3 −2( −1) 2 −4( −1) +8 =9 f ( 2) =2 3 −2( 2) 2 −4( 2) +8 =0 ∴ x – 2 is a factor of f(x). By long division, x3 – 2x2 – 4x + 8 = (x – 2)(x2 – 4) ∴ x3 – 2x2 – 4x + 8 = (x – 2)2(x + 2) ∴ 3 x 3 −6 x 2 −12 x +24 =3( x −2) 2 ( x +2)

11. 5x3 + 20x2 + 5x – 30 = 5(x3 + 4x2 + x – 6) Let f(x) = x3 + 4x2 + x – 6. ∵f(1) = 13 + 4(1)2 + (1) – 6 = 0 ∴ x – 1 is a factor of f(x). By long division, x3 + 4x2 + x – 6 = (x – 1)(x2 + 5x + 6) ∴ x3 + 4x2 + x – 6 = (x – 1)(x + 2)(x + 3) ∴ 5 x 3 +20 x 2 +5 x −30 =5( x − 1)( x +2)( x +3)

f (1) =1 +1 −8(1) −12 =−18 f ( −1) =( −1) 3 +( −1) 2 −8( −1) −12 =−4 f ( 2) =2 3 +2 2 −8( 2) −12 =−16 f ( −2) =( −2) 3 +( −2) 2 −8( −2) −12 =0 ∴ x + 2 is a factor of f(x). By long division, x3 + x2 – 8x – 12 = (x + 2)(x2 – x – 6) 3 2 2 ∴ x +x −8 x −12 =(x −3)( x +2) 8.

Let f(x) = x3 + 3x2 – 25x – 75. ∵

12. 5x3 – 65x – 60 = 5(x3 – 13x – 12) Let f(x) = x3 – 13x – 12. ∵ f (1) =13 −13 (1) −12 =−24 f ( −1) =( −1) 3 −13 ( −1) −12 =0 ∴ x + 1 is a factor of f(x). By long division, x3 – 13x – 12 = (x + 1)(x2 – x – 12) ∴ x3 – 13x – 12 = (x + 1)(x – 4)(x + 3) ∴ 5 x 3 −65 x −60 =5( x −4)( x + 1)( x +3)

Level 2 77

3

∴ x + 2 is a factor of f(x). By long division, x3 + 16x2 + 52x + 48 = (x + 2)(x2 + 14x + 24) ∴

13. Let f(x) = x3 – 8x2 + 4x + 48. ∵ f (1) =13 −8(1) 2 +4(1) +48 =45 f ( −1) =( −1) 3 −8( −1) 2 +4( −1) +48 =35 f ( 2) = 2

3

−8( 2)

2

More about Polynomials

+4( 2) +48 =32

f ( −2) =( −2) −8( −2) 2 +4( −2) +48 =0 ∴ x + 2 is a factor of f(x). By long division, x3 – 8x2 + 4x + 48 = (x + 2)(x2 – 10x + 24) ∴

x 3 +16 x 2 +52 x +48 =( x +2) 2 ( x +12 )

17. Let f(x) = x3 + x2 – 24x + 36. ∵

3

x 3 −8 x 2 +4 x +48 =( x −6)( x −4)(x +2 )

14. Let f(x) = x3 + 10x2 + 33x + 36. ∵  f (1) =13 +10 (1) 2 +33 (1) +36 =80 f ( −1) =( −1) 3 +10 ( −1) 2 +33 ( −1) +36 =12 f ( 2) =2 3 +10 ( 2) 2 +33 ( 2) +36 =150 f ( −2) =( −2) 3 +10 ( −2) 2 +33 ( −2) +36 =2 f (3) =33 +10 (3) 2 +33 (3) +36 =252 f ( −3) =( −3) 3 +10 ( −3) 2 +33 ( −3) +36 =0 ∴ x + 3 is a factor of f(x). By long division, x3 + 10x2 + 33x + 36 = (x + 3)(x2 + 7x + 12) 3 2 2 ∴ x +10 x +33 x +36 =( x +3) ( x +4)

f (1) =13 +12 −24 (1) +36 =14 f ( −1) =( −1) 3 +( −1) 2 −24 ( −1) +36 =60 f ( 2) =2 3 +2 2 −24 ( 2) +36 =0 ∴ x – 2 is a factor of f(x). By long division, x3 + x2 – 24x + 36 = (x – 2)(x2 + 3x – 18) ∴ x 3 +x 2 −24 x +36 =( x −3)( x −2)( x +6)

