3) Bab Iv.docx

  • Uploaded by: riky irawan
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 3) Bab Iv.docx as PDF for free.

More details

  • Words: 7,119
  • Pages: 42
36

BAB IV PERENCANAAN STRUKTUR

4.1

Kriteria Perencanaan

Direncanakan : 

Bentang jembatan

: 60 m



Jenis jembatan

: Struktur Rangka Baja



Bangunan atas a.

b.

Lantai jembatan o

Lebar lantai jembatan : 9 m

o

Mutu beton

: K-350 (f’c = 0,083 x 350 = 29,05 MPa)

o

Tebal pelat lantai

: 20 cm

Lantai trotoar o

Lebar Lantai Trotoar

: 2x1m

o

tebal

: 25 cm

o

Mutu beton

: K-175



Jumlah Gelagar Memanjang

: 5 buah



Mutu Baja

: BJ 37 (fy = 240 MPa, fu = 370 Mpa)

E baja (Es)

: 200.000 MPa



Alat Penyambung

: Pelat dan baut



Beban Angin

: 1,46 N/mm = 146 kg/𝑚2

36

37

Sumber : Data Olahan (2018)

Gambar 4.1 Jembatan Tipe Parker 240mm 150mm

1000mm

1000mm 7000mm

100mm

100mm

240mm 150mm 100mm 450mm 450mm 250mm 200mm 800mm

Gelagar memanjang 1000 mm

2000 mm

Gelagar melintang

2000 mm

2000 mm

2000 mm

1000 mm

10000 mm

Sumber : Data Olahan (2018)

Gambar 4.2 Potongan melintang jembatan

4.2

Perhitungan Sandaran 0,15 m 0,1 m 0,45 m 1m 0,45 m

Trotoar

0,25 m

Pelat Lantai

0,2 m

Sumber : Data Olahan (2018)

Gambar 4.3 Tinggi tiang sandaran

38

a. Perencanaan pipa sandaran 

Data perencanaan pipa sandaran Sandaran direncanakan menggunakan pipa baja Galvanis Ø 76,3 mm ( 3 inchi )

Data teknis profil: D = 7,63 cm

t = 0,28 cn

W = 11,5 𝑐𝑚3

I = 43,7 cm4

G = 5,08 kg/m Tiang sandaran

Pipa sandaran 0,2 m

Ø 76,3 mm

2m P = 100 kg qd = 5,08 kg/m'

qh = 100 kg/m'

Sumber : Data Olahan (2018)

Gambar 4.4 Pembebanan pada pipa sandaran q

= 1,2 . 5,08 + 1,6 .100 = 166, 096 kg/m

RA = RB = = 1

𝑞.𝑙 2

+

𝑃 2

166,096 𝑥 2 2

+

100 2

= 216,096 kg

1

M = 8 . q x 𝐿2 + 4 x P x L =

1 8

1

x 166,096 x 22 + 4 100 x 2 = 133,048 kg.m

39

Kontrol terhadap bahan dan tegangan yang ada σ ijin = 1600 kg/𝑐𝑚2 = 160 Mpa E baja = 2,1x 105 Mpa Terhadap lendutan: 5𝑞𝑙 4 𝑃𝑥𝐿3 𝐿 + < 384 𝐸𝐼 48𝐸𝐼 300 5 . 1,66096 . 2004

= 384 .

