4a. Interaksi Bahan Peledak dan Batuan
Proses Peledakan Batuan Rock mass • Strength • Structure
Constraints • Budget • Pit geometry • Equipment • Legislation
Control
Explosive Rock Interaction
Blast Design Explosive type, Blast geometry Delay time & Initiation pattern
Blast results • Safety • Fragmentation • Muckpile profile • Ore loss / dilution • Blast volume • Damage • Vibrations / airblast • Fly rock • Cost
Fasa Detonasi Stemming
Un-detonated explosive
KPa >50ºC
Detonation zone
Explosion state
GPa >2000 - 300ºC
Tekanan detonasi adalah tekanan dalam CJ Plane dan dapat dihitung sbb. Pd = K VoD2 Tekanan peledakan/lubang tembak adalah tekanan di belakang CJ plane dan biasanya setengah dari tekanan detonasi
Fasa Gelombang Kejut Open fracture
Compressive wave
Expanded blasthole
Gas-gas peledakan memperluas lubang tembak sampai kondisi Tensile wave kesetimbangan tegangan Energi BP berkembang sampai di gambar ini didefiniskan sebagai shock Spalling energy Energi dalam fasa ini digunakan untuk mengembangkan jaringan fraktur
Radial cracks
Original blasthole Crushed zone
Compressive stress > Dyn Compressive strength –- crushing Tangential stress > Dyn tensile strength –- radial cracking
Fasa Pengembangan Tekanan Gas Fracture extension
p i
p
Hydrostatic zone
i
p i
Free face
Gas-gas peledakan memasuki fraktur dengan kecepatan 0.1- 0.4 sonic velocity
pi
State of stress on an element in hydrostatic zone
i
Fasa Pergerakan Burden Stemming ejection
Crushed zone
Original blasthole
Interaksi BP dan Batuan pe
p
b
Response of the blasthole A wall to explosive loading Equilibrium state Starting of burden movement
B
Pressure peq 1 2 p ( t m in
C
)
Gas escape into the atmosphere
4 3
p ( t ter) P Ve Vb
D
6 Q Veq
5
7
R V( t m in
)
Volume
S V(t ter )
Peledakan Lubang Tembak Tunggal Anzomex Primer = 1.65 gr/cc; VOD = 7.2 km/d;, PD = 21 GPa Magnum II PD = 8 GPa Power Gel PD = 6 GPa Shock energy + Gas energy = Fragmentation energy Gas energy = Heave energy
Insert file name here by selecting View, Header & Footer, Footer
8
Peledakan Batuan Lunak & Keras
Deformasi plastik, peremukan terjadi sekitar lokasi muatan Tidak perlu high peak pressure Fragmentasi bergantung kepada pembukaan rekahan & penetrasi gas GV akan lebih besar pada hard rocks Perlu heave energi yg tinggi
Perlu pembentukan rekahan baru Perlu tekanan lubang tinggi Resiko bising & fly rock Perlu energi fragmentasi tinggi
Insert file name here by selecting View, Header & Footer, Footer
Soft rock
9
Hard rock
Fragmentasi Peledakan Hancurnya batuan utuh Pemisahan matriks in-situ
Pengaruh Pengungkungan Perkembangan crack akibat kenetrasi gas Disebabkan oleh shock dan Bidang lemah alami
Gas flow direction
Laju penetrasi gas = 100 – 400 m/s
Videos – showing gas penetration
Gas flow direction
Pemilihan BP untuk memenuhi struktur batuan dan kekuatan Medium VOD High density
Strength
High VOD High density
High VOD Low density
Low VOD Low density
Fractures
Throw requirement
Pemilihan BP untuk memenuhi tujuan peledakan
Low VOD Med-High density
Low VOD Low density
Fines requirement
High VOD High density
High VOD Med density
Explosive Energy Partitioning 100% Available Energy
“Shock” Energy Component
“Heave” Energy Component Increasing Velocity of Detonation
When Gas Heave Generation is Desired Cast Blast for Coal Stripping
Low Pile for Loaders
When Gas Heave is Not Desired Dilution Control
Through Seam Blasting in Coal
When Gas Heave is Not Desired Controlling Backbreak