18. Let f(x) = x3 – 4x2 – 20x + 48. ∵ f (1) =13 −4(1) 2 −20 (1) +48 =25 f ( −1) =( −1) 3 −4( −1) 2 −20 ( −1) +48 =63 f ( 2) =2 3 −4( 2) 2 −20 ( 2) +48 =0 ∴ x – 2 is a factor of f(x). By long division, x3 – 4x2 – 20x + 48 = (x – 2)(x2 – 2x – 24) ∴ x 3 −4 x 2 −20 x +48 =( x −6)( x −2)( x +4)

19. Let f(x) = x3 + 11x2 + 4x – 60. ∵ f (1) =13 +11 (1) 2 +4(1) −60 =−44 15. Let f(x) = x3 – 12x2 + 47x – 60. ∵  f (1) =13 −12 (1) 2 +47 (1) −60 =−24 f ( −1) =( −1) 3 −12 ( −1) 2 +47 ( −1) −60 =−120 f ( 2) =2 3 −12 ( 2) 2 +47 ( 2) −60 =−6

f ( −1) =( −1) 3 +11 ( −1) 2 +4( −1) −60 =−54 f ( 2) =2 3 +11 ( 2) 2 +4( 2) −60 =0 ∴ x – 2 is a factor of f(x). By long division, x3 + 11x2 +4x – 60 = (x – 2)(x2 + 13x + 30) ∴ x3 + 11 x 2 +4 x −60 =( x −2)( x +3)( x + 10 )

f ( −2) =( −2) 3 −12 ( −2) 2 +47 ( −2) −60 =−210 f (3) =33 −12 (3) 2 +47 (3) −60 =0 ∴ x – 3 is a factor of f(x). By long division, x3 – 12x2 + 47x – 60 = (x – 3)(x2 – 9x + 20) ∴ x3 − 12 x 2 +47 x −60 =( x − 5)( x −4)( x − 3)

16. Let f(x) = x3 + 16x2 + 52x + 48. ∵ f (1) =13 +16 (1) 2 +52 (1) +48 =117 f ( −1) =( −1) 3 +16 ( −1) 2 +52 ( −1) +48 =11 f ( 2) =2 3 +16 ( 2) 2 +52 ( 2) +48 =224 f ( −2) =( −2) 3 +16 ( −2) 2 +52 ( −2) +48 =0

20. Let f(x) = x3 – 27x – 54. ∵  f (1) =13 −27 (1) −54 =−80 f ( −1) =( −1) 3 −27 ( −1) −54 =−28 f ( 2) =2 3 −27 ( 2) −54 =−100 f ( −2) =( −2) 3 −27 ( −2) −54 =−8 f (3) =33 −27 (3) −54 =−108 f ( −3) =( −3) 3 −27 ( −3) −54 =0 ∴ x + 3 is a factor of f(x). By long division,

78

Certificate Mathematics in Action Full Solutions 4A x3 – 27x – 54 = (x + 3)(x2 – 3x – 18) 3 2 ∴ x −27 x −54 =(x −6 )( x +3) 21. Let f(x) = x3 – 15x2 + 72x – 108. ∵

5 x 3 −6 x 2 −29 x +6 =(5 x −1)( x −3)( x +2)

Revision Exercise 3 (p. 154)

f (1) =13 −15 (1) 2 +72 (1) −108 =−50

Level 1

f ( −1) =( −1) 3 −15 ( −1) 2 +72 ( −1) −108 =−1961. f ( 2) =2 3 −15 ( 2) 2 +72 ( 2) −108 =−16 f ( −2) =( −2) 3

