309761829-tipos-de-motores-de-corriente-directa-y-alterna.docx

  • Uploaded by: Luis Parra Jr.
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 309761829-tipos-de-motores-de-corriente-directa-y-alterna.docx as PDF for free.

More details

  • Words: 4,062
  • Pages: 14
Sulema Olguín Perales 2°A Ingeniería Industrial

Tipos de motores de corriente directa y alterna Un motor eléctrico es una máquina eléctrica que transforma energía eléctrica en energía mecánica por medio de interacciones electromagnéticas. Los motores de corriente alterna y los de corriente continua se basan en el mismo principio de funcionamiento, el cual establece que si un conductor por el que circula una corriente eléctrica se encuentra dentro de la acción de un campo magnético, éste tiende a desplazarse perpendicularmente a las líneas de acción del campo magnético. El motor de corriente continua es una máquina que convierte la energía eléctrica en mecánica. En la actualidad existen nuevas aplicaciones con motores eléctricos que no producen movimiento rotatorio, sino que con algunas modificaciones, ejercen tracción sobre un riel. Estos motores se conocen como motores lineales.

 Motores de corriente continua -De excitación independiente -De excitación serie -De excitación ( shunt) o derivación -De excitación compuesta (compund) Los motores de corriente continua son de los más versátiles en la industria. Su fácil control de posición, paro y velocidad la han convertido en una de las mejores opciones en aplicaciones de control y automatización de procesos. Pero con la llegada de la electrónica su uso ha disminuido en gran medida, pues los motores de corriente alterna, del tipo asíncrono, pueden ser controlados de igual forma a precios más accesibles para el consumidor medio de la industria. A pesar de esto los motores de corriente continua se siguen utilizando en muchas aplicaciones de potencia (trenes y tranvías) o de precisión (máquinas, micro motor, etc.)



Motores de corriente alterna

-Motores síncronos -Motores asíncronos El motor síncrono es en esencia un alternador trifásico que funciona a la inversa. Los imanes del campo se montan sobre un rotor y se excitan mediante corriente continua, y las bobinas de la armadura están divididas en tres partes y alimentadas con corriente alterna trifásica. Motor Asíncrono La variación de las tres ondas de corriente en la armadura provoca una reacción magnética variable con los polos de los imanes del campo, y hace que el campo

Sulema Olguín Perales 2°A Ingeniería Industrial

gire a una velocidad constante, que se determina por la frecuencia de la corriente en la línea de potencia de corriente alterna. El motor asíncrono fue creado es su forma más simple por Galileo Ferraris y Nikola Tesla en 1885-86. Dos años más tarde se construyó una máquina con el rotor en forma de jaula de ardilla. El rotor de bobinado se desarrolló a principio del Siglo XX. La denominación de motores asíncronos obedece a que la velocidad de giro del motor no es la de sincronismo, impuesta por la frecuencia de la red.

Motor de rotor bobinado: el devanado del rotor de estos motores está formado por un bobinado trifásico similar al del estator, con igual número de polos. Un motor de rotor bobinado a igualdad de potencia y clase de protección, es más costoso, menos robusto y exige un mantenimiento mayor que uno de jaula de ardilla. No obstante, frente a este último posee fundamentalmente dos ventajas, que en algunos casos concretos resultan determinantes: las características del circuito eléctrico del rotor pueden ser modificadas en cada instante desde el exterior, y la tensión e intensidad del rotor son directamente accesibles a la medida o al control electrónico. MOTORES DE ROTOR DE JAULA DE ARDILLA El motor de rotor de jaula de ardilla, también llamado de rotor en cortocircuito, es el más sencillo y el más utilizado actualmente. En núcleo del rotor está construido de chapas estampadas de acero al silicio en el interior de las cuales se disponen unas barras, generalmente de aluminio moldeado a presión. Las barras del devanado van conectadas a unos anillos conductores denominados anillos extremos. El bobinado así dispuesto tiene forma de jaula de ardilla. Clase A: Uso a velocidad constante. Muy buena disipación de calor Durante el periodo de arranque, la densidad de corriente es alta cerca de la superficie del rotor; durante el periodo de la marcha, la densidad se distribuye con uniformidad. Tiene la mejor regulación de velocidad pero su corriente de arranque varía entre 5 y 7 veces la corriente nominal normal.