Along Final Walls
4b. Pengaruh Kondisi Geologi Terhadap Unjuk Kerja Peledakan
Geologic Factors to Consider
Rock Properties Rock Structure Strata Variations Water Reactive and Hot Ground Coal Seam Characteristics
Model of Failure
Brittle
Stiffness indicates The mode of failure Type of fragmentation Stiffness is represented by the Young’s modulus
Fractured
Plastic
Stiffness can be measured by the stress – strain curve in a stiff testing machine
Dynamic Properties Grady and Kipp, 1987
Intermediate loading rate
Explosive loading rate
Slow loading rate
Dynamic properties are generally higher than static measurements Dynamic measurements are expensive to conduct Static measurements should be used to represent relative strength rather than absolute
Rock Properties cont… Poisson’s Ratio - relationship between lateral and longitudinal deformation under load (lower values indicate success for presplitting) Young’s Modulus - aka modulus of elasticity, ability to resist deformation (higher values indicate rock will be harder to break) P Wave velocity - the speed of sound in the rock, high P Wave velocities generally indicate the need for high VOD explosives
Rock Properties cont… Rock Type
Density Compressive Tensile (g/cc) Strength Strength (MPa) (MPa)
Young's Modulus (GPa)
Poisson's Ratio
P Wave Velocity (m/s)
Basalt
2.9
149
11
62
0.27
5229
Dolomite
2.5
55
3
28
0.32
4024
Gneiss
2.8
224
14
81
0.22
5732
Granite
2.7
186
9
43
0.33
4844
Limestone
2.7
159
5
55
0.25
5000
Marble
3.1
251
15
106
0.28
6705
Sandstone
2.5
134
1
7
-
3933
Sandstone
1.8
11
0
6
0.31
2095
Schist
2.9
166
9
77
0.2
5482
Slate
2.6
85
6
66
0.17
5168
Taconite
2.9
251
17
93
0.25
6140
Rock Structure Structure describes the features which primarily determine the fragmentation performance of the rockmass Jointing Bedding Faulting
Rock Structure
Block size < 0.2m
Friable and Powdery Massive
Block size > 2m
Rock Structure Block size 0.2 - 1m
Blocky
Block size Fractured 0.1 – 0.25m
Rock Structure
Blocky structure Bedding planes dipping into the pit
Rock Structure
Hard and massive Soft and fractured
Multiple Seams
Multiple Rock Types
60
Hard
50
Soft
40 30 20 10
Medium Rider
Soft
Consider bedding when deciding where to open shot
Structure Orientation
Dipping towards the face
Dipping away from the face
Explosive Charge Separation
Column Separation and Cutoffs 300 ms 200 ms 100 ms 200 ms 300 ms
200 ms
100 ms
Weak Bands
Stemming Explosive
Decking
Weak Seam Explosive
Weak Bands
Gas penetration Differential rock movement
VOD Trace Showing Effect of Weak Band Stemming 10’
Top booster (500 ms)
Weak band
Bottom booster (475 ms)
Column Seperation Along Bedding Planes
Column Seperation
Effect of Hard Rock Bands on Cast Shot
Effect of Hard Rock Bands on Cast Shot
Floaters Requires that drillers record floater locations in holes Difficult to control blasting in floaters – 3D problem Floaters
Soft Clay
Hard Rock
Reduced Pattern
Deck Loading
Cavities Poor fragmentation, toe etc Excessive flyrock and noise High powder factors
Hard Rock
Blasthole Plug
Impact of Roof Characteristics on Coal Loss Coarse Sandstone
Conglomerate
Hard roof requires more energy for good breakage • Less standoff • High energy explosives • Quick burden response and movement • More prone to coal loss
Hard sandstone Coal Seam
Soft roof requires less energy for good breakage • Higher standoff • Low energy explosives • Longer burden response times, hence more confinement
Soft Siltstone
Coal seam