3

−15 ( 2)

2

( x 2 − x 4 + 2 x 3 − 4 x + 5) + ( −4 x 3 + x + 2 x 2 + 3 x 4 −8)

+72 ( −2) −108 =−320

= x 2 − x 4 + 2 x 3 − 4 x + 5 − 4 x 3 + x + 2 x 2 + 3 x 4 −8

2

f (3) =3 −15 (3) +72 (3) −108 =0 ∴ x – 3 is a factor of f(x). By long division, x3 – 15x2 + 72x – 108 = (x – 3)(x2 – 12x + 36) ∴ x3 − 15 x 2 +72 x − 108

= −x 4 + 3 x 4 + 2 x 3 − 4 x 3 + x 2 + 2 x 2 − 4 x + x + 5 −8 = 2 x 4 − 2 x 3 + 3 x 2 −3 x −3 2.

=( x −6) 2 (x −3)

(3 x +5 x 2 −8 −4 x 3 ) −(3 x 2 −2 x +2 x 3 −2) = 3 x +5 x 2 −8 −4 x 3 −3 x 2 +2 x −2 x 3 +2

22. Let f(x) = 2x3 – 25x2 + 67x + 40. ∵

= −4 x 3 −2 x 3 +5 x 2 −3 x 2 +3 x +2 x −8 +2

3

2

 1  1  1  1 f  −  = 2 −  − 25 −  + 67  −  + 40  2  2  2  2 1 25 67 =− − − + 40 3. 4 4 2 =0

∴ 2x + 1 is a factor of f(x). By long division, 2x3 – 25x2 + 67x + 40 = (2x + 1)(x2 – 13x + 40) ∴

= 2 x 3 − x 2 + 2 x + 6 x 2 −3 x + 6 = 2 x 3 +5 x 2 − x + 6

( x 3 +3 x 2 −2 x +1)( 2 x −1) =2 x 4 +6 x 3 −4 x 2 +2 x −x 3 −3 x 2 +2 x −1

3

=2 x 4 +5 x 3 −7 x 2 +4 x −1

2

 2  2  2  2 f  −  = 3 −  + 8 −  − 68 −  − 48 3 3 3        3 8 32 136 =− + + − 48 9 9 3 =0

5.

x (3 −2 x )( 4 −3 x ) +(5 −2 x 2 +4 x 3 ) −(8 −5 x +3 x 2 ) = x (−2 x +3)( −3 x +4) +( 4 x 3 −2 x 2 +5) − (3 x 2 −5 x +8)

∴ 3x + 2 is a factor of f(x). By long division, 3x3 + 8x2 – 68x – 48 = (3x +2)(x2 + 2x – 24) ∴

= ( −2 x 2 +3 x )( −3 x +4) +(4 x 3 −2 x 2 +5) − (3 x 2 −5 x +8)

3 x 3 +8 x 2 −68 x −48 =( x −4)( x +6)(3 x +2 )

= 6 x 3 −17 x 2 +12 x + 4 x 3 −2 x 2 +5 −3 x 2 +5 x −8 =10 x 3 −22 x 2 +17 x −3

24. Let f(x) = 5x3 – 6x2 – 29x + 6. 2

1 1 1 1 f   = 5  − 6  − 29   + 6 5 5 5       5 1 6 29 = − − +6 25 25 5 =0

∴ 5x – 1 is a factor of f(x).

By long division, 5x3 – 6x2 – 29x + 6 = (5x – 1)(x2 – x – 6) ∴

79

= ( 2 x 2 − x + 2)( x ) + ( 2 x 2 − x + 2)( 3)

=( x 3 +3 x 2 −2 x +1)( 2 x ) +( x 3 +3 x 2 −2 x +1)( −1)

23. Let f(x) = 3x3 + 8x2 – 68x – 48. ∵



( 2 x 2 − x + 2)( x +3)

4.