Sulema Olguín Perales 2°A Ingeniería Industrial

Clase B Se les llama motores de propósito general; Muy parecido al de la clase A debido al comportamiento de su deslizamiento-par. La mayor profundidad de sus ranuras tiende a aumentar la reactancia de arranque y la marcha del rotor. Lo cual reduce un poco el par y la corriente de arranque. Los motores de clase B se prefieren sobre los de la clase A para tamaños mayores. Las aplicaciones típicas comprenden las bombas centrífugas de impulsión, las máquinas herramientas y los sopladores. Clase C Tienen un rotor de doble jaula de ardilla, el cual desarrolla un alto par de arranque y una menor corriente de arranque. Acelera rápidamente, sin embargo cuando se emplea en grandes cargas, se limita la disipación térmica del motor. En condiciones de arranque frecuente, el rotor tiene tendencia a sobre calentarse se adecua mejor a grandes cargas repentinas pero de tipo de baja inercia. Las aplicaciones se limitan a condiciones en las que es difícil el arranque como en bombas y compresores de pistón. Clase D Se conocen también como de alto par y alta resistencia. Las barras del rotor se fabrican en aleación de alta resistencia y se colocan en ranuras cercanas a la superficie. La relación de resistencia a reactancia del rotor de arranque es mayor que en lo motores de las clases anteriores. El motor está diseñado para servicio pesado de arranque, con cargas como cizallas o troqueles, que necesitan el alto par con aplicación a carga repentina la regulación de velocidad en esta clase de motores es la peor. Clase F

Sulema Olguín Perales 2°A Ingeniería Industrial

Son motores de doble jaula y bajo par. Están diseñados principalmente como motores de baja corriente. Necesita la menor corriente de arranque de todas las clases. Tiene una alta resistencia del rotor tanto en su devanado de arranque como en el de marcha y tiende a aumentar la impedancia de arranque y de marcha, y a reducir la corriente de marcha y de arranque. Se diseñó para remplazar al motor de clase B. Produce pares de arranque aproximadamente 1.25 veces el par nominal y bajas corrientes de arranque de 2 a 4 veces la nominal. Se fabrican de la capacidad de 25 hp para servicio directo de la línea. Debido a la resistencia del rotor relativamente alta de arranque y de marcha, estos motores tienen menos regulación de voltaje de los de clase B, bajan capacidad de sobrecarga y en general de baja eficiencia de funcionamiento. MOTORES DE ROTOR DE ANILLOS ROZANTES Son motores asíncronos con un devanado trifásico de cobre dispuesto en las ranuras de rotor, que va conectado a tres anillos metálicos por uno de sus extremos, en tanto que, por el otro lado se conectan en estrella. De este modo se puede controlar desde el exterior la resistencia total del circuito rotórico, facilitando un control de la velocidad y corriente de arranque con un elevado par de arranque y un mejor factor de potencia que con el rotor en jaula de ardilla. MOTOR MONOFÁSICO DE FASE PARTIDA Un motor monofásico de fase partida es un motor monofásico de corriente alterna, cuya potencia generalmente no excede de 1CV. Se emplea para accionar pequeños electrodomésticos como lavadoras, pequeñas bombas de presión, quemadores de aceites pesados, etc.. En este tipo de motor se distinguen 4 partes principales: 1. La parte giratoria: el rotor 2. La parte fija que crea el campo magnético inductor: el estator 3. Dos placas o escudos terminales, sujetos a la carcasa del estator mediante tornillos o pernos. 4. Un interruptor centrífugo Este tipo de motores se define como:”Motor de inducción monofásico provisto de un arrollamiento auxiliar o de arranque desplazado magnéticamente respecto al arrollamiento principal o de trabajo y conectados en paralelo entre sí”.

