36
BAB IV PERENCANAAN STRUKTUR
4.1
Kriteria Perencanaan
Direncanakan :
Bentang jembatan
: 60 m
Jenis jembatan
: Struktur Rangka Baja
Bangunan atas a.
b.
Lantai jembatan o
Lebar lantai jembatan : 9 m
o
Mutu beton
: K-350 (f’c = 0,083 x 350 = 29,05 MPa)
o
Tebal pelat lantai
: 20 cm
Lantai trotoar o
Lebar Lantai Trotoar
: 2x1m
o
tebal
: 25 cm
o
Mutu beton
: K-175
Jumlah Gelagar Memanjang
: 5 buah
Mutu Baja
: BJ 37 (fy = 240 MPa, fu = 370 Mpa)
E baja (Es)
: 200.000 MPa
Alat Penyambung
: Pelat dan baut
Beban Angin
: 1,46 N/mm = 146 kg/𝑚2
36
37
Sumber : Data Olahan (2018)
Gambar 4.1 Jembatan Tipe Parker 240mm 150mm
1000mm
1000mm 7000mm
100mm
100mm
240mm 150mm 100mm 450mm 450mm 250mm 200mm 800mm
Gelagar memanjang 1000 mm
2000 mm
Gelagar melintang
2000 mm
2000 mm
2000 mm
1000 mm
10000 mm
Sumber : Data Olahan (2018)
Gambar 4.2 Potongan melintang jembatan
4.2
Perhitungan Sandaran 0,15 m 0,1 m 0,45 m 1m 0,45 m
Trotoar
0,25 m
Pelat Lantai
0,2 m
Sumber : Data Olahan (2018)
Gambar 4.3 Tinggi tiang sandaran
38
a. Perencanaan pipa sandaran
Data perencanaan pipa sandaran Sandaran direncanakan menggunakan pipa baja Galvanis Ø 76,3 mm ( 3 inchi )
Data teknis profil: D = 7,63 cm
t = 0,28 cn
W = 11,5 𝑐𝑚3
I = 43,7 cm4
G = 5,08 kg/m Tiang sandaran
Pipa sandaran 0,2 m
Ø 76,3 mm
2m P = 100 kg qd = 5,08 kg/m'
qh = 100 kg/m'
Sumber : Data Olahan (2018)
Gambar 4.4 Pembebanan pada pipa sandaran q
= 1,2 . 5,08 + 1,6 .100 = 166, 096 kg/m
RA = RB = = 1
𝑞.𝑙 2
+
𝑃 2
166,096 𝑥 2 2
+
100 2
= 216,096 kg
1
M = 8 . q x 𝐿2 + 4 x P x L =
1 8
1
x 166,096 x 22 + 4 100 x 2 = 133,048 kg.m
39
Kontrol terhadap bahan dan tegangan yang ada σ ijin = 1600 kg/𝑐𝑚2 = 160 Mpa E baja = 2,1x 105 Mpa Terhadap lendutan: 5𝑞𝑙 4 𝑃𝑥𝐿3 𝐿 + < 384 𝐸𝐼 48𝐸𝐼 300 5 . 1,66096 . 2004
= 384 .
2,1x106 . 43,7
+
100 . 2003 48 . 2,1x106 . 43,7
200
< 300
= 0,559 cm < 0,667 cm .....(ok) Terhadap momen: σ 𝑢 < σ 𝑖𝑗𝑖𝑛 𝑀𝑢 = σ 𝑖𝑗𝑖𝑛 𝑤 =
13304,7 11,5
< 1600
= 1156,94 kg/𝑐𝑚2 < 1600 kg/𝑐𝑚2 .....(ok) Jadi, pipa galvanis Ø 76,3 mm dapat digunakan sebagai pipa sandaran. b. Perencanaan tiang sandaran
Data perencanaan tiang sandaran -
Mutu beton
= K-225 (f’c=22,5 Mpa)
-
Mutu baja
= BJ 24 (fy=240 Mpa)
-
Tinggi sandaran
=1m
-
Jarak sandaran
=2m
-
Dimensi:
b = 100 mm h = 150 mm
40
Pembebanan 150 mm
56,320 kg
200 kg/m
1m
0,25 m 0,2 m
Sumber : Data Olahan (2018)
Gambar 4.5 Pembebanan tiang sandaran
Berat sendiri tiang sandaran dan pipa sandaran berupa beban terpusat: Berat sendiri sandaran
= ( b . h ) . b’ . BJ beton = (0,1 x 0,15) x 1 x 2400 = 36 kg
Berat sendiri pipa
= n.L.W = 2 x 2 x 5,08 = 20,320 kg
Total beban terpusat
= 36 + 20,320 = 56,320 kg
Tiang sandaran jembatan direncanakan menahan beban horizontal sebesar 100 kg/m yang bekerja 0,9 m diatas trotoar. Momen yang terjadi akibat beban horizontal 200 kg/m:
41
Mu
=Pxlxh = 200 x 2 x (0,9+0,25) = 460 kgm = Mu / ϕ ; ϕ = 0,8 (faktor reduksi untuk menahan momen lentur)
Mn
= 460 / 0,8 = 575 kgm
Rencana penulangan tiang
Perhitungan tulangan utama → b = 100 mm h = 1500 mm f’c = 22,5 MPa fy = 240 MPa d’ = 40 mm d = 150 – 40 = 110 mm d” = 60 mm ᵦ1 = 0,85 Digunakan: tulangan tarik : 3Ø12 ; As = 339 𝑚𝑚2 tulangan tekan : 3Ø12 ; As = 339 𝑚𝑚2 Beban yang ditahan : Mu = 460 kgm Pu = 56,320 kg Pemeriksaan eksentrisitas: e=
𝑀𝑢 𝑃𝑢
460
= 56,320 = 8,168 m = 8168 mm
42
𝑒𝑚𝑖𝑛 = 0,1 x h = 0,1 x 150 = 15 mm e > 𝑒𝑚𝑖𝑛 → struktur dengan beban eksentris. Letak garis netral pada keadaan balance: 600
600
𝑐𝑏 = 600+𝑓𝑦. d = 600+240 . 100 = 71,429 mm 𝑃𝑛𝑏 = 0,85 . f’c .b . ( ᵦ1. 𝑐𝑏 ) + As’ . fy – As. fy = 0,85 x 22,5 x 100 x (0,85 x 71,429) + 339 x 240 – 339 x 240 = 116116,768 N = 116,117 kN 𝑃𝑢𝑏 = Ø 𝑃𝑛𝑏 = 0,65 x 116,117 = 75,476 kN 𝑎
𝑀𝑛𝑏 = 0,85. f’c. b. a ( d – d” - 2 ) + As’ . fy . (d – d’ – d”) + As. fy. d” = 0,85 x 22,5 x 100 x (0,85 x 71,429) (110 - 60 40 - 60) + 339 x 240 x 60 = 7976023,618 Nmm = 7,976 kNm 𝑒𝑏
=
𝑀𝑛𝑏 𝑃𝑛𝑏
=
= 7,976 116,117
= 0.069 m = 69 mm
𝑃𝑢 = 5,632 kN 𝑃𝑢𝑏 = 75,476 kN → 𝑃𝑢 < 𝑃𝑢𝑏 e
= 8168 mm
𝑒𝑏 = 69 mm
→ 𝑒 > 𝑒𝑏
Penampang mengalami keruntuhan tarik.
