386304460-tarea-4-fisica-4.docx

  • Uploaded by: Francisco
  • 0
  • 0
  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 386304460-tarea-4-fisica-4.docx as PDF for free.

More details

  • Words: 794
  • Pages: 6
Resuelva las siguientes aplicaciones 1) Calcule la energía de un fotón de luz con una longitud de onda de 500 n m. E = h f ^ f = c/ λ f = c/ λ  f= 3.0x108 / 5.0x10-7m = Datos Longitud =

500 n m. = 5.0x10-7m

Frecuencia= 6x1014hz Energía= h=

978x10-19 j 6.63 x 10–34 J.seg

F= c/ λ

f= 3x108m/s / 5.0x10-7m = 6x1014hz

E= hf

E= (6.63 x 10–34 J.seg) x (6x1014hz) = 3.978x10-19 j

2) Calcule la energía de un fotón de luz con una longitud de onda de 500x109 m. Datos λ = 500x109m h = 6.63x10-34j.seg E= 3.978x10-34 j C= 3x108m/seg F= c/λ -----

f= 3x108m/seg / 500x109m = 0.0006 hz

E= hf ---

E= (6.63x10-34j.seg) x 0.0006hz = 3.978x10-34 j

3) Calcule la energía de un fotón de luz con una longitud de onda de 500 km. Datos λ = 500km ---5x105m h = 6.63x10-34j.seg c= 3x108m/seg f= 600 Hz E= 3.978x10-31j

f= c/ λ

f= (3x108m/seg) / (5x105m) = 600 Hz

E=hf

E = (6.63x10-34j.seg) x (600 Hz) = 3.978x10-31j

4) La energía de un fotón es de 1.16 x 10-19 joules. Determina la longitud de onda y la frecuencia del fotón. Datos E= 1.16 x 10-19j f=1.75x1014hz λ = 1.714x10-6m

λ = c/f

λ = (3x108m/seg) / (1.75x1014hz) = 1.714x10-6m

f= E/h

f= (1.16x10-19) / (6.63x10-34j.seg) = 1.75x1014hz

E=hf f= c/ λ 5) La longitud de onda de una luz ultravioleta es de 2x10-6m. Determina la energía de los fotones. E= 9.945x10-20j f= 1.5x1014hz λ = 2x10-6m E=hf

E = (6.63x10-34j.seg) x (1.5x1014hz) = 9.945x10-20j

f= c/ λ

f= (3x108m/seg) / (2x10-6m) = 1.5x1014hz

6) Calcula la energía en joule de los fotones de la luz ultravioleta de longitud de onda 3x107 m. E= 6.63x10-19j f= 1x1015hz λ = 3x10-7m. f= c/ λ

f= (3x108m/seg) / (3x10-7m.) = 1x1015hz

E=hf

E = (6.63x10-34j.seg) x (1x1015hz) = 6.63x10-19j

7) Determina la energía de un fotón si esta viene dada por D(x) = 6 eV2. 1eV= 1.602x10-19j E= 9.612x10-19j

Solución Energía del frontón en Joules E= (6 eV2) x (1.602x10-19j) = 9.612x10-19j

Múltiplos keV (kilo-electrón voltio = 1000 eV), MeV (mega-eV = $106 eV), GeV (giga-eV = $109 eV). Frecuencia de la radiación v= c/ λ

Para calcular la energía en eV se divide la energía en joules entre la equivalencia de 1eV equivalente a 1.602x10-19j Energía en eV = E/1.602x10-19j 8) Determina la longitud de onda y frecuencia de un fotón de 1.6x10-11 joules. E= 1.6x10-11 joules. f= 2.41x1022hz λ = 1.24x10-14m h= 6.63x10-34j.seg λ = c/f 

λ= (3x108) / (2.41x1022hz) = 1.24x10-14m

f= E/h 

f = (1.6x10-11 j) / (6.63x10-34j.seg) = 2.41x1022hz

9) La función de trabajo de un metal es de 5.6 x10-19 joule. Hallar la energía, cuando a la superficie del metal se aplica luz cuya longitud de onda de 1.8x10-7 m.

Datos f= 1.67x1015hz W= 5.6 x10-19 j λ = 1.8x10-7 m. E = 5.4721x10-19 J h= 6.63x10-34j.seg

c= 3x108 Ecin = h f – W Ecin = (6.63x10-34j.seg) (1.67x1015hz) – (5.6 x10-19 j) = 5.4721x10-19 f= c/ λ

-- f= (3x108) / (1.8x10-7 m) = 1.67x1015hz

Ecin ... Energía cinética máxima de un electrón emitido h ..... Constante de Planck (6.626 x 10-34 Js) f ..... Frecuencia W ..... Función trabajo

10) La longitud de onda de una luz ultravioleta es de 2x10-7 m. Determine la energía de los fotones. f= = 1.5x1015hz λ = 2x10-7 m E = 9.945x10-19j h= 6.63x10-34j.seg c= 3x108

E= hf --

E= (6.63x10-34j.seg) (1.5x1015hz) = 9.945x10-19j

f= c/ λ ---

f= (3x108) / (2x10-7 m) = 1.5x1015hz

λ = c/f f= E/h

11) Determina la frecuencia de un fotón que tiene una energía de 4 eV.

12) La longitud de onda de una luz ultravioleta es de 5 x 10–6 m. determina la energía de los fotones. 13) La longitud de onda de una luz ultravioleta es de 5 x 10–6 m. determina la energía de los fotones. 14) Un electrón cae desde el tercer nivel hasta el primer nivel de energía de un átomo excitado de hidrógeno. Determina

a) La energía del fotón emitido b) La frecuencia de fotón emitido c) La longitud de onda del fotón emitido 15) En un experimento de dispersión de Compton, el ángulo de dispersión del fotón es de 150º . Determine la longitud de onda de rayo X que se usó si el cambio fraccionario de la longitud de onda de los rayos X fue un 2 %.

16) En un experimento de incidencia de Compton, el ángulo de incidencia del fotón es de 120º . Determine la longitud de onda de rayo X que se usó si el cambio fraccionario de la longitud de onda de los rayos X fue un 5 %.

More Documents from "Francisco"

Parts List
June 2020 35
April 2020 33
Mate 2
April 2020 34
Monstruo-de-colores.pdf
November 2019 56
May 2020 42