Sulema Olguín Perales 2°A Ingeniería Industrial

Motor de corriente continua Un motor eléctrico de Corriente Continua es esencialmente una máquina que convierte energía eléctrica en movimiento o trabajo mecánico, a través de medios electromagnéticos. FUNDAMENTOS DE OPERACIÓN DE LOS MOTORES ELÉCTRICOS En magnetismo se conoce la existencia de dos polos: polo norte (N) y polo sur (S), que son las regiones donde se concentran las líneas de fuerza de un imán. Un motor para funcionar se vale de las fuerzas de atracción y repulsión que existen entre los polos. De acuerdo con esto, todo motor tiene que estar formado con polos alternados entre el estator y el rotor, ya que los polos magnéticos iguales se repelen, y polos magnéticos diferentes se atraen, produciendo así el movimiento de rotación.

Un motor eléctrico opera primordialmente en base a dos principios: El de inducción, descubierto por Michael Faraday en 1831; que señala, que si un conductor se mueve a través de un campo magnético o está situado en las proximidades de otro conductor por el que circula una corriente de intensidad variable, se induce una corriente eléctrica en el primer conductor. Y el principio que André Ampére observo en 1820, en el que establece: que si una corriente pasa a través de un conductor situado en el interior de un campo magnético, éste ejerce una fuerza mecánica o f.e.m. (fuerza electromotriz), sobre el conductor. El movimiento giratorio de los motores de C.C. se basa en el empuje derivado de la repulsión y atracción entre polos magnéticos. Creando campos constantes convenientemente orientados en estator y rotor, se origina un par de fuerzas que obliga a que la armadura (también le llamamos así al rotor) gire buscando "como loca" la posición de equilibrio. Gracias a un juego de conexiones entre unos conductores estáticos, llamados escobillas, y las bobinas que lleva el rotor, los campos magnéticos que produce la armadura cambian a medida que ésta gira, para que el par de fuerzas que la mueve se mantenga siempre vivo. Utilización de los motores de corriente directa [C.D.] o corriente continua [C.C.] Se utilizan en casos en los que es importante el poder regular continuamente la velocidad del motor, además, se utilizan en aquellos casos en los que es imprescindible utilizar corriente directa, como es el caso de motores accionados por pilas o baterías. Este tipo de motores debe de tener en el rotor y el estator el mismo numero de polos y el mismo numero de carbones. LOS MOTORES DE CORRIENTE DIRECTA PUEDEN SER DE TRES TIPOS:

Sulema Olguín Perales 2°A Ingeniería Industrial

SERIE PARALELO COMPOUND MOTOR SERIE: es un tipo de motor eléctrico de corriente continua en el cual el devanado de campo (campo magnético principal) se conecta en serie con la armadura. Este devanado está hecho con un alambre grueso porque tendrá que soportar la corriente total de la armadura. Debido a esto se produce un flujo magnético proporcional a la corriente de armadura (carga del motor). Cuando el motor tiene mucha carga, el campo de serie produce un campo magnético mucho mayor, lo cual permite un esfuerzo de torsión mucho mayor. Sin embargo, la velocidad de giro varía dependiendo del tipo de carga que se tenga (sin carga o con carga completa). Estos motores desarrollan un par de arranque muy elevado y pueden acelerar cargas pesadas rápidamente. MOTOR SHUNT O MOTOR PARALELO: es un motor de corriente continua cuyo bobinado inductor principal está conectado en derivación con el circuito formado por los bobinados inducidos e inductor auxiliar. Al igual que en las dinamos shunt, las bobinas principales están constituidas por muchas espiras y con hilo de poca sección, por lo que la resistencia del bobinado inductor principal es muy grande.