2,1x106 . 43,7

+

100 . 2003 48 . 2,1x106 . 43,7

200

< 300

= 0,559 cm < 0,667 cm .....(ok) Terhadap momen: σ 𝑢 < σ 𝑖𝑗𝑖𝑛 𝑀𝑢 = σ 𝑖𝑗𝑖𝑛 𝑤 =

13304,7 11,5

< 1600

= 1156,94 kg/𝑐𝑚2 < 1600 kg/𝑐𝑚2 .....(ok) Jadi, pipa galvanis Ø 76,3 mm dapat digunakan sebagai pipa sandaran. b. Perencanaan tiang sandaran 

Data perencanaan tiang sandaran -

Mutu beton

= K-225 (f’c=22,5 Mpa)

-

Mutu baja

= BJ 24 (fy=240 Mpa)

-

Tinggi sandaran

=1m

-

Jarak sandaran

=2m

-

Dimensi:

b = 100 mm h = 150 mm

40



Pembebanan 150 mm

56,320 kg

200 kg/m

1m

0,25 m 0,2 m

Sumber : Data Olahan (2018)

Gambar 4.5 Pembebanan tiang sandaran

Berat sendiri tiang sandaran dan pipa sandaran berupa beban terpusat: Berat sendiri sandaran

= ( b . h ) . b’ . BJ beton = (0,1 x 0,15) x 1 x 2400 = 36 kg

Berat sendiri pipa

= n.L.W = 2 x 2 x 5,08 = 20,320 kg

Total beban terpusat

= 36 + 20,320 = 56,320 kg

Tiang sandaran jembatan direncanakan menahan beban horizontal sebesar 100 kg/m yang bekerja 0,9 m diatas trotoar. Momen yang terjadi akibat beban horizontal 200 kg/m:

41

Mu

=Pxlxh = 200 x 2 x (0,9+0,25) = 460 kgm = Mu / ϕ ; ϕ = 0,8 (faktor reduksi untuk menahan momen lentur)

Mn

= 460 / 0,8 = 575 kgm 

Rencana penulangan tiang

Perhitungan tulangan utama → b = 100 mm h = 1500 mm f’c = 22,5 MPa fy = 240 MPa d’ = 40 mm d = 150 – 40 = 110 mm d” = 60 mm ᵦ1 = 0,85 Digunakan: tulangan tarik : 3Ø12 ; As = 339 𝑚𝑚2 tulangan tekan : 3Ø12 ; As = 339 𝑚𝑚2 Beban yang ditahan : Mu = 460 kgm Pu = 56,320 kg Pemeriksaan eksentrisitas: e=

𝑀𝑢 𝑃𝑢

460

= 56,320 = 8,168 m = 8168 mm

42

𝑒𝑚𝑖𝑛 = 0,1 x h = 0,1 x 150 = 15 mm e > 𝑒𝑚𝑖𝑛 → struktur dengan beban eksentris. Letak garis netral pada keadaan balance: 600

600

𝑐𝑏 = 600+𝑓𝑦. d = 600+240 . 100 = 71,429 mm 𝑃𝑛𝑏 = 0,85 . f’c .b . ( ᵦ1. 𝑐𝑏 ) + As’ . fy – As. fy = 0,85 x 22,5 x 100 x (0,85 x 71,429) + 339 x 240 – 339 x 240 = 116116,768 N = 116,117 kN 𝑃𝑢𝑏 = Ø 𝑃𝑛𝑏 = 0,65 x 116,117 = 75,476 kN 𝑎

𝑀𝑛𝑏 = 0,85. f’c. b. a ( d – d” - 2 ) + As’ . fy . (d – d’ – d”) + As. fy. d” = 0,85 x 22,5 x 100 x (0,85 x 71,429) (110 - 60 40 - 60) + 339 x 240 x 60 = 7976023,618 Nmm = 7,976 kNm 𝑒𝑏

=

𝑀𝑛𝑏 𝑃𝑛𝑏

=

= 7,976 116,117

= 0.069 m = 69 mm

𝑃𝑢 = 5,632 kN 𝑃𝑢𝑏 = 75,476 kN → 𝑃𝑢 < 𝑃𝑢𝑏 e

= 8168 mm

𝑒𝑏 = 69 mm

→ 𝑒 > 𝑒𝑏

Penampang mengalami keruntuhan tarik.