Rolling Seams and Faults
•
Geological models are based on exploration holes with wide grid spacing, hence they are not accurate
•
In order to get a better accuracy, normally one in every fifth hole is drilled to coal
•
Design and implementation of stand off
Coal Type Description COAL CHARACTERISATION DULL DULL <1% bright
DULL w/MINOR 1-10% bright DULLBANDED 10-40% bright INTERBANDED 40-60% bright
BRIGHT BANDED 60-90% bright BRIGHT >90% bright
BRIGHT
Coal Seam Characteristics Brightness profiles
0
Breakage characteristics
BLASTHOLE STEMMING
100
200
80
Gl4
increasing breakage
300
70
400
mid to high rank, banded coals
PLY 1
NP BB (1.67)
500
60 600
700
NP DB (1.67)
PLY 2
PLY3
800
900 PLY 4
1000
RAMP 27 LD CORE
mass % passing T10 (5mm)
CHARGE
(Esterle 1988)
2D IB (1.1) 50
2D DB (1.1) DU BB (0.88)
40
DU IB (0.88) DU D (0.88)
30
WW B (0.75) WW D (0.75)
20 low rank, dull coals
TK B (0.62) TK BB (0.62)
10 increasing energy
TK DB (0.62)
0 0.000
0.050
0.100
0.150
energy (kWh/t)
0.200
0.250
Partings and Clay Bands
coal edge movement 3 - 4m
Cleats orientation
Measurement While Drilling
(MWD)
Analysis and Presentation Drill Monitor
Correlation Betwee Measure While Drilling Parameters and Point Load Test 60%
Strength (ROP)
50%
Strength (PLT)
40% 30% 20% 10% 0% 30
60
90
120
150
180
210
240
Strength = K1 x Pull down pressure x (RPM / ROP)K2
Drill Penetration at Various Depths
Water Influences explosive selection Dewatering may be a cost effective alternative if water is relatively static Dynamic ground water is difficult to pump and degrades bulk explosive Pumped explosives Bottom loading Slower loading rates Less sleep times Multiple priming is recommended
Definitions of Hot and Reactive Ground Reactive Ground: Pyritic material in the rockmass that reacts with ammonium nitrate based explosives, ultimately resulting in the exothermic decomposition of the explosive. AN based explosives which come into contact with pyrites start to fume, generate heat and finally deflagrate or detonate, depending on the circumstances. Hot Ground: A rockmass that is not reactive, but which has a rock temperature in excess of 50oC. Typical hot ground situations result from geothermal heating or heating from burning coal seams Hot ground is sometimes subdivided into: Warm Ground – rock temp of 50oC to 74.9oC; Hot Ground – rock temp in excess of 75oC.
Reactive Ground Nitrates in explosives will react with sulphides the rockmass, leading to: Heat (can exceed 650o C) and toxic gases Premature detonation of the explosive If reactive ground is present, it is essential to: Establish a set of procedures which control the blasting in reactive ground Use inhibited explosives or Line holes with impermeable sleeve to prevent contact between explosive and sulphides Charge and fire the holes with minimal delay
Hot Ground The most common examples of hot ground are: A volcanic rockmass where rockmass temperature is governed by the presence of nearby body of magma (e.g. Lihir Gold Mine)
A rockmass where the spontaneous combustion of a coal seam has elevated the rockmass temperature (Lidel and Muswellbrook coal mines) All explosives increase in sensitivity with increasing temperature: TNT melts at 80oC (TNT is a principal ingredient of cast boosters) NONEL tube melts at 115C Diazo deflagration point 180C Lead Azide deflagration point 320 – 360C HMX/Al (in NONEL tube) deflagration point 287C PETN deflagration point 202C TNT deflagration point 300C