60,715 2
) + 339 x 240 (110 -
43
Analisa kapasitas penampang yang mengalami keruntuhan tarik: 𝑓𝑦
240
m = 0,85 𝑓′𝑐 = 0,85 𝑥 22,5 = 12,549 m’ = m – 1 = 12,549 – 1 = 11,549 𝐴𝑠
339
ρ = 𝑏.𝑑 = 100 𝑥 110 = 30,818 𝐴𝑠′
339
ρ’ = 𝑏.𝑑 = 160 𝑥 160 = 30,818 e’ = e + d” = 8168 + 60 = 8228 Kapasitas penampang: 𝑃𝑛 = 0,85 . f’c . b . d [ρ’m’ – ρm + 1 – 𝑑′ 𝑑
𝑒′ 𝑑
+ {(1 –
𝑒′ 2 ) + 2
𝑒′
2 [ 𝑑 (ρm - ρ’m’) + ρ’m’ (1 -
)]}0,5]
= 0,85 x 22,5 x 100 x 110 [30,818 x 11,549 – 30,818 x 12,549 + 18228 2 ) 2
+2[
8228 110
40
= 210375 [ - 112,908 + (16916769+ 5063,358)0,5 ] = 8,41 x 108 N = 8,41 x 105 kN 𝑃𝑢 = Ø . 𝑃𝑛 = 0,65 x 8,41 x 105 = 5,467 x 105 kN > 5,632 kN Perhitungan tulangan geser: V = 200 kg 𝑉
𝑉𝑐 =
√𝑓,𝑐 6
200 0,6
= 333,333 kg
xbxd
110
+ {(1 –
(30,818 x 12,549 – 30,818 x 11,549) + 30,818 x 11,549
( 1- 110 )]}0,5]
𝑉𝑢 = 𝜙 =
8228
44
=
√22,5 6
x 100 x 110
= 8696,246 N = 869,625 kg Ø 𝑉𝑐 = 0,75 x 869,625 = 625,219 kg 333,333 < 625,219 ; 𝑉𝑢 < Ø 𝑉𝑐 → ok Tulangan geser tidak diperlukan, karena tulangan sudah kuat menahan geser. Sehingga cukup digunakan tulangan praktis yaitu Ø 8 mm – 200 Jadi,
- tulangan tarik: 3Ø12 ; As = 339 𝑚𝑚2 - tulangan tekan: 3Ø12 ; As = 339 𝑚𝑚2 - sengkang Ø 8 mm – 200 mm
dapat digunakan pada tiang sandaran jembatan. Detail penulangan → 100 mm 3 Ø 13
Ø8-200mm 110 mm
150mm
40 mm 3 Ø 13
Sumber: Data Olahan (2018) Gambar 4.6 Penulangan tiang sandaran
45
4.3
Perhitungan Pelat Lantai
4.3.1 Perhitungan Pelat Lantai Kantilever a.
Data Perncanaan •
Berat jenis beton (γc )
= 24 kN/m3 = 2400 kg/m3
•
Mutu Beton (f’c)
= 29,05 MPa
•
Mutu Tulangan (fy)
= 240 MPa
•
Ø Tulangan Rencana
= 14 mm
•
Tebal efektif pelat beton, d = h – selimut beton – ½ Ø tulangan = 200 – 40 – 7 = 153 mm
b. Pembebanan 1) Akibat Beban Mati
P1 0,685
q1
0,76
Beban merata berat trotoar
= 0,25 x 1,00 x 2200 = 550 kg/m
berat pelat jembatan
= 0,20 x 1,00 x 2400 = 480 kg/m ∑q1 =1030 kg/m
Mq1 = 1/2 . q1 . 𝐿2 = ½ x 1030 x 0,762 = 297,464 kg/m
Beban terpusat b.s tiang sandaran
= 76,8 kg
berat pipa galvanis
= 20,320kg
∑P1
= 97,120 kg
46
MP1 = P1.L
= 97,120 x 0,685 = 66,527 kg
2) Akibat Beban Hidup
= 500 kg/m2
Beban pejalan kaki
Mq2 = 1/2 . q . 𝐿2
q2
= ½ x 500 x 0,612 = 93,025 kg/m
0,61
H1 (beban tumbukan pada trotoar) = 500 kg H1 0,45
MH = H1 x h = 500 x 0,45 = 225 kg.m
Beban rencana pelat lantai: Mu = 1,2 qD + 1,6 qL = 1,2 (297,464) + 1,6 (225) = 716,957 kg/m c.
Perhitungan Tulangan k =
Mu Ø x b x d2 x (0,85 x f′ c)
=
716,957
0,9 x 1 x 0,1532 x (0,85 x 29,05)
= 13,782 kN/m ρ = =
0,85 x f′c fy
(1- √1 − 2 x k )
0,85 x 29,05
ρ min =
240 1,4 fy
=
1,4 240
(1- √1 − 2 x 0,013782 ) = 0,001
= 0,0058
ρ max = 0,75 x 1 x (
0,85 x f′c fy
x
600
) dan 1= 0,85
600 + fy
47
ρ max = 0,75 x 0,85 x (
0,85 x 29,05 240
x
600
) dan 1= 0,85
600 + 240
ρ max = 0,047 karena ρ min > ρ
dipakai ρ min= 0,0058
A = ρ x b x d = 0,0085 x 1000 x 153 = 1300,500 mm2 Dipakai tulangan Ø14 – 150 (As = 1692 mm2) Checking : ρ =
As terpasang (b x d) 1692 (1000 x 153)
= 0,011 < ρ max
….OK
Menurut SNI 03-2847-2002, dalam arah tegak lurus terhadap tulangan utama harus disediakan tulangan pembagi (untuk tegangan susut dan suhu). As = 0,0025 x b x d As = 0,0025 x 1000 x 153 = 382,5 mm2 Digunakan tulangan bagi D12-250 (A = 566 mm2)
4.3.2
Perhitungan Pelat Lantai Kendaraan
Sumber : Data Olahan (2018)
Gambar 4.9 Pelat Lantai Kendaraan
48
a.