60,715 2

) + 339 x 240 (110 -

43

Analisa kapasitas penampang yang mengalami keruntuhan tarik: 𝑓𝑦

240

m = 0,85 𝑓′𝑐 = 0,85 𝑥 22,5 = 12,549 m’ = m – 1 = 12,549 – 1 = 11,549 𝐴𝑠

339

ρ = 𝑏.𝑑 = 100 𝑥 110 = 30,818 𝐴𝑠′

339

ρ’ = 𝑏.𝑑 = 160 𝑥 160 = 30,818 e’ = e + d” = 8168 + 60 = 8228 Kapasitas penampang: 𝑃𝑛 = 0,85 . f’c . b . d [ρ’m’ – ρm + 1 – 𝑑′ 𝑑

𝑒′ 𝑑

+ {(1 –

𝑒′ 2 ) + 2

𝑒′

2 [ 𝑑 (ρm - ρ’m’) + ρ’m’ (1 -

)]}0,5]

= 0,85 x 22,5 x 100 x 110 [30,818 x 11,549 – 30,818 x 12,549 + 18228 2 ) 2

+2[

8228 110

40

= 210375 [ - 112,908 + (16916769+ 5063,358)0,5 ] = 8,41 x 108 N = 8,41 x 105 kN 𝑃𝑢 = Ø . 𝑃𝑛 = 0,65 x 8,41 x 105 = 5,467 x 105 kN > 5,632 kN Perhitungan tulangan geser: V = 200 kg 𝑉

𝑉𝑐 =

√𝑓,𝑐 6

200 0,6

= 333,333 kg

xbxd

110

+ {(1 –

(30,818 x 12,549 – 30,818 x 11,549) + 30,818 x 11,549

( 1- 110 )]}0,5]

𝑉𝑢 = 𝜙 =

8228

44

=

√22,5 6

x 100 x 110

= 8696,246 N = 869,625 kg Ø 𝑉𝑐 = 0,75 x 869,625 = 625,219 kg 333,333 < 625,219 ; 𝑉𝑢 < Ø 𝑉𝑐 → ok Tulangan geser tidak diperlukan, karena tulangan sudah kuat menahan geser. Sehingga cukup digunakan tulangan praktis yaitu Ø 8 mm – 200 Jadi,

- tulangan tarik: 3Ø12 ; As = 339 𝑚𝑚2 - tulangan tekan: 3Ø12 ; As = 339 𝑚𝑚2 - sengkang Ø 8 mm – 200 mm

dapat digunakan pada tiang sandaran jembatan. Detail penulangan → 100 mm 3 Ø 13

Ø8-200mm 110 mm

150mm

40 mm 3 Ø 13

Sumber: Data Olahan (2018) Gambar 4.6 Penulangan tiang sandaran

45

4.3

Perhitungan Pelat Lantai

4.3.1 Perhitungan Pelat Lantai Kantilever a.

Data Perncanaan •

Berat jenis beton (γc )

= 24 kN/m3 = 2400 kg/m3



Mutu Beton (f’c)

= 29,05 MPa



Mutu Tulangan (fy)

= 240 MPa



Ø Tulangan Rencana

= 14 mm



Tebal efektif pelat beton, d = h – selimut beton – ½ Ø tulangan = 200 – 40 – 7 = 153 mm

b. Pembebanan 1) Akibat Beban Mati

P1 0,685

q1

0,76



Beban merata berat trotoar

= 0,25 x 1,00 x 2200 = 550 kg/m

berat pelat jembatan

= 0,20 x 1,00 x 2400 = 480 kg/m ∑q1 =1030 kg/m

Mq1 = 1/2 . q1 . 𝐿2 = ½ x 1030 x 0,762 = 297,464 kg/m 

Beban terpusat b.s tiang sandaran

= 76,8 kg

berat pipa galvanis

= 20,320kg

∑P1

= 97,120 kg

46

MP1 = P1.L

= 97,120 x 0,685 = 66,527 kg

2) Akibat Beban Hidup 

= 500 kg/m2

Beban pejalan kaki

Mq2 = 1/2 . q . 𝐿2

q2

= ½ x 500 x 0,612 = 93,025 kg/m

0,61



H1 (beban tumbukan pada trotoar) = 500 kg H1 0,45

MH = H1 x h = 500 x 0,45 = 225 kg.m

Beban rencana pelat lantai: Mu = 1,2 qD + 1,6 qL = 1,2 (297,464) + 1,6 (225) = 716,957 kg/m c.

