4.3 External network modelling
The interconnected system of Europe in 1995
4.3.1
4.3 External network modelling
Line outage External network
4.3.2 Observable network Internal network
External network
External network
4.3 External network modelling
Generator outage
4.3.3 Observable network
4.3 External network modelling
4.3.4
Frequency and power deviation in the UCPTE network Deviation of frequency a) Normal operation
b) Outage of a generation unit
Net tie line interchanges
4.3 External network modelling
4.3.5
Real-time security analysis Network topology Measurements Variance of measurement errors Network parameter
Network equivalent
Contingency set • lines • transformers • generation units
State Estimation
State vector J(x), E{J(x)} Location of bad data
Model of external system
Security analysis
Security constraints: • met • not met Exeeding limits:
• Ith • Vmin, Vmax • Imax
4.3 External network modelling
Alternatives to consider the external network
•
1:1 representation of the external network with complete data transmission of measurements and on-off status quantities
•
Application of an equivalent for the external network
4.3.6
4.3 External network modelling
4.3.7
Available information Observable network External network
Internal network
External network
External network Network region Observable network: - Internal nodes - Boundery nodes External network: - External nodes
Available information Measurements, on-off status quantities, transformator tap-settings, network parameter, Vi, Θi (via state estimation) Network topology (standard topology), network parameter
4.3 External network modelling
4.3.8
diag[V ][Y ] [V ] = [S] ∗
E: external;
VE YEE diag VB YBE VI 0
∗
B: boundary;
YEB YBB YIB
0 YBI YII
diag[VE ][YEE VE + YEB VB
∗
I: internal ∗
VE SE V = S B B VI SI
]∗ = [SE ]
(1.1)
diag[VB ][YBE VE + YBB VB + YBI VI ] = [SB ] (1.2) ∗
diag[VI ][
YIB VB + YII VI ] = [SI ] ∗
(1.3)
4.3 External network modelling
4.3.9
Elimination of [VE] using eq. (1.1)
[YEE VE + YEBVB ]∗ = diag −1 [VE ]⋅ [SE ] [YEE VE ]∗ = diag −1 [VE ]⋅ [SE ] − [YEBVB ]∗ [VE ]∗ = [YEE∗ ]−1 {diag −1 [VE ]⋅ [SE ] − [YEBVB ]∗ } [VE ] = [YEE ]−1 {diag −1 [VE ]* ⋅ [SE ]* − [YEBVB ]} Introducing [VE] in eq. (1.2)
[ ]{[ ] {[Y ]
diag VB YBE
∗ −1 EE
*
{diag [V ][S ]− [Y ] [V ] }} E
E
[ ] [ ] [ ] [ ] }= [S ] *
*
*
+ YBB VB + YBI VI
∗
*
−1
*
B
EB
B
4.3 External network modelling
4.3.10
{[ ] [ ] [ ] [ ] [Y ] [V ] + [Y ] [V ] } *
*
*
∗ diag[VB ] YBB VB − YBE YEE
[ ]
[ ][ ] [ ] *
∗ = SB − diag VB YBE YEE
−1
−1
*
*
EB
B
*
BI
[ ][ ]
diag −1 VE SE
With the definitions
[Y ] = [Y ] − [Y ][Y ] [Y ] −1
eq BB
BB
BE
EE
EB
[S ] = [S ] − diag[V ][Y ] [Y ] eq B
∗ −1 EE
*
B
B
BE
diag −1 [VE ][SE ]
we can write:
{[ ] [ ] [ ] [ ] }= [S ] ∗
∗
∗
eq diag[VB ] YBB VB + YBI VI
∗
eq B
*
I
4.3 External network modelling
4.3.11
Power flow equations after transformation: eq VB YBB diag VI YIB
YBI YII
∗
∗
VB Seq B V = I SI
( 2.1) ( 2 .2 )
With definitions:
[Y ] = [Y ] − [Y ][Y ] [Y ] −1
eq BB
BB
BE
EE
[S ] = [S ] − diag[V ][Y ] [Y ] eq B
∗
B
B
BE
( 2.3)
EB
* −1 EE
[ ][ ]
⋅ diag −1 VE SE
( 2 .4 )
4.3 External network modelling
4.3.12
On-line application: • Topology and network parameters of external, boundary and eq internal network are known; so YBB can be determined
[ ]
using Eq. (2.3):
[Y ] = [Y ] − [Y ][Y ] [Y ] −1
eq BB
•
BB
BE
EE
EB
[S ] , [V ] of external network are unknown; so the calculation of [S ] with the use of Eq. (2.4) is not possible. E
E
eq B
[S ] = [S ] − diag[V ][Y ] [Y ] ∗
eq B
•
B
B
BE
* −1 EE
[ ][ ]
⋅ diag −1 VE SE
[V ],[V ] of boundary and internal network are known as a result of state estimation; therefore [S ] can be determined using Eq. (2.1): [S ] = diag[V ]{[Y ] [V ] + [Y ] [V ] } B
I
eq B
eq B
B
eq * BB
*
B
*
BI
*
I
4.3 External network modelling
4.3.13
Equivalent representation of the external network Pi eq + jQieq
Internal network y ieq 0 y ikeq
passive part: equivalent branches equivaltent shunts active part: equivalent injections
y ikeq y ieq 0 Pi eq + jQieq
4.3 External network modelling
German system with external network
4.3.14
4.3 External network modelling
German system with equivalent for external network
Equivalent branches Equivalent injections
4.3.15
4.3 External network modelling
Variation in time of Peq in boundary nodes (January 9th 1979)
4.3.16
4.3 External network modelling
4.3.17
Reduction of the external network Bus admittance matrix:
E: External B: Boundery I: Internal Elimination of external nodes:
4.3 External network modelling
4.3.18
Example of external network reduction Z 27 = 0 . 0973
+ j 0 . 2691 Z 17 = 0 . 0890
Z 25 = 0 . 0387
+ j 0 . 2359
+ j 0 . 1847 Z 18 = 0 . 1068
+ j 0 . 2807
Z 58 = 0 . 0497
+ j 0 . 2372
Internal network Z 45 = 0 . 0529
+ j 0 . 1465
Z 38 = 0 . 0460
+ j 0 . 2196
Z 43 = 0 . 0364 + j 0 . 1736 Z 46 = 0 . 0511 + j 0 . 2442 Z 56 = 0 . 0579
+ j 0 . 2763
4.3 External network modelling
Example Bus admittance matrix
4.3.19
4.3 External network modelling
Example 1st step
4.3.20
4.3 External network modelling
Example 2nd step
4.3.21
4.3 External network modelling
Example 3rd step
4.3.22
4.3 External network modelling
Example 4th step
4.3.23
4.3 External network modelling
Example 5th step
4.3.24
4.3 External network modelling
4.3.25
Example of external network reduction eq Z 78
Z
eq 67
= j 1 . 0380
= j 0 . 3520
Internal network
eq Z 68 = j 0 . 3213
Equivalent branches (Reactance reduced)