MOTOR COMPOUND: es un motor de corriente continua cuya excitación es originada por dos bobinados inductores independientes; uno dispuesto en serie con el bobinado inducido y otro conectado en derivación con el circuito formado por los bobinados inducido, inductor serie e inductor auxiliar. Los motores compuestos tienen un campo serie sobre el tope del bobinado del campo shunt. Este campo serie, el cual consiste de pocas vueltas de un alambre grueso, es conectado en serie con la armadura y lleva la corriente de armadura. El flujo del campo serie varia directamente a medida que la corriente de armadura varía, y es directamente proporcional a la carga. El campo serie se conecta de manera tal que su flujo se añade al flujo del campo principal shunt. Los motores compound se conectan normalmente de esta manera y se denominan como compound acumulativo. Esto provee una característica de velocidad que no es tan "dura" o plana como la del motor shunt, ni tan "suave" como la de un motor serie. Un motor compound tiene un limitado rango de debilitamiento de campo; la debilitación del campo puede resultar en exceder la máxima velocidad segura del motor sin carga. Los

Sulema Olguín Perales 2°A Ingeniería Industrial

motores de corriente continua compound son algunas veces utilizados donde se requiera una respuesta estable de par constante para un rango de velocidades amplio.

LAS PARTES FUNDAMENTALES DE UN MOTOR DE CORRIENTE CONTINUA SON: ESTATOR: Es el que crea el campo magnético fijo, al que le llamamos Excitación. En los motores pequeños se consigue con imanes permanentes. Cada vez se construyen imanes más potentes, y como consecuencia aparecen en el mercado motores de excitación permanente, mayores.

ROTOR: También llamado armadura. Lleva las bobinas cuyo campo crea, junto al del estator, el par de fuerzas que le hace girar.

Inducido de C.C. ESCOBILLAS: Normalmente son dos tacos de grafito que hacen contacto con las bobinas del rotor. A medida que éste gira, la conexión se conmuta entre unas y otras bobinas, y debido a ello se producen chispas que generan calor. Las

Sulema Olguín Perales 2°A Ingeniería Industrial

escobillas se fabrican normalmente de grafito, y su nombre se debe a que los primeros motores llevaban en su lugar unos paquetes hechos con alambres de cobre dispuestos de manera que al girar el rotor "barrían", como pequeñas escobas, la superficie sobre la que tenían que hacer contacto. COLECTOR: Los contactos entre escobillas y bobinas del rotor se llevan a cabo intercalando una corona de cobre partida en sectores. El colector consta a su vez de dos partes básicas: DELGAS: Son los sectores circulares, aislados entre sí, que tocan con las escobillas y a su vez están soldados a los extremos de los conductores que conforman las bobinas del rotor. MICAS: Son láminas delgadas del mismo material, intercaladas entre las delgas de manera que el conjunto forma una masa compacta y mecánicamente robusta.

Visto el fundamento por el que se mueven los motores de C.C., es facil intuir que la velocidad que alcanzan éstos dependen en gran medida del equilibrioentre el par motor en el rotor y el par antagonista que presenta la resistencia mecánica en el eje. EXCITACIÓN. La forma de conectar las bobinas del estator es lo que se define como tipo de excitación. Podemos distinguir entre: INDEPENDIENTE: Los devanados del estator se conectan totalmente por separado a una fuente de corriente continua, y el motor se comporta exactamente igual que el de imanes permanentes. En las aplicaciones industriales de los motores de C.C. es la configuración más extendida. SERIE: Consiste en conectar el devanado del estator en serie con el de la armadura. Se emplea cuando se precisa un gran par de arranque, y precisamente se utiliza en los automóviles. Los motores con este tipo de excitación se embalan en ausencia de carga mecánica. Los motores con esta configuración funcionan también con corriente alterna. PARALELO: Estator y rotor están conectados a la misma tensión, lo que permite un perfecto control sobre la velocidad y el par. COMPOUND: Del inglés, compuesto, significa que parte del devanado de excitación se conecta en serie, y parte en paralelo. Las corrientes de cada sección pueden ser aditivas o sustractivas respecto a la del rotor, lo que da bastante juego, pero no es este el lugar para entrar en detalles al respecto. Velocidad del motor de corriente continua