Perhitungan Tulangan k =

Mu Ø x b x d2 x (0,85 x f′ c)

=

716,957

0,9 x 1 x 0,1532 x (0,85 x 29,05)

= 13,782 kN/m ρ = =

0,85 x f′c fy

(1- √1 − 2 x k )

0,85 x 29,05

ρ min =

240 1,4 fy

=

1,4 240

(1- √1 − 2 x 0,013782 ) = 0,001

= 0,0058

ρ max = 0,75 x 1 x (

0,85 x f′c fy

x

600

) dan 1= 0,85

600 + fy

47

ρ max = 0,75 x 0,85 x (

0,85 x 29,05 240

x

600

) dan 1= 0,85

600 + 240

ρ max = 0,047 karena ρ min > ρ

dipakai ρ min= 0,0058

A = ρ x b x d = 0,0085 x 1000 x 153 = 1300,500 mm2 Dipakai tulangan Ø14 – 150 (As = 1692 mm2) Checking : ρ =

As terpasang (b x d) 1692 (1000 x 153)

= 0,011 < ρ max

….OK

Menurut SNI 03-2847-2002, dalam arah tegak lurus terhadap tulangan utama harus disediakan tulangan pembagi (untuk tegangan susut dan suhu). As = 0,0025 x b x d As = 0,0025 x 1000 x 153 = 382,5 mm2 Digunakan tulangan bagi D12-250 (A = 566 mm2)

4.3.2

Perhitungan Pelat Lantai Kendaraan

Sumber : Data Olahan (2018)

Gambar 4.9 Pelat Lantai Kendaraan

48

a.

Data Perencanaan •

Mutu beton (f’c)

= 29,05 MPa



Mutu tulangan (fy)

= 240 MPa



Tebal pelat lantai

= 20 cm



Tebal perkerasan

= 5 cm



Ø tulangan rencana

= 14 mm



Tebal selimut beton (p)

= 40 mm ( untuk konstruksi lantai yang langsung berhubungan dengan cuaca ).



Berat jenis beton (γc )

= 24 kN/m3 = 2400 kg/m3



Berat jenis aspal (γa)

= 22 kN/m2 = 2200 kg/m3

b. Perhitungan Momen Lentur Pada Pelat Lantai Kendaraan 1) Akibat Beban Mati : •

Berat sendiri pelat

= 0,20 x 1,00 x 2400 = 480 kg/m



Berat aspal

= 0,05 x 1,00 x 2200 = 110 kg/m



Berat air hujan

= 0,05 x 1,00 x 1000 = 50 kg/m + Ʃ qDL

Momen Tumpuan = Momen Lapangan

= 640 kg/m = 1/10 x q x 𝐿2 = 1/10 x 640 x 22 = 256 kgm.

2) Beban Angin Beban angin bekerja pada kendaraan dengan arah horizontal sebesaar:

49



q (tekanan angin)

= 146 kg/𝑚2 .



Panjang kendaraan

=9m

Sumber : Data Olahan (2017)

Gambar 4.13 Beban akibat angin Reaksi pada roda W =

2 𝑥 9 𝑥 1.8 𝑥 146 1,75

= 2703,086 kg = 2,703 ton

3) Akibat Beban Hidup (T) : Untuk perhitungan kekuatan lantai kendaraan atau sistem lantai kendaraan jembatan harus digunakan beban “T” yaitu beban yang merupakan kendaraan truk yang mempunyai beban roda ganda ( Dual Wheel Load ) sebesar 10 ton.