2 x 3 −25 x 2 +67 x +40 =( x −8)( x −5)(2 x + 1)

3

= −6 x 3 +2 x 2 +5 x −6

6.

3y 4y2

1 2 y 3 +0 y 2 + 8y 12 y 3 8y

∴ The quotient is 3y and the remainder is 8y.

3

1400  =f   2  − 6 = f (700 ) 2 z +

7. z z

More about Polynomials

2

2 + 2 z 3 + 0 2 z − 699 z 701+

=+ (700 −6992 ) −(700 −701 ) z

3

z

2

699 701z 2 − 2 + 2 z

=1

−( −1)

− 2 z 2 − 4 z =1 +1 6 z − 6 z − =2 −

∴ The quotient z2 – 2z + 6 and the remainder is –15.

f (1) =14 +29 (1) +6 =1 +29 +6

14. (a)

8. p

3

p − 2 p

4

p

4

=36

− p 2

≠0 − 3 p3 + 2 p − 3 ∴ xp – 1 is2not a+ factor0 of f(x). − 2 p3

f (−2 3) − p3 + 2 p

=( −3) 4 +29 ( −3) +6

− p + 2 p

=81 −87 +6

(b)

3

2

− 3

=0

∴ x + 3 is a factor of f(x).

∴ The quotient is p3 – p2 and the remainder is –3. 15. (a)

9.

2 f ( −2 ) =( −2+ ) 3 −11 ( −2 2) 2 +32 ( −2) − 28 r − 2

2r 2r

=−8 −44 −64 −28

+ 1 4r 3 + 6r 2 − 2r 4r

3

2

+ 2 r =−1 44 2

− 2r

4r

≠0 4r ∴ x + 2 is not a factor of f(x).

∴ The quotient 2r2 + 2r – 2 and the remainder is 3. 10. Let f(x) = 4x3 – 4x2 + x – 1.

= f (1) Remainder =4(1) 3 −4(1) 2 +1 −1 =0 11. Let f(x) = x3 – 2x2 + 7x + 1.

= f ( −1) 3 2 Remainder =( −1) −2( −1) +7( −1) +1 =−1 −2 −7 +1 =−9

(b)

Remainder

=0

∴ x – 2 is a factor of f(x). 16. Let f(x) = x3 + kx2 – 5x + 6. ∵ x3 + kx2 – 5x + 6 is divisible by x – 2. ∴ By the converse of the factor theorem. f ( 2) = 0 2 3 + k ( 2) 2 −5( 2) +6 = 0 8 + 4 k −10 +6 = 0 k = −1 17. Let f(x) = kx3 – 3x2 – 8kx + 9. By the remainder theorem, we have

3

f ( −3) = 3

k ( −3) −3( −3) −8k ( −3) +9 −27 k −27 + 24 k +9 3k k 3

 1  1 =16  −  − 2 −  +1  2  2 = −2 +1 +1 =0

+ 2r

− 4r − 4r

f ( 2) = 2 3 −11 ( 2) 2 +32 ( 2) −28 =8 −44 +64 −28

12. Let f(x) = 16x3 – 2x + 1.

 1 = f −   2

2

2

=3 =3 = −21 = −7

18. Let f(x) = x3 – 2x2 – 7x – 4. ∵ f (1) =13 −2(1) 2 −7(1) −4 =−12

13. Let f(x) = (x – 699)699 – (x – 701)701. Remainder

f ( −1) =( −1) 3 −2( −1) 2 −7( −1) −4 =0 ∴ x + 1 is a factor of f(x).

80

Certificate Mathematics in Action Full Solutions 4A By long division, x3 – 2x2 – 7x – 4 = (x + 1)(x2 – 3x – 4) 3 2 2 ∴ x −2 x −7 x −4 =(x −4 )( x +1) 3

2

3

–x + 4. 24.

