KUNCI JAWABAN PENILAIAN AKHIR SEMESTER (PAS) TAHUN 2018
Mata Pelajaran Kelas
: MATEMATIKA PEMINATAN : X.MIPA
1. A 2. C 3. B 4. A 5. D 6. E 7. E 8. D 9. C 10. D
31. (
32πβ3 π 2 23 πβ5 π β6
11. B 12. A 13. D 14. A 15. D 16. B 17. E 18. A 19. C 20. E
β1
)
=
=
1 32πβ3 π2 ( 3 β5 β6 ) 2 π π
23 πβ5 π β6 25 πβ3 π 2
=
21. C 22. B 23. E 24. B 25. A 26. B 27. E 28. A 29. C 30. B
23 πβ5 π β6 32πβ3 π 2
1
= 23β5 πβ5β(β3) π β6β2 = 2β2 πβ2 π β8 = 4π2 π8
32. 4π₯β2π¦+1 = 82π₯βπ¦ 22(π₯β2π¦+1) = 23(2π₯βπ¦) 2(π₯ β 2π¦ + 1) = 3(2π₯ β π¦) 2π₯ β 4π¦ + 2 = 6π₯ β 3π¦ 2π₯ β 6π₯ β 4π¦ + 3π¦ = β2 β4π₯ β π¦ = β2 β¦(1) 3π₯+π¦+1 = 92π₯βπ¦β4 3π₯+π¦+1 = 32(2π₯βπ¦β4) π₯ + π¦ + 1 = 2(2π₯ β π¦ β 4) π₯ + π¦ + 1 = 4π₯ β 2π¦ β 8 π₯ β 4π₯ + π¦ + 2π¦ = β8 β 1 β3π₯ + 3π¦ = β9 β¦(2) πΈπππππππ π π¦ ππππ ππππ πππππ (1) πππ (2)
β4π₯ β π¦ = β2 | X 3 β3π₯ + 3π¦ = β9 | X 1 β12π₯ β 3π¦ = β6 β3π₯ + 3π¦ = β9 + β15π₯ = β15 π₯=1 π₯ = 1 substitusi ke persamaan (1) β4(1) β π¦ = β2 β4 β π¦ = β2 β4 + 2 = π¦ β2 = π¦ Jadi nilai π₯ = 1 dan π¦ = β2
33.
2
log 2 π₯ β 2logπ₯ 3 = 4
π¦ = 2log π₯ atau π¦ = 2log π₯ 4 = 2log π₯ atau β1 = 2log π₯
2
log 2 π₯ β 3 2logπ₯ β 4 = 0 Misal π¦ = 2log π₯, maka diperoleh: π¦ 2 β 3π¦ β 4 = 0 (π¦ β 4)(π¦ + 1) = 0 π¦ = 4 atau π¦ = β1
34. β34β6π₯ > 3 π₯
4-6x
1
π₯ = 24 = 16 atau π₯ = 2β1 = 2 1
Jadi HP = { 2 ,16 }
2 βπ₯β1
> 2x2-2x-2
2x2 + 4x -6 < 0 X2+2x-3 < 0 (x - 1)(x + 3) < 0 -3< x < 1
35. Tabel titik bantu f(x) = 3x β 1 x f(x) = 3x β 1 (x, y)
-1
0
1
2
2 3
0
2
8
(0, 0)
(1,2)
(2,8)
ο
(-1, ο
2 ) 3
y 8
2 X -1
1
2
_ 1 1 1 1