500

900

Sumber : Data Olahan (2018)

Gambar 4.10 Beban “ T ”

50

o

Beban “ T ” = 10 ton

o

Bidang kontak pada sumbu plat tx = ( 50 + ( 2 x 15 )) = 80 cm = 0,8 m ty = ( 30 + ( 2 x 15 )) = 60 cm = 0,6 m

o

Total beban hidup ( beban angin + T ) = 2,703 + 10 = 12,7 ton

o Penyeberan beban: 12700

= 0,8 x 0,6 = 26,458 t/m2 = 26458 kg/m2



Kondisi 1 ( satu roda ditengah pelat ) 10 Ton

10 Ton

5 20

45o

15

50

5 20

45o

15

15

30

15

ty = 60cm

Ly = 600cm

tx = 80cm Lx = 200cm

Sumber : Data Olahan (2018)

Gambar 4.11 Penyebaran Beban “ T ” Pada Kondisi 1 o

tx = 0,80 m

o

ty = 0,60 m

tx Lx ty Lx

= =

0,8 2 0,6 2

= 0,4 = 0,3

51

o

Lx = 2 m

o

Ly = 6 m

Dari tabel Bittner : Fxm = 0,1638 Fym = 0,0993 Momen maksimum pada kondisi 1 ( satu roda ditengah pelat ) : Mxm = Fxm x T’ x tx x ty = 0,1638 x 26458 x 0,8 x 0,6 = 2080,234 kg.m Mym = Fym x T’ x tx x ty = 0,0993 x 26458 x 0,8 x 0,6 = 1261,094 kg.m



Kondisi 2 ( dua roda berdekatan ) 10 Ton

45o

15

10 Ton

10 Ton

1000cm

5 20

45o

50

15

20 15

50

15

5 20

45o

15

30

15

180cm

ty = 60cm

tx = 80cm

tx = 20cm

Ly = 600cm

tx = 80cm

Lx = 200cm

Sumber : Data Olahan (2017)

Gambar 4.12 Penyebaran Beban “ T ” Pada Kondisi 2

52

Luas bidang kontak diatas dapat dihitung menjadi 2 bagian, yaitu :

Bagian 1 

Bagian 2

Bagian 1 o

tx = 1,80 m

o

ty = 0,60 m

o

Lx = 2 m

o

Ly = 6 m

tx

1,8

= 0,9

2

ty

0,6

=

Lx

Dari tabel Bittner diperoleh : Fxm = 0,1004 Fym = 0,0670 Momen yang terjadi : Mxm1 = Fxm x T’ x tx x ty = 0,1004 x 26458x 1,8 x 0,6 = 2868,894 kg.m Mym1 = Fym x T’ x tx x ty = 0,0670 x 26458 x 1,8 x 0,6 = 1914,501 kg.m

=

Lx

2

= 0,3

53



Bagian 2 o

tx = 0,20 m

o

ty = 0,60 m

o

Lx = 2 m

o

Ly = 6 m

tx

0,6

Fym = 0,1193 Momen yang terjadi : Mxm2 = Fxm x T’ x tx x ty = 0,2363 x 26458 x 0,2 x 0,6 = 750,243 kg.m Mym2 = Fym x T’ x tx x ty = 0,1193 x 26458 x 0,2 x 0,6

Mxm = Mxm1 - Mxm2 = 2868,894 – 750,243 = 2118,651 kg.m Mym = Mym1 - Mym2 = 1914,501 – 378,773 = 1535,728 kg.m

= 0,1

ty

=

Lx

Fxm = 0,2363

Momen maksimum pada kondisi 2 :

0,2 2

Dari tabel Bittner diperoleh :

= 378,773 kg.m

=

Lx

2

= 0,3

54

Momen maksimum akibat beban hidup “ T ” diambil dari momen terbesar pada kondisi 1 dan kondisi 2 yaitu : 