− 3x +

2

19. 2x + 14x + 32x + 24 = 2(x + 7x + 16x + 12) Let f(x) = x3 + 7x2 + 16x + 12. ∵

− x 2 − 4x + 5 3x

3

+

3x

3

+





f (1) =13 +7(1) 2 +16 (1) +12 =36 f ( −1) =( −1) 3 +7( −1) 2 +16 ( −1) +12 =2 ∴ The quotient is –3x + 12 and the remainder is 48x – 52.

f ( 2) =2 3 +7( 2) 2 +16 ( 2) +12 =80

f ( −2) =( −2) 3 +7( −2) 2 +16 ( −2) +12 =0 25. ∴ x + 2 is a factor of f(x). By long division, x3 + 7x2 + 16x + 12 = (x + 2)(x2 + 5x + 6) ∴ x3 + 7x2 + 16x + 12 = (x + 2)2(x + 3) 2x ∴

2x − 4 2

+ x − 1 4x3

− 6

4x3

+ 2

2 x 3 +14 x 2 +32 x +24 =2( x +2) 2 ( x +3)

− 8x

− 8x

20. Let f(x) = x3 – kx2 + x + c. ∵ x + k is factor of x3 – kx2 + x + c. ∵ By the converse of the factor theorem,

∴ The quotient is 2x – 4 and the remainder is 8x – 9.

f (−k ) = 0 ( −k ) 3 − k ( −k ) 2 + ( −k ) + c = 0

26. Let f(x) = 3x3 + 16x2 + x + c. By the remainder theorem, we have

c = 2k 3 + k

 1 f  −  = −5  3

∴ k = 2, c = 18 or k = 1, c = 3 or k = −1, c = −3. (or any other reasonable answers) 3

2

 1  1  1 3 −  +16  −  +  −  + c = −5  3  3  3 1 16 1 − + − + c = −5 9 9 3 19 c =− 3

21. (5x3 + ax + 1) + (bx2 + 7x + 3) = 5 x 3 +ax +1 +bx 2 +7 x +3

= 5 x 3 +bx 2 +( a +7) x +4 ∵ The coefficient of x3 is 5. ∴ His answer is unreasonable.

Level 2

27. By the remainder theorem, we have f (1) = g (1)

22.

13 −2(1) 2 + p (1) −4 =3(1) 3 −12 +1 +1 1 −2 + p −4 =3 −1 +1 +1 2

x − 4 x

2

− 2x − 1 x2 − 6x + 3x − 4 x3

p =9

− 2x2 − x 2 − + 4 28.4 (a) x Let f(x) = x(x – 1)(x4 – 2) x – (x – − 3)(x + 20).

− 4x 8x + 4 ∵ 2 +

− 4x − 8

∴ The quotient is x – 4 and the remainder –4x – 8.

f ( 4) = 4( 4 −1)( 4 −2) −( 4 −3)( 4 +20 ) = 4(3)( 2) −1( 24 ) =0

23. 2 x x

2

∴ x – 4 is a factor of x(x – 1)(x – 2) 2 4 – (x –− 3)(x + 20). x +

− 2 2 x 4 − x 3 + 0 x 2 2 x

− 4 x 2 (b) x(x –1)(x – 2) – (x – 3)(x + 20)

4

− x 3 2 + 4 x 2 2

= ( x − x )( x −2) −( x +17 x −60 )

− x 3 4 = x 3 −3 x 2 + 2 x − x 2 −17 x + 60

= x 3 −4 x 2 −15 x +60

∴ The quotient is 2x2 – x + 4 and the remainder is

81

By long division, x3 – 4x2 – 15x + 60 = (x – 4)(x2 – 15)

x

2

4 x

2





3 x ( x −1)( x −2) −( x −3)( x +20 )



=( x −4)( x 2 −15 )

29. Let f(x) = x3 + 5x2 – 2x – 24. ∵ f (1) =13 +5(1) 2 −2(1) −24 =−20

More about Polynomials

By substituting a = 3 into (1), we have 3 −b = 5 b = −2 33. (a) Let f(x) = 2x3 – 9x2 + px – 6. ∵ 2x – 3 is factor of 2x3 – 9x2 + px – 6. ∴ By the converse of the factor theorem,