Data Perencanaan •
Mutu beton (f’c)
= 29,05 MPa
•
Mutu tulangan (fy)
= 240 MPa
•
Tebal pelat lantai
= 20 cm
•
Tebal perkerasan
= 5 cm
•
Ø tulangan rencana
= 14 mm
•
Tebal selimut beton (p)
= 40 mm ( untuk konstruksi lantai yang langsung berhubungan dengan cuaca ).
•
Berat jenis beton (γc )
= 24 kN/m3 = 2400 kg/m3
•
Berat jenis aspal (γa)
= 22 kN/m2 = 2200 kg/m3
b. Perhitungan Momen Lentur Pada Pelat Lantai Kendaraan 1) Akibat Beban Mati : •
Berat sendiri pelat
= 0,20 x 1,00 x 2400 = 480 kg/m
•
Berat aspal
= 0,05 x 1,00 x 2200 = 110 kg/m
•
Berat air hujan
= 0,05 x 1,00 x 1000 = 50 kg/m + Ʃ qDL
Momen Tumpuan = Momen Lapangan
= 640 kg/m = 1/10 x q x 𝐿2 = 1/10 x 640 x 22 = 256 kgm.
2) Beban Angin Beban angin bekerja pada kendaraan dengan arah horizontal sebesaar:
49
q (tekanan angin)
= 146 kg/𝑚2 .
Panjang kendaraan
=9m
Sumber : Data Olahan (2017)
Gambar 4.13 Beban akibat angin Reaksi pada roda W =
2 𝑥 9 𝑥 1.8 𝑥 146 1,75
= 2703,086 kg = 2,703 ton
3) Akibat Beban Hidup (T) : Untuk perhitungan kekuatan lantai kendaraan atau sistem lantai kendaraan jembatan harus digunakan beban “T” yaitu beban yang merupakan kendaraan truk yang mempunyai beban roda ganda ( Dual Wheel Load ) sebesar 10 ton.
500
900
Sumber : Data Olahan (2018)
Gambar 4.10 Beban “ T ”
50
o
Beban “ T ” = 10 ton
o
Bidang kontak pada sumbu plat tx = ( 50 + ( 2 x 15 )) = 80 cm = 0,8 m ty = ( 30 + ( 2 x 15 )) = 60 cm = 0,6 m
o
Total beban hidup ( beban angin + T ) = 2,703 + 10 = 12,7 ton
o Penyeberan beban: 12700
= 0,8 x 0,6 = 26,458 t/m2 = 26458 kg/m2
Kondisi 1 ( satu roda ditengah pelat ) 10 Ton
10 Ton
5 20
45o
15
50
5 20
45o
15
15
30
15
ty = 60cm
Ly = 600cm
tx = 80cm Lx = 200cm
Sumber : Data Olahan (2018)
Gambar 4.11 Penyebaran Beban “ T ” Pada Kondisi 1 o
tx = 0,80 m
o
ty = 0,60 m
tx Lx ty Lx
= =
0,8 2 0,6 2
= 0,4 = 0,3
51
o
Lx = 2 m
o
Ly = 6 m
Dari tabel Bittner : Fxm = 0,1638 Fym = 0,0993 Momen maksimum pada kondisi 1 ( satu roda ditengah pelat ) : Mxm = Fxm x T’ x tx x ty = 0,1638 x 26458 x 0,8 x 0,6 = 2080,234 kg.m Mym = Fym x T’ x tx x ty = 0,0993 x 26458 x 0,8 x 0,6 = 1261,094 kg.m
Kondisi 2 ( dua roda berdekatan ) 10 Ton
45o
15
10 Ton
10 Ton
1000cm
5 20
45o
50
15
20 15
50
15
5 20
45o
15
30
15
180cm
ty = 60cm
tx = 80cm
tx = 20cm
Ly = 600cm
tx = 80cm
Lx = 200cm
Sumber : Data Olahan (2017)
Gambar 4.12 Penyebaran Beban “ T ” Pada Kondisi 2
52
Luas bidang kontak diatas dapat dihitung menjadi 2 bagian, yaitu :
Bagian 1
Bagian 2
Bagian 1 o
tx = 1,80 m
o
ty = 0,60 m
o
Lx = 2 m
o
Ly = 6 m
tx
1,8
= 0,9
2
ty
0,6
=
Lx
Dari tabel Bittner diperoleh : Fxm = 0,1004 Fym = 0,0670 Momen yang terjadi : Mxm1 = Fxm x T’ x tx x ty = 0,1004 x 26458x 1,8 x 0,6 = 2868,894 kg.m Mym1 = Fym x T’ x tx x ty = 0,0670 x 26458 x 1,8 x 0,6 = 1914,501 kg.m
=
Lx
2
= 0,3
53
Bagian 2 o
tx = 0,20 m
o
ty = 0,60 m
o
Lx = 2 m
o
Ly = 6 m
tx
0,6
Fym = 0,1193 Momen yang terjadi : Mxm2 = Fxm x T’ x tx x ty = 0,2363 x 26458 x 0,2 x 0,6 = 750,243 kg.m Mym2 = Fym x T’ x tx x ty = 0,1193 x 26458 x 0,2 x 0,6
Mxm = Mxm1 - Mxm2 = 2868,894 – 750,243 = 2118,651 kg.m Mym = Mym1 - Mym2 = 1914,501 – 378,773 = 1535,728 kg.m
= 0,1
ty
=
Lx
Fxm = 0,2363
Momen maksimum pada kondisi 2 :
0,2 2
Dari tabel Bittner diperoleh :
= 378,773 kg.m
=
Lx
2
= 0,3
54
Momen maksimum akibat beban hidup “ T ” diambil dari momen terbesar pada kondisi 1 dan kondisi 2 yaitu :
Momen maksimum pada kondisi 1 (satu roda ditengah pelat) : Mxm
= 2080,234 kg.m
Mym
= 1261,094 kg.m
Momen maksimum pada kondisi 2 (dua roda berdekatan) : Mxm
= 2118,651 kg.m
Mym
= 1535,728 kg.m
Dipilih momen pada kondisi 2 (dua roda berdekatan), karena menghasilkan nilai momen yang terbesar. Momen total:
Arah x
= Mxm + Mx = 2118,651 + 256 = 2374,651 kg.m
Arah y
= Mym + My = 1535,728 + 256 = 1791,728 kg.m
c.