Momen maksimum pada kondisi 1 (satu roda ditengah pelat) : Mxm

= 2080,234 kg.m

Mym

= 1261,094 kg.m

Momen maksimum pada kondisi 2 (dua roda berdekatan) : Mxm

= 2118,651 kg.m

Mym

= 1535,728 kg.m

Dipilih momen pada kondisi 2 (dua roda berdekatan), karena menghasilkan nilai momen yang terbesar. Momen total: 

Arah x

= Mxm + Mx = 2118,651 + 256 = 2374,651 kg.m



Arah y

= Mym + My = 1535,728 + 256 = 1791,728 kg.m

c.

Perhitungan Tulangan Pelat Lantai Kendaraan Diketahui : Momen rencana

MU

= 2374,651 kg.m

Mutu beton

f’c

= 29,05 MPa

Mutu tulangan

fy

= 240 MPa

Jarak tulangan terhadap sisi luar beton

d′

= 40 mm

Faktor bentuk distribusi tegangan beton

𝛽1

= 0,85

55

Faktor reduksi kekuatan lentur

𝜙

= 0,9

Lebar pelat lantai per 1m

b

= 1000 mm

Tebal efektif pelat beton

d= h - d′= 200 - 40

= 160 mm

Momen nominal rencana: Mn =

MU ϕ

=

2374,651 0,9

= 2638,501 kg/m = 26,385 kN/m

Koefisien ketahanan (Rn): Mn perlu x 106

Rn=

b x d2

=

26,385 x 106 1000 x1602

= 1,031 N/mm

Rasio tulangan: ρperlu

=

= ρmin =

1,4 fy

=

0,85 x f′c fy

(1 − √1 −

0,85 x 29,05 240 1,4 240

2 x Rn 0,85 x f′c

(1 − √1 −

)

2 x 1,031

) = 0,004

0,85 x 29,05

= 0,006 ˃ ρperlu = 0,004

Digunakan ρmin = 0,006 Asperlu

= ρmin x b x d = 0,006 x 1000 x 160 = 960 mm2

- Rencana tulangan pokok Digunakan tulangan pokok D14 mm (Asumsi), sehingga penampang 1 tulangan pokok : A.tul

= ¼ x 𝜋 x D2 = ¼ x 3,1416 x 142 = 153,938 mm2

Jarak antar tulangan

56

S =

A.tul x b As perlu

=

153,938 x 1000 960

= 160,352 mm

Maka dipakai tulangan pokok D14 - 150 mm Aspakai

=

A.tul x b S

=

153,938 x 1000 150

= 1026,253 mm2 > Asperlu = 960 mm2 a

=

As pakai x fy 0,85 x f′ c x b

1026,253 x 240

= 0,85

x 29,05 x 1000

= 9,975 mm

mn = Aspakai x fy x ( d - ½ a ) = 1026,253 x 240 x ( 160 - ½ x 9,975 ) = 38,180 kN.m ˃ mn perlu = 21,38kN.m -

...OK

Rencana Tulangan bagi / susut : As = 0,002 x b x h = 0,002 x 1000 x 200 = 400 mm2 Untuk tulangan susut dicoba pakai : ∅ 12 – 250 mm Atul. = 1⁄4x 𝜋 x ∅2 = 1⁄4 x 3,14 x 122 = 113,097 mm2 Aspakai

= =

A.Tul x b S 113,097 x 1000 250

= 452,388 mm2 > As = 400 mm2 Jadi, penulangan untuk pelat lantai jembatan menggunakan: D14 – 150 & Ø 12 – 250

...OK

57

Sumber : Data Olahan (2018)

Gambar 4.13 Penulangan pelat lantai

4.5

Perhitungan Dimensi Gelagar Memanjang Dan Melintang

4.5.1

Perencanaan Gelagar Memanjang

a.