3 f =0 2

f ( −1) =( −1) 3 +5( −1) 2 −2( −1) −24 =−18 f ( 2) =2 3 +5( 2) 2 −2( 2) −24 =0 ∴ x – 2 is a factor of f(x). By long division, x3 + 5x2 – 2x – 24 = (x – 2)(x2 + 7x + 12) ∴

3

x 3 +5 x 2 −2 x −24 =( x −2)( x +3)( x +4)

30. Let f(x) = x3 – 7x2 – 6x + 72. ∵ f (1) =13 −7(1) 2 −6(1) +72 =60 f ( −1) =( −1) 3 −7( −1) 2 −6( −1) +72 =70 f ( 2) = 2 3 −7 ( 2) 2 −6( 2) +72 = 40 f ( −2) =( −2)

3

−7 ( −2)

3

f (3) =3 −7 (3)

2

2

(b) By long division, 2x3 – 9x2 + 13x – 6 = (2x – 3)(x2 – 3x + 2) ∴

2 x 3 −9 x 2 + 13 x −6 =( x −2)( x − 1)(2 x −3)

−6( −2) +72 = 48

−6(3) +72 =18

f ( −3) =( −3) 3 −7 ( −3) 2 −6( −3) +72 =0 ∴ x + 3 is a factor of f(x). By long division, x3 – 7x2 – 6x + 72 = (x + 3)(x2 – 10x + 24) ∴ x 3 −7 x 2 −6 x +72 =( x −6)( x −4)(x +3)

31. Let f(x) = 8x2 + 2x – 1. ∵ 8x2 + 2x – 1 is divisible by 2x – k. ∴ By the converse of the factor theorem,

k  f   =0 2

34. Let f(x) = 2x3 – x2 – ax + b and g(x) = bx3 – 2x2 – x + a. ∵ x – 1 is a common factor of 2x3 – x2 – ax + b and bx3 – 2x2 – x + a. ∴ By the converse of the factor theorem,

f (1) = 0

3

2(1) −1 −a (1) +b = 0

(1) a −b =1 …… g (1) = 0

b(1) 3 −2(1) 2 −1 +a = 0

2

By substituting a = 2 into (1), we have 2 −b =1 b =1

2k 2 + k −1 = 0 ( k +1)( 2k −1) = 0 k =− 1

or or

2k – 1 = 0 1 k = 2

35. (a) By the remainder theorem, we have

f (3) = g (3) 4(3) +3(3) +5k (3) +15 = −(3) 3 +k (3) 2 +46 (3) −21 15 k +150 =9k +90 6k = −60 k = −10 3

32. Let f(x) = x3 – 2x2 + ax + b When f(x) is divided by x + 1,

f ( −1) = −8 ( −1) −2( −1) +a ( −1) +b = −8 (1) a −b =5 …… 3

2

When f(x) is divided by x – 2,

(1) + (2), 3a =9 a =3

2

(b)

f ( 2) = 4

2 3 − 2( 2) 2 + a ( 2) + b = 4 2a + b = 4

2

(2) a +b =3 …… (1) + (2), 2a = 4 a =2

k  k  8  + 2  −1 = 0 2  2 

k+1=0

2

3 3 3 2  − 9  + p  − 6 = 0 2 2 2 27 81 3 p − + −6 = 0 4 4 2 3 p 39 = 2 2 p = 13

…… (2)

f ( x ) − g ( x ) = 4 x 3 + 3 x 2 +5( −10 ) x +15 − ( −x 3 −10 x 2 + 46 x − 21 ) = 5 x 3 +13 x 2 −96 x +36

3

Let h(x) = 5x + 13x2 – 96x + 36.