Sulema Olguín Perales 2°A Ingeniería Industrial

Como ya hemos dicho, la configuración más popular es la de excitación independiente, y a ella se refieren las dos expresiones que vienen a continuación: 1. La velocidad es proporcional al valor de la tensión media de C.C. esto es válido siempre que se mantengan constantes, las condiciones de excitación y el par mecánico resistente. 2. El valor de la tensión media aplicada a las conexiones de la armadura del motor se distribuye fundamentalmente de la forma: (1) U: Tensión media aplicada. RxI: Caída de tensión debida a la corriente que circula por el inducido. E: Fuerza contra electromotriz inducida (velocidad). Según el punto (1), la velocidad se puede variar empleando rectificadores controlados para proporcionarle en todo momento la tensión media adecuada. Para medir su velocidad podemos emplear, según el punto (2), un método alternativo a la dinamo tacométrica y que consiste en restar a la ecuación (1) la caída de tensión (RxI) en la resistencia de las bobinas de armadura, (con amplificadores operacionales) quedándonos solo con el valor correspondiente a la fuerza contraelectromotriz (E), muestra directa de la velocidad. En nuestro entorno, tendemos a pensar que allá donde encontremos motores de corriente continua es muy posible que sea debido a la necesidad de tener que poder variar la velocidad de forma sencilla y con gran flexibilidad. Caja de bornes El bornero de un motor de C.C. suele proporcionar dos parejas de conexiones, una para la excitación, y otra para la armadura. Al tratarse de devanados para corriente continua sus bornes estarán coloreados, habitualmente de rojo y negro.

Las tomas de estator y rotor deben ir debidamente diferenciadas, pero aún sin señales puede distinguirse entre unas y otras porque las de la armadura son de sección sensiblemente mayor.

Sulema Olguín Perales 2°A Ingeniería Industrial MOTOR SHUNT O MOTOR PARALELO: es un motor de corriente continua cuyo bobinado inductor principal está conectado en derivación con el circuito formado por los bobinados inducidos e inductor auxiliar. Al igual que en las dinamos shunt, las bobinas principales están constituidas por muchas espiras y con hilo de poca sección, por lo que la resistencia del bobinado inductor principal es muy grande.

MOTOR COMPOUND: es un motor de corriente continua cuya excitación es originada por dos bobinados inductores independientes; uno dispuesto en serie con el bobinado inducido y otro conectado en derivación con el circuito formado por los bobinados inducido, inductor serie e inductor auxiliar. Los motores compuestos tienen un campo serie sobre el tope del bobinado del campo shunt. Este campo serie, el cual consiste de pocas vueltas de un alambre grueso, es conectado en serie con la armadura y lleva la corriente de armadura. El flujo del campo serie varia directamente a medida que la corriente de armadura varía, y es directamente proporcional a la carga. El campo serie se conecta de manera tal que su flujo se añade al flujo del campo principal shunt. Los motores compound se conectan normalmente de esta manera y se denominan como compound acumulativo. Esto provee una característica de velocidad que no es tan "dura" o plana como la del motor shunt, ni tan "suave" como la de un motor serie. Un motor compound tiene un limitado rango de debilitamiento de campo; la debilitación del campo puede resultar en exceder la máxima velocidad segura del motor sin carga. Los motores de corriente continua compound son algunas veces utilizados donde se requiera una respuesta estable de par constante para un rango de velocidades amplio.

Sulema Olguín Perales 2°A Ingeniería Industrial

LAS PARTES FUNDAMENTALES DE UN MOTOR DE CORRIENTE CONTINUA SON: 

ESTATOR: Es el que crea el campo magnético fijo, al que le llamamos Excitación. En los motores pequeños se consigue con imanes permanentes. Cada vez se construyen imanes más potentes, y como consecuencia aparecen en el mercado motores de excitación permanente, mayores.



ROTOR: También llamado armadura. Lleva las bobinas cuyo campo crea, junto al del estator, el par de fuerzas que le hace girar.

Sulema Olguín Perales 2°A Ingeniería Industrial Inducido de C.C. 