Perhitungan Tulangan Pelat Lantai Kendaraan Diketahui : Momen rencana
MU
= 2374,651 kg.m
Mutu beton
f’c
= 29,05 MPa
Mutu tulangan
fy
= 240 MPa
Jarak tulangan terhadap sisi luar beton
d′
= 40 mm
Faktor bentuk distribusi tegangan beton
𝛽1
= 0,85
55
Faktor reduksi kekuatan lentur
𝜙
= 0,9
Lebar pelat lantai per 1m
b
= 1000 mm
Tebal efektif pelat beton
d= h - d′= 200 - 40
= 160 mm
Momen nominal rencana: Mn =
MU ϕ
=
2374,651 0,9
= 2638,501 kg/m = 26,385 kN/m
Koefisien ketahanan (Rn): Mn perlu x 106
Rn=
b x d2
=
26,385 x 106 1000 x1602
= 1,031 N/mm
Rasio tulangan: ρperlu
=
= ρmin =
1,4 fy
=
0,85 x f′c fy
(1 − √1 −
0,85 x 29,05 240 1,4 240
2 x Rn 0,85 x f′c
(1 − √1 −
)
2 x 1,031
) = 0,004
0,85 x 29,05
= 0,006 ˃ ρperlu = 0,004
Digunakan ρmin = 0,006 Asperlu
= ρmin x b x d = 0,006 x 1000 x 160 = 960 mm2
- Rencana tulangan pokok Digunakan tulangan pokok D14 mm (Asumsi), sehingga penampang 1 tulangan pokok : A.tul
= ¼ x 𝜋 x D2 = ¼ x 3,1416 x 142 = 153,938 mm2
Jarak antar tulangan
56
S =
A.tul x b As perlu
=
153,938 x 1000 960
= 160,352 mm
Maka dipakai tulangan pokok D14 - 150 mm Aspakai
=
A.tul x b S
=
153,938 x 1000 150
= 1026,253 mm2 > Asperlu = 960 mm2 a
=
As pakai x fy 0,85 x f′ c x b
1026,253 x 240
= 0,85
x 29,05 x 1000
= 9,975 mm
mn = Aspakai x fy x ( d - ½ a ) = 1026,253 x 240 x ( 160 - ½ x 9,975 ) = 38,180 kN.m ˃ mn perlu = 21,38kN.m -
...OK
Rencana Tulangan bagi / susut : As = 0,002 x b x h = 0,002 x 1000 x 200 = 400 mm2 Untuk tulangan susut dicoba pakai : ∅ 12 – 250 mm Atul. = 1⁄4x 𝜋 x ∅2 = 1⁄4 x 3,14 x 122 = 113,097 mm2 Aspakai
= =
A.Tul x b S 113,097 x 1000 250
= 452,388 mm2 > As = 400 mm2 Jadi, penulangan untuk pelat lantai jembatan menggunakan: D14 – 150 & Ø 12 – 250
...OK
57
Sumber : Data Olahan (2018)
Gambar 4.13 Penulangan pelat lantai
4.5
Perhitungan Dimensi Gelagar Memanjang Dan Melintang
4.5.1
Perencanaan Gelagar Memanjang
a.
Beban Mati Berat sendiri plat lantai
= t c x bo x ɣbeton = 0,2 x 2 x 2,4 = 0,96 ton/m
Berat sendiri perkerasan
= t asp x bo x ɣaspal = 0,05 x 2 x 2,2 = 0,22 ton/m
Berat sendiri air hujan
= t air x bo x ɣair = 0,03 x 2 x1 = 0,06 ton/m
Berat profil perkiraan
= 100 kg/m’ = 0,1 t/m’ = 0,1 ton/m
58
Berat sendiri pelat deck baja o Sambungan dll
= 0,05 = 0,05 ton/m
o Berat Beban Mati Total (q DL )
= 1,39 ton/m Dmax
1
= 2 x q DL x L =
1 2
x 1,39 x 6
= 4,170 ton MDL
1
=8 x q DL x L2 1
= 8 x 1,39 x 62 = 6,255 ton.m Sumber : Data Olahan (2018)
Gambar 4.14 Diagram M dan D
Sumber : Data Olahan (2018)
Gambar 4.15 Beban Hidup Truk (T)
59
PL = 112,5 KN = 11,25 ton 25
1
1 + (200 x 2) + 2 (1 + 0,25 + 0,5) x PL = 1,625 x PL = 1,75 x 11,25 ton PLL
= 19,688ton Mmax
1
= 4 x PLL x L 1
= 4 x 19,688 x 6 = 29,532 ton.m DLL
1
= 2 x PLL 1
= 2 x 19,688 Sumber: Data Olahan (2018)
Gambar 4.16 Diagram M dan D MDL
= 6,255 ton.m x 1,2 = 7,506 ton.m
MLL
= 9,844 ton.m x 1,6 = 15,750 ton.m
Tinggi Profil berkisar: H=
1 15
xL=
600 15
= 40 cm
1 600 H = 20 x L = 20 = 30 cm
Dicoba profil IWF 600 x 200 x 8 x 13, dengan data: G
= 120 kg/m’
Wx = 2980 cm3
; t1 = 12 mm ;
t 2 = 20 mm
= 9,844 ton
60
As = 152,5 cm2 Ix
= 90400 cm4
b
= 200 mm
h
= 600 mm
Plat beton K350 kg/cm2 ≈ 29,05 MPa EC = 4700 √f′c = 4700 √29,05 = 25332 MPa ES = 200.000 MPa
n= bc =
ES 200000 = = 7,19 ≈ 7 EC 25332 1 4
xL=
1 4
x 600 = 150 be = 150 cm
be = bo = 200 cm be 150 = = 21,4 cm n 7
hc = 20cm
ya = 20,508 cm y1 = 10,5 cm
be/n = 21,4 cm
Ac
yc = 1/2 hc + hs = 70 cm
hs = 60 cm
As
ys = 1/2 hs = 30 cm
yb = 59,492 cm y2 = 29,5 cm
Ix komposit
t1 =12 mm t2 = 20 mm
b = 20 cm
Sumber : Data Olahan (2018)
Gambar 4.17 Profil Baja Komposit
61
= 428 cm2
Ac = 20 x 21,4 = 152,5 cm2
As
𝐴𝑡𝑜𝑡 = (
be x hc ) + As = (21,4 x 20) + 152,5 = 580,500 cm2 n Sxo
= (
be x hc x yc ) + (As x ys ) n
= (21,4 x 20 x 70) + (152,5 x 30) = 34535 cm3 yb =
Sxo Atot
=
34535 = 59,492 cm 580,5
ya = (hs + hc ) − yb = (60 + 20) − 59,492 = 20,508 cm 1
IXcomp = (12 x
be n
b
x hc 3 ) + ( ne x hc x y12 ) + Ix + (As x 𝑦22 )
1
= (12 x 21,4 x 203 ) + (21,4 x 20 x 10,52) + 90400 + (152,5 x 29,52) = 284566,792 cm4
Perhitungan tegangan lentur sistem terlayang
Beban mati dipikul profil baja dan beban hidup di plat komposit a.