82

Certificate Mathematics in Action Full Solutions 4A 1 =3 −a a =2

∵ 3

2

2 2 2 2 h  = 5  +13  − 96   + 36 = 0 5 5 5       5 ∴ 5x – 2 is a factor of h(x). By long division, 5 x 3 +13 x 2 −96 x +36

= (5 x −2)( x 2 +3 x −18 )

38. Let f(x) = x99 + 1. (a) By the remainder theorem, = f ( −1) 99 remainder =( −1) +1 =−1 +1



=0

f ( x ) −g ( x ) =( x −3)(5 x −2)( x +6)

(b) Let Q(x) be the quotient when f(x) is divided by x + 1. 36. (a)

f ( x) = ( x +1)Q ( x )

f ( x + 1) = ( x + 1) 3 + k ∴ When f(x + 1) is divided by x + 1, the remainder is k. ∴ k =1

(b)

f ( 2 x ) = ( 2 x) 3 +1 =8 x 3 +1 Let g(x) = 8x3 + 1. By the remainder theorem, =g ( 2) remainder =8( 2) 3 +1

x 99 = ( x +1)Q ( x ) −1

 (1)

By substituting x = 6 into (1), we have 6 99 =(6 +1)Q (6) −1 =7Q (6) −1 ∴ If today is Monday, the day after 699 days is Sunday.

= ( −1) n + 2( −1) +3

= −1 − 2 +3 ( n is a positive

f ( x −1) = ( x −1) + a ( x −1) +b

odd integer

)

=0

= x − 2 x +1 + ax − a +b 2

= x 2 +( a −2) x +1 −a +b Let g(x) = x2 + (a – 2)x + 1 – a + b. By the remainder theorem, we have g ( 2) = 4

2 + (a − 2)( 2) +1 − a + b = 4 1 + a +b = 4 …… (1) b =3 −a

(b) By the remainder theorem, when f(x) is divided by x – 1, remainder

2

f ( x +1) = ( x +1) 2 + a ( x +1) +b

Let h(x) = x2 + (a + 2)x + 1 + a + b. ∵ x2 + (a + 2)x + 1 + a + b is divisible by x + 2. ∴ By the converse of the factor theorem, h(−2) = 0

…… (2) (c) (1) + (2),

2b =2 b =1

By substituting b = 1 into (1), we have

=1n +2(1) +3

Let Q(x) and ax + b the quotient and the remainder respectively when f(x) is divided by x2 – 1. f ( x ) = ( x 2 −1)Q ( x ) + ( ax + b)

= ( x +1)( x −1)Q ( x ) + ( ax + b) …… (1) By substituting x = 1 into (1), we have

f (1) =(1 +1)(1 −1)Q (1) +[ a (1) +b] 6 =a +b

(−2) 2 + (a + 2)( −2) +1 + a + b = 0 1 −a +b = 0 b = a −1

= f (1) =6

= x 2 + 2 x +1 + ax + a +b = x 2 +( a + 2) x +1 + a +b

83

+1 = ( x +1)Q ( x )

= f ( −1)

2

(b)

(By (a))

39. (a) By the remainder theorem, remainder

=65

37. (a)

x

= ( x + 1)( x + 1) 2 + k

99

…… (2) By substituting x = –1 into (1), we have

f ( −1) = (−1 +1)( −1 −1)Q (−1) +[a ( −1) +b ] 0 = −a +b ……(3) (2) + (3), 2b = 6 b=3 By substituting b = 3 into (3), we have

3

0 = −a + 3

By long division, 3 x 3 +7 x 2 −2 x −8 = (3 x 2 + x −4)( x +2) = (3 x +4)( x −1)( x + 2)

a =3

∴ The remainder when f(x) is divided by x2 – 1 is 3x + 3. 2



f ( x ) =( x − 1)( x +2)( 3 x +4)

2

40. (a) Let f(x) = 2x + px + q and g(x) = 2x + qx + p. ∵ x – r is a common factor of f(x) and g(x). ∴ By the converse of the factor theorem,

5. Answer: C By the remainder theorem, we have f ( −k ) = k

f ( r ) = g (r )

( −k +2)( −k −3) +2 = k

2r + pr + q = 2r + qr + p 2

More about Polynomials

2

k 2 +k −6 +2 = k k 2 = 4 or –2 (rejected) k =2

( p − q)r = p − q r = 1 ( p and p are distinct real numbers)

6. Answer: A Let Q(x) be the quotient when P(x) is divided by 4x – 1. ∴ P ( x ) = ( 4 x −1)Q ( x ) + R

(b) By (a), put p = 3, q = –5 and r = 1. The required polynomial is 2x2 – 5x + 3 or (x – 1)(x + 5), i.e. x2 + 4x – 5. (or any other reasonable answers) 7.