ESCOBILLAS: Normalmente son dos tacos de grafito que hacen contacto con las bobinas del rotor. A medida que éste gira, la conexión se conmuta entre unas y otras bobinas, y debido a ello se producen chispas que generan calor. Las escobillas se fabrican normalmente de grafito, y su nombre se debe a que los primeros motores llevaban en su lugar unos paquetes hechos con alambres de cobre dispuestos de manera que al girar el rotor "barrían", como pequeñas escobas, la superficie sobre la que tenían que hacer contacto.



COLECTOR: Los contactos entre escobillas y bobinas del rotor se llevan a cabo intercalando una corona de cobre partida en sectores. El colector consta a su vez de dos partes básicas:



DELGAS: Son los sectores circulares, aislados entre sí, que tocan con las escobillas y a su vez están soldados a los extremos de los conductores que conforman las bobinas del rotor.



MICAS: Son láminas delgadas del mismo material, intercaladas entre las delgas de manera que el conjunto forma una masa compacta y mecánicamente robusta.

Visto el fundamento por el que se mueven los motores de C.C., es facil intuir que la velocidad que alcanzan éstos dependen en gran medida del equilibrioentre el par motor en el rotor y el par antagonista que presenta la resistencia mecánica en el eje. EXCITACIÓN. La forma de conectar las bobinas del estator es lo que se define como tipo de excitación. Podemos distinguir entre: 

INDEPENDIENTE: Los devanados del estator se conectan totalmente por separado a una fuente de corriente continua, y el motor se comporta exactamente igual que el de imanes permanentes. En las aplicaciones industriales de los motores de C.C. es la configuración más extendida.



SERIE: Consiste en conectar el devanado del estator en serie con el de la armadura. Se emplea cuando se precisa un gran par de arranque, y precisamente se utiliza en los automóviles. Los motores con este tipo de excitación se embalan en ausencia de carga mecánica. Los motores con esta configuración funcionan también con corriente alterna.



PARALELO: Estator y rotor están conectados a la misma tensión, lo que permite un perfecto control sobre la velocidad y el par.



COMPOUND: Del inglés, compuesto, significa que parte del devanado de excitación se conecta en serie, y parte en paralelo. Las corrientes de cada sección pueden ser aditivas o

Sulema Olguín Perales 2°A Ingeniería Industrial sustractivas respecto a la del rotor, lo que da bastante juego, pero no es este el lugar para entrar en detalles al respecto.

Velocidad del motor de corriente continua Como ya hemos dicho, la configuración más popular es la de excitación independiente, y a ella se refieren las dos expresiones que vienen a continuación: 1. La velocidad es proporcional al valor de la tensión media de C.C. esto es válido siempre que se mantengan constantes, las condiciones de excitación y el par mecánico resistente. 2. El valor de la tensión media aplicada a las conexiones de la armadura del motor se distribuye fundamentalmente de la forma: (1) U: Tensión media aplicada. RxI: Caída de tensión debida a la corriente que circula por el inducido. E: Fuerza contra electromotriz inducida (velocidad). Según el punto (1), la velocidad se puede variar empleando rectificadores controlados para proporcionarle en todo momento la tensión media adecuada. Para medir su velocidad podemos emplear, según el punto (2), un método alternativo a la dinamo tacométrica y que consiste en restar a la ecuación (1) la caída de tensión (RxI) en la resistencia de las bobinas de armadura, (con amplificadores operacionales) quedándonos solo con el valor correspondiente a la fuerza contraelectromotriz (E), muestra directa de la velocidad. En nuestro entorno, tendemos a pensar que allá donde encontremos motores de corriente continua es muy posible que sea debido a la necesidad de tener que poder variar la velocidad de forma sencilla y con gran flexibilidad.

Caja de bornes El bornero de un motor de C.C. suele proporcionar dos parejas de conexiones, una para la excitación, y otra para la armadura. Al tratarse de devanados para corriente continua sus bornes estarán coloreados, habitualmente de rojo y negro.

Las tomas de estator y rotor deben ir debidamente diferenciadas, pero aún sin señales puede distinguirse entre unas y otras porque las de la armadura son de sección sensiblemente mayor.

Sulema Olguín Perales 2°A Ingeniería Industrial

More Documents from "Luis Parra Jr."