Tegangan lentur akibat beban mati pada baja
𝑓𝑠𝑏1 = 𝑓𝑠𝑎1 = b.
MDL ∅ x Wx x 1,1
=
7,506 x 105
0,9 x 2980 x 1,1
= 254,423 kg/cm2
Tegangan lentur akibat beban hidup 1) Baja
𝑓𝑠𝑏2 =
MLL x yb ∅ x Ixcomp x 1,1
=
15,750 x 105 x 59,492
0,9 x 90400x 1,1
= 1046,973 kg/cm2
62
𝑓𝑠𝑎2 =
MLL x ya ∅ x Ixcomp x 1,1
=
15,750 x 105 x 20,508 0,9 x 90400 x 1,1
= 360,911 kg/cm2
2) Beton MLL x y3
𝑓𝑐𝑏 = 𝑓𝑐𝑎 =
∅ x Ixcomp x n MLL x ya ∅ x Ixcomp x n
15,750 x 105 x 0,508
=
0,9 x 90400 x 7 15,750 x 105 x 20,508
=
0,9 x 90400 x 7
= 1,405 kg/cm2
= - 56,715 kg/cm2
Lendutan
δ
=
=
S x qDL x L4 384 x E x Ixcomp
+
PLL x L3 48 x E x Ixcomp
5 x 13,9 x 6004 384 x 2100000 x 284566,792
+
≤
1
600
xL=
300
300
= 2 cm
19688 x 6003
48 x 2100000 x 284566,792
= 0,188 cm ≤ 2 cm
hc = 20 cm
be/n = 21,4 cm
56,715 kg/cm 2
Ac
2 2 254,423 kg/cm -
hs = 60 cm
56,715 kg/cm 2
-
As
-
1,405 kg/cm 2
1,405 kg/cm2
360,911 kg/cm2
615,334 kg/cm 2
Ix komposit
Ix baja
=
+
+
+
+
b = 20 cm
254,423 kg/cm2
1046,973 kg/cm2
Tegangan Akibat Beban Mati
Tegangan Akibat Beban Hidup
1301,396 kg/cm 2 < Fy = 2400 kg/cm 2 Tegangan Total Ok !!!
Sumber : Data Olahan (2018)
Gambar 4.18 Diagram Tegangan
63
4.5.2 Perencanaan Gelagar Melintang
L = 600 cm
Gelagar memanjang
P1
76 cm
P2
200 cm
P2
200 cm
Gelagar melintang
P2
200 cm
P1
200 cm
76 cm
10 m P2
P2
P2
P1
P1
q bs = 250 kg/m
Sumber : Data Olahan (2018)
Gambar 4.19 Pola pembebanan pada gelagar melintang
a.
Perhitungan beban mati Perhitungan beban P2
Berat sendiri lantai
= 0,2 x 2 x 2,4 x 6
= 5,76 ton
Berat sendiri aspal
= 0,05 x 0,5 x 2,2 x 6
= 0,330 ton
Berat sendiri air hujan
= 0,03 x 2 x 6 x1
= 0,360 ton
Berat sendiri gelagar dll
= 0,08 x 6 x 1,1
= 0,528 ton P2
= 6,978 ton
Perhitungan Beban P1
Berat sendiri lantai
= 0,2 x 1,76 x 2,4 x 6
= 5,069 ton
Berat sendiri aspal
= 0,05 x 0,5 x 2,2 x 6
= 0,330 ton
Berat sendiri air hujan
= 0,03 x 0,6 x 1,0 x 6
= 0,108 ton
Berat sendiri tiang sandaran
= 0,0768 x 3 bh
= 0,230 ton
Berat sendiri pipa
= 5,08 kg/m x 6 x 2 bh
= 0,610 ton
64
Berat sendiri trotoar
= 0,25 x 1,0 x 6 x 2,2
= 3,30 ton
Berat sendiri gelagar dll
= 0,08 x 6 x 1,1
= 0,528 ton P1
= 10,175 ton
Sumber : Data Olahan (2018)
Gambar 4.20 Distribusi beban pada geligar melintang → Ditaksir q = 250 kg/m RA
= =
1 2 1 2
x q 0 x L + P1 + 1,5 x P2 x 0,25 x 10 + 10,175 + 1,5 x 6,978
= 21,982 ton MD
= RA x 1 −
1 q D x 12 2
= 21,982 x1 -
1 2
x 0,25 x 12
= 21,857 ton.m ME
= RA x 3 −
1 x q D x 32 − P1 x 2 2
= 21,982 x 3 −
1 2
x 0,25 x 32 – 10,175 x 2
= 44,471 ton.m MC
= RA x 5 −
1 x q D x 52 − P1 x 4 − P2 x 2 2
= 21,982 x 5 −
1 2
x 0,25 x 52 − 10,175 x 4 − 6,978 x 2
65
= 52,129 ton.m DA
= 21,982 ton
DD
= R A − q D x 1 − P1 = 21,982 − 0,25 x 1 − 10,175 = 11,557 ton
DE
= R A − q D x 3 − P1 − P2 = 21,982 − 0,25 x 3 − 10,175 − 6,978 = 4,079 ton
DC
= R A − q D x 5 − P1 − P2 = 21,982 − 0,25 x 5 − 10,175 − 6,978 = 3,579 ton
Perhitungan momen akibat beban hidup
Sumber : Data Olahan (2018)
Gambar 4.21 Momen Akibat Beban Hidup RA
= 2 x 11,25 = 22,5 ton
MD
= RA x 2,75 = 22,5 x 2,75 = 61,875 ton.m
ME
= RA x 4,5 – (11,25 x 1,75) = 22,5 x 4,5 – (11,25 x 1,75)
66
= 81,563 ton.m = RA x 5 – (11,25 x 2,25) – (11,25 x 0,5)
MC
= 22,5 x 5 – (11,25 x 2,25) – (11,25 x 0,5) = 81,563 ton.m DA
= RA = 22,5 ton
DD
= RA – 11,25 = 22,5 – 11,25 = 11,25 ton
DE
= RA – 11,25 – 11,25 = 22,5 – 11,25 – 11,25 = 0
DC
= RA – 11,25 – 11,25 = 22,5 – 11,25 – 11,25 = 0