Multiple Choice Questions (p. 156) 1. Answer: A Let f(x) = x3 – x2 + 2x + 1. By the remainder theorem, = f ( 2)

8.

3 2 remainder =2 −2 +2( 2) +1 =8 −4 +4 −1

= (1 − 4 x )[ −Q ( x )] + R ∴ When P(x) is divided by 1 – 4x, the remainder is R. Answer: B ∵ Q(x) is divisible by x + 1. ∴ Q(x – 1) is divisible by (x – 1) + 1 = x. Answer: A Let f(x) = 2x3 – ax2 + bx + 3. ∵ x + 3 is factor of 2x3 – ax2 + bx + 3. ∴ By the converse of the factor theorem, f ( −3) = 0

2( −3) 3 −a ( −3) 2 +b( −3) +3 = 0 −54 −9a −3b +3 = 0 −3a −b =17

=9 2.

Answer: C ∵ f(x) is divisible by x + 1. ∴ By the converse of the factor theorem, f ( −1) =0

( −1) 2005 −( −1) +k =0 −1 +1 +k =0 k =0

3.

Answer: D f ( −1) =0 ∵

3( −1) 2 − p ( −1) +1 =0 ∴ 3 + p +1 =0 p = −4 f ( x ) =3 x 2 +4 x +1 ∴

4.

f (1) =3(1) 2 +4(1) +1 =3 +4 +1 =8

Answer: B Let Q(x) and ax + b be the quotient and the remainder respectively when P(x) is divided by x2 – 1. 2 ∴ P( x ) = ( x −1)Q( x) + (ax + b) = ( x +1)( x −1)Q( x ) + ( ax + b)

…… (1) By substituting x = 1 into (1), we have

P (1) =(1 +1)(1 −1)Q (1) +[ a (1) +b] 1 = a +b …… (2) By substituting x = –1 into (1), we have

P ( −1) =( −1 +1)( −1 −1)Q ( −1) +[ a ( −1) +b] 3 =−a +b ……(3)

(2) + (3), 4 = 2b

b =2

Answer: A ∵

9.

 

f(1) = 0 and f  −

4  =0 3

∴ By the factor theorem, x – 1 and 3x + 4 are factors of f(x). (x – 1)(3x + 4) = 3x2 + x – 4

By substituting b = 2 into (2), we have

1 = a +2 a = −1

∴ The remainder when P(x) is divided by x2 – 1 is –x + 2.

84

Certificate Mathematics in Action Full Solutions 4A

10. Answer: D ∵ f(x) is divisible by x + 2 and 2x – 1. ∴ By the converse of the factor theorem,

f ( −2) = 0

2( −2) +a ( −2) +b( −2) +4 = 0 2a −b = 6 3

2

…… (1)

1 f =0  2 3

2

1 1 1 2  + a  + b  + 4 = 0 …… (2)  2  2  2 a = − 2b − 17

By substituting (2) into (1), we have 2( −2b −17 ) −b = 6 5b = −40 b = −8

By substituting b = –8 into (1), we have 2a − ( −8) = 6

a = −1

HKMO (p. 157) Let f(x) = x3 + kx2 + 3. By the remainder theorem, we have f ( −3) = f ( −1) −2

( −3) 3 +k ( −3) 2 +3 =( −1) 3 +k ( −1) 2 +3 −2 9k −24 =k 8k =24 k =3

85

Related Documents

Polynomials
June 2020 9
Polynomials
April 2020 9
Convex Polynomials
December 2019 25