Dimensi Gelagar Melintang MDL
= 52,129 ton.m x 1,2 = 62,555 ton.m
MLL
= 81,563 ton.m x 1,6 = 130,501 ton.m
Tinggi Profil berkisar: H =
1 15 1
xL =
1000 15
= 66,67 cm
1000
H = 20x L = = 50 cm 20
Dicoba profil IWF 800 x 300 x 16 x 30, dengan data: G
= 241 kg/m’
Wx = 8400 cm3 As = 307,6 cm2 Ix
= 339,000 cm4
b
= 300 mm
h
= 800 mm
; t1 = 16 mm ; t2 = 30 mm
67
Plat beton K 350 kg/cm2 ≈ 29,05 MPa EC = 4700 √Fc′ = 4700 √29,05 = 25332 MPa ES = 200.000 MPa n= be = bo = 200 cm n=7
ES EC
=
200000 25332
= 7,19 ≈ 7
be 200 = = 28,6 cm n 7
Sumber : Data Olahan (2018)
Gambar 4.22 Profil Baja Ac
= 20 x28,6 = 572 cm2
As
= 307,6 cm2
Atot
= ( ne x hc ) + As = (28,6 x 20) + 307,6 = 879,6 cm2
Sxo
= (AC x yC ) + (AS x yS )
b
= (572 x 90) + (307,6 x 40) = 63784 cm3
68
Sxo 63784 = = 72,515cm Atot 879,6
yb
=
ya
= (hs + hc ) − yb = (80 + 20) − 72,515 = 27,485 cm
1
Ixcomp = (Ix + (As x y22 )) + ((12 x
be n
x hc 3 ) + (Ac x y12 )) 1
= [339000 + (307,6 x 32,522)] + [(12 x 28,6 x 203 ) + (572 x 17,492 )] Ixcomp
= 858344 cm4
Perhitungan tegangan lentur sistem terlayang
Beban mati dipikul profil baja dan beban hidup di plat komposit a. Tegangan lentur akibat beban mati pada baja
𝑓𝑠𝑏1 = 𝑓𝑠𝑎1 =
MDL ∅ x W x 1,1
62,555 x 105
=
0,9 x 8400 x 1,1
= 752,225 kg/cm2
b. Tegangan lentur akibat beban hidup 1) Baja
𝑓𝑠𝑏2 = 𝑓𝑠𝑎2 =
MLL x yb ∅ x Ixcomp x 1,1 MLL x y3 ∅ x Ixcomp x 1,1
=
=
130,5 x 105 x 72,515 0,9 x 858344 x 1,1 130,5 x 105 x 7,49 0,9 x 858344 x 1,1
= 1113,632 kg/cm2
= - 115,026 kg/cm2
2) Beton
𝑓𝑐𝑏 = 𝑓𝑐𝑎 =
MLL x y3 ∅ x Ixcomp x n MLL x ya ∅ x Ixcomp x n
=
=
130,5 x 105 x 7,49 0,9 x 858344 x 7
= - 18,076 kg/cm2
130,5 x 105 x 27,485 0,9 x 858344 x 7
= - 66,329 kg/cm2
69
Cek lendutan = MDL + MLL = 62,555 + 81,563 = 114,118 t/m = 114118 kg/m
Mtot
1
114118 = 8 x q x 102
qek = δ=
114118 x 8
102
= 9129,440 kg/m
5 x 91,294 x 10004 384 x 2100000 x 858344
= 0,659 cm < 3,33 cm
hc = 20 cm
be/n = 28,6 cm
66,329 kg/cm 2
66,329 kg/cm 2
Ac 752,225 kg/cm 2
18,076 kg/cm 2
18,076 kg/cm 2
115,026 kg/cm2
867,251 kg/cm 2
Ix komposit
hs = 80 cm
-
As
Ix baja
=
+
+ 752,225 kg/cm
+ 2
Tegangan Akibat Beban Mati
1113,632 kg/cm 2
Tegangan Akibat Beban Hidup
+ 1865,857 kg/cm 2 < Fy = 2400 kg/cm 2 Tegangan Total Ok !!!
Sumber : Data Olahan (2018)
Gambar 4.18 Diagram Tegangan
4.6 Perencanaan Gelagar Rangka Perhitungan momen dan gaya lintang akibat beban mati
Sumber : Data Olahan (2018)
Gambar 4.19 Gaya Lintang Akibat Beban Mati
70
RA
= =
1 2 1 2
x q 0 x L + P1 + 1,5 x P2 x 0,25 x 10 + 12,412 + 1,5 x 8,218
= 27,842 ton
Sumber : Data Olahan (2018)
Gambar 4.20 Menentukan Panjang Setiap Segmen Panjang Batang (L) : A1 & A8 = 6,325 M
D1 & D2 = 8,846 M
V1 & V9 = 6,5 M
A2 & A7 = 6,083 M
D3 & D8 = 10,404 M
V2 & V8 = 8,5 M
A3 & A6 = 6,021 M
D4 & D7 = 11,236 M
V3 & V7 = 9,5 M
A4 & A5 = 6,021 M
D5 & D6 = 11,662 M
V4 & V6 = 10 M
B1 – B10 = 6 M
D9 & D10 = 8,846 M
V5
Beban 1 segmen, asumsi 500 kg/m ≈ 0,5 t/m Segmen 1:
P
= (Ltot x 0,5) + RA = (18,009 x 0,5) + 27,842 = 36,847ton Ikatan angin, sambungan, dan lain – lain. = 20% x P = 20% x 36,847 = 7,369 ton PD = 44,216 ton
= 10,5 M
71
Segmen 2:
P
= (30,332 x 0,5) + 27,842 = 43,008 ton Ikatan angin, sambungan, dan lain – lain. = 20% x P = 20% x 43,008 = 8,602 ton PD = 47,472 ton
Segmen 3:
P
= (32,373 x 0,5) + 27,842 = 44,029 ton Ikatan angin, sambungan, dan lain – lain. = 20% x P = 20% x 44,029 = 8,806 ton PD = 52,835 ton
Segmen 4:
P
= (33,470 x 0,5) + 27,842 = 44,577 ton Ikatan angin, sambungan, dan lain – lain. = 20% x P = 20% x 44,577 = 8,915 ton PD = 53,492 ton
Segmen 5:
P
= (34,183 x 0,5) + 27,842 = 44,934 ton Ikatan angin, sambungan, dan lain – lain. = 20% x P = 20% x 44,934 = 8,987 ton PD = 53,921 ton
Beban hidup (beban D) Panjang bentang (L) = 60 meter q = 9 x (0,5 +
15
15
L
60
) = 9 x (0,5 +
) = 6,750 kPa ≈ 688,5 kg/m2
P = 49 KN/m ≈ 4998 kg/m’ (SNI 1725-2016) 1 kPa
= 102 kg/m2
72
= 102 kg/m’
1 KN/m
Faktor Lajur = 1,2
q = 688,5 kg/m2 x 2,75 m = 1893,375 kg/m’ P = 4998 kg/m x 2,75 m = 13744 kg/m’ q 0 = [1893,375 + (
0,75 1893,375 x )] = 2151,563 kg/m′ 2,75 2
q T = 500 kg/m q L = 2651,563 kg/m’ ≈ 2,7 ton/m’ 0,75 13744 PL = [13744 + ( x )] x 1,2 = 15993 kg 2,75 2 ≈ 15,99 ton QL = q L x L = 2511,563 x 6 = 15069,378 kg ≈ 150,7 ton - Garis Pengaruh A1 y1 =
9 x 51 60 x 7,5
= 1,020
- Garis Pengaruh A2 y2 =
15 x 45 60 x 9
= 1,250
y2 = 7,5/8,5 x 1,020 = 0,900
y1 = 1,5/2,5 x 1,250 = 0,750
y3 = 6,5/8,5 x 1,020 = 0,780
y3 = 6,5/7,5 x 1,250 = 1,083
y4 = 5,5/8,5 x 1,020 = 0,660
y4 = 5,5/7,5 x 1,250 = 0,917
73
y5 = 4,5/8,5 x 1,020 = 0,540
y5 = 4,5/7,5 x 1,250 = 0,750
y6 = 3,5/8,5 x 1,020 = 0,420
y6 = 3,5/7,5 x 1,250 = 0,583
y7 = 2,5/8,5 x 1,020 = 0,300
y7 = 2,5/7,5 x 1,250= 0,417
y8 = 1,5/8,5 x 1,020 = 0,180
y8 = 1,5/7,5 x 1,250= 0,250
y9 = 0,5/8,5 x 1,020 = 0,060
y9 = 0,5/7,5 x 1,250= 0,083
- Garis Pengaruh A3
- Garis Pengaruh A4
y3 =
21 x 39 60 x 9,750
= 1,400
y4 =
27 x 33 60 x 10,250
= 1,449
y1 = 1,5/3,5 x 1,400 = 0,600
y1 = 1,5/4,5 x 1,449 = 0,483
y2 = 2,5/3,5 x 1,400 = 1,000
y2 = 2,5/4,5 x 1,449 = 0,805
y4 = 5,5/6,5 x 1,400 = 1,185
y3 = 3,5/4,5 x 1,449 = 1,127
y5 = 4,5/6,5 x 1,400 = 0,969
y5 = 4,5/5,5 x 1,449 = 1,186
y6 = 3,5/6,5 x 1,400 = 0,754
y6 = 3,5/5,5 x 1,449 = 0,922
y7 = 2,5/6,5 x 1,400 = 0,538
y7 = 2,5/5,5 x 1,499 = 0,659
y8 = 1,5/6,5 x 1,400 = 0,323
y8 = 1,5/5,5 x 1,499 = 0,395
y9 = 0,5/6,5 x 1,400 = 0,108
y9 = 0,5/5,5 x 1,499= 0,136
- Garis Pengaruh B1
- Garis Pengaruh B2
y1 =
6 x 54 60 x 6,5
= 0,831
y2 =
12 x 48 60 x 8,5
= 1,129
y2 = 8/9 x 0,831 = 0,739
y1 = 1/2 x 1,129 = 0,565
y3 = 7/9 x 0,831 = 0,646
y3 = 7/8 x 1,129 = 0,988
y4 = 6/9 x 0,831 = 0,554
y4 = 6/8 x 1,129 = 0,847
y5 = 5/9 x 0,831 = 0,462
y5 = 5/8 x 1,129 = 0,706
y6 = 4/9 x 0,831 = 0,369
y6 = 4/8 x 1,129 = 0,565
y7 = 3/9 x 0,831 = 0,277
y7 = 3/8 x 1,129 = 0,423
y8 = 2/9 x 0,831 = 0,185
y8 = 2/8 x 1,129 = 0,282
y9 = 1/9 x 0,831= 0,092
y9 = 1/8 x1,129 = 0,141
- Garis Pengaruh B3
- Garis Pengaruh B4
y3 =
18 x 42 60 x 9,5
= 1,326
y4 =
24 x 36 60 x 10
= 1,440
74
y1 = 1/3 x 1,326 = 0,442
y1 = 1/4 x 1,440 = 0,360
y2 = 2/3 x 1,326 = 0,884
y2 = 2/4 x 1,440 = 0,720
y4 = 6/7 x 1,326 = 1,137
y3= 3/4 x 1,440 = 1,080
y5 = 5/7 x 1,326 = 0,947
y5 = 5/6 x 1,440 = 1,200
y6 = 4/7 x 1,326 = 0,758
y6 = 4/6 x 1,440 = 0,960
y7 = 3/7 x 1,326 = 0,568
y7= 3/6 x 1,440 = 0,720
y8 = 2/7 x 1,326 = 0,379
y8 = 2/6 x 1,440 = 0,480
y9 = 1/7 x1,326 = 0,189
y9 = 1/6 x 1,440 = 0,240
- Garis Pengaruh B5 30 x 60
y5 =
60 x 10,5
= 2,857
y1 = 1/5 x 2,857 = 0,571
y6 = 4/5 x 2, 857 = 2,286
y2 = 2/5 x 2, 857 = 1,143
y7 = 3/5 x 2, 857 = 1,714
y3 = 3/5 x 2, 857 = 1,714
y8 = 2/5 x 2, 857 = 1,143
y4 = 4/5 x 2, 857 = 2,286
y9= 1/5 x 2, 857 = 0,571
- Garis Pengaruh D1
Garis Pengaruh D2
13,5 10,882
= 1,241
13,5 38,826
= 0,348
y1 = 1/10 x 6,731 = 0,673
y1 = 1/10 x 1,893 = 0,234
y2 = 8/10 x 1, 241 = - 0,993
y2 = 2/10 x 1,893 = 0,468
y3 = 7/10 x 1, 241= - 0,869
y3 = 7/10 x 0,348= - 0,244
y4 = 6/10 x 1, 241= - 0,745
y4 = 6/10 x 0,348= - 0,209
y5 = 5/10 x 1, 241= - 0,621
y5 = 5/10 x 0,348= - 0,174
y6 = 4/10 x 1, 241= - 0,496
y6 = 4/10 x 0,348= - 0,139
y7 = 3/10 x 1, 241= - 0,372
y7 = 3/10 x 0,348= - 0,104
y8 = 2/10 x 1, 241= - 0,248
y8 = 2/10 x 0,348= - 0,070
y9 = 1/10 x1, 241= - 0,124
y9 =1/10 x 0,348= - 0,035
73,5 10,92
= 6,731
- Garis Pengaruh D3
73,5 38,826
= 1,893
- Garis Pengaruh D4
75
39 65,491
= 0,596
96 127,106
= 0,755
y1 = 1/10 x 1,512 = 0,151
y1 = 1/10 x 1,227= 0,123
y2 = 2/10 x 1,512 = 0,302
y2 = 2/10 x 1,227= 0,245
y3 = 3/10 x 1,512= 0,454
y3 = 3/10 x 1,227= 0,368
y4 = 6/10 x 0,596 = - 0,358
y4 = 4/10 x 1,227= 0,491
y5 = 5/10 x 0,596 = - 0,298
y5 = 5/10 x 0,755= - 0,378
y6 = 4/10 x 0,596 = - 0,238
y6 = 4/10 x 0,755= - 0,302
y7 = 3/10 x 0,596 = - 0,179
y7 = 3/10 x 0,755= - 0,227
y8 = 2/10 x 0,596 = - 0,119
y8 = 2/10 x 0,755= - 0,151
y9 = 1/10 x 0,596 = - 0,060
y9 = 1/10 x 0,755= - 0,076
99
= 1,512 65,491
156 127,106
= 1,227
- Garis Pengaruh D5 96 133,091
= 0,721
y1 = 1/10 x 1,172 = 0,117
y6 = 4/10 x 0,721= - 0,288
y2 = 2/10 x 1,172 = 0,234
y7 = 3/10 x 0,721= - 0,216
y3 = 3/10 x 1,172 = 0,352
y8 = 2/10 x 0,721= - 0,144
y4 = 4/10 x 1,172 = 0,469
y9 =1/10 x 0,721= - 0,072
y5 = 5/10 x 1,172 = 0,586
- Garis Pengaruh V1 13,5 19,5
= 0,692
156 133,091
= 1,172
Garis Pengaruh V2 39 51
= 0,765
y1 = 1/10 x 3,769 = 0,377
y1 = 1/10 x 1,941 = 0,194
y2 = 8/10 x 0,692 = - 0,554
y2 = 2/10 x 1,941 = 0,388
y3 = 7/10 x 0, 692 = - 0,484
y3 = 7/10 x 0,765 = - 0,536
y4 = 6/10 x 0, 692 = - 0,415
y4 = 6/10 x 0,765 = - 0,459
y5 = 5/10 x 0, 692 = - 0,346
y5 = 5/10 x 0,765 = - 0,383
y6 = 4/10 x 0, 692 = - 0,277
y6 = 4/10 x 0,765 = - 0,306
y7 = 3/10 x 0, 692 = - 0,208
y7 = 3/10 x 0,765 = - 0,230
y8 = 2/10 x 0, 692 = - 0,138
y8 = 2/10 x 0,765 = - 0,153
76
y9 = 1/10 x 0,692 = - 0,069 73,5 19,5
= 3,769
y9 = 1/10 x 0,765 = - 0,077 99 51
= 1,941
- Garis Pengaruh V3
- Garis Pengaruh V4
96
96
= 0,842 114
120
y1 = 1/10 x 1, 368= 0,137
y1 = 1/10 x 1,300= 0,130
y2 = 2/10 x 1, 368= 0,274
y2 = 2/10 x 1,300= 0,260
y3 = 3/10 x 1, 368= 0,410
y3 = 3/10 x 1,300= 0,390
y4 = 6/10 x 0,842 = - 0,505
y4 = 4/10 x 1,300= 0,520
y5 = 5/10 x 0,842 = - 0,421
y5 = 5/10 x 0,800= - 0,400
y6 = 4/10 x 0,842 = - 0,337
y6 = 4/10 x 0,800= - 0,320
y7 = 3/10 x 0,842 = - 0,253
y7 = 3/10 x 0,800= - 0,240
y8 = 2/10 x 0,842 = - 0,168
y8 = 2/10 x 0,800= - 0,160
y9 = 1/10 x 0,842 = - 0,084
y9 = 1/10 x 0,800= - 0,080
156/114 = 1,368
= 0,800
156 120
= 1,300
- Garis Pengaruh V5 96 126
= 0,762
y1 = 1/10 x 1,238 = 0,124
y 7 = 3/10 x 0,762 = - 0,229
y2 = 2/10 x 1,238 = 0,248
y8 = 2/10 x 0,762 = - 0,152
y3 = 3/10 x 1,238 = 0,371
y9 = 1/10 x 0,762 = - 0,076
y4 = 4/10 x 1,238 = 0,495
156 126
= 1,238
y5 = 5/10 x 1,238 = 0,619 y6 = 4/10 x 0,762 = - 0,305 4.6.1
Gaya Batang Akibat Beban Mati
(-) SA1 = - (y1 x PD) + (y2 x PD) + (y3 x PD) + (y4 x PD) + (y5 x PD) + (y6 x PD) + (y7 x PD) + (y8 x PD ) + (y9 x PD )
77
(-) SA2 = - (y2 x PD) + (y1 x PD) + (y3 x PD) + (y4 x PD) + (y5 x PD) + (y6 x PD) + (y7 x PD) + (y8 x PD ) + (y9 x PD ) (-) SA3 = - (y3 x PD) + (y1 x PD) + (y2 x PD) +(y4 x PD) + (y5 x PD) + (y6 x PD) + (y7 x PD) + (y8 x PD ) + (y9 x PD ) (-) SA4 = - (y4 x PD) + (y1 x PD) + (y2 x PD) + (y3 x PD) + (y5 x PD) + (y6 x PD) + (y7 x PD) + (y8 x PD ) + (y9 x PD )