Beban Mati  Berat sendiri plat lantai

= t c x bo x ɣbeton = 0,2 x 2 x 2,4 = 0,96 ton/m

 Berat sendiri perkerasan

= t asp x bo x ɣaspal = 0,05 x 2 x 2,2 = 0,22 ton/m

 Berat sendiri air hujan

= t air x bo x ɣair = 0,03 x 2 x1 = 0,06 ton/m

 Berat profil perkiraan

= 100 kg/m’ = 0,1 t/m’ = 0,1 ton/m

58

 Berat sendiri pelat deck baja o Sambungan dll

= 0,05 = 0,05 ton/m

o Berat Beban Mati Total (q DL )

= 1,39 ton/m Dmax

1

= 2 x q DL x L =

1 2

x 1,39 x 6

= 4,170 ton MDL

1

=8 x q DL x L2 1

= 8 x 1,39 x 62 = 6,255 ton.m Sumber : Data Olahan (2018)

Gambar 4.14 Diagram M dan D

Sumber : Data Olahan (2018)

Gambar 4.15 Beban Hidup Truk (T)

59

PL = 112,5 KN = 11,25 ton 25

1

1 + (200 x 2) + 2 (1 + 0,25 + 0,5) x PL = 1,625 x PL = 1,75 x 11,25 ton PLL

= 19,688ton Mmax

1

= 4 x PLL x L 1

= 4 x 19,688 x 6 = 29,532 ton.m DLL

1

= 2 x PLL 1

= 2 x 19,688 Sumber: Data Olahan (2018)

Gambar 4.16 Diagram M dan D MDL

= 6,255 ton.m x 1,2 = 7,506 ton.m

MLL

= 9,844 ton.m x 1,6 = 15,750 ton.m

Tinggi Profil berkisar: H=

1 15

xL=

600 15

= 40 cm

1 600 H = 20 x L = 20 = 30 cm

 Dicoba profil IWF 600 x 200 x 8 x 13, dengan data: G

= 120 kg/m’

Wx = 2980 cm3

; t1 = 12 mm ;

t 2 = 20 mm

= 9,844 ton

60

As = 152,5 cm2 Ix

= 90400 cm4

b

= 200 mm

h

= 600 mm

Plat beton K350 kg/cm2 ≈ 29,05 MPa EC = 4700 √f′c = 4700 √29,05 = 25332 MPa ES = 200.000 MPa

n= bc =

ES 200000 = = 7,19 ≈ 7 EC 25332 1 4

xL=

1 4

x 600 = 150 be = 150 cm

be = bo = 200 cm be 150 = = 21,4 cm n 7

hc = 20cm

ya = 20,508 cm y1 = 10,5 cm

be/n = 21,4 cm

Ac

yc = 1/2 hc + hs = 70 cm

hs = 60 cm

As

ys = 1/2 hs = 30 cm

yb = 59,492 cm y2 = 29,5 cm

Ix komposit

t1 =12 mm t2 = 20 mm

b = 20 cm

Sumber : Data Olahan (2018)

Gambar 4.17 Profil Baja Komposit

61

= 428 cm2

Ac = 20 x 21,4 = 152,5 cm2

As

𝐴𝑡𝑜𝑡 = (

be x hc ) + As = (21,4 x 20) + 152,5 = 580,500 cm2 n Sxo

= (

be x hc x yc ) + (As x ys ) n

= (21,4 x 20 x 70) + (152,5 x 30) = 34535 cm3 yb =

Sxo Atot

=

34535 = 59,492 cm 580,5

ya = (hs + hc ) − yb = (60 + 20) − 59,492 = 20,508 cm 1

IXcomp = (12 x

be n

b

x hc 3 ) + ( ne x hc x y12 ) + Ix + (As x 𝑦22 )

1

= (12 x 21,4 x 203 ) + (21,4 x 20 x 10,52) + 90400 + (152,5 x 29,52) = 284566,792 cm4

Perhitungan tegangan lentur sistem terlayang 

Beban mati dipikul profil baja dan beban hidup di plat komposit a.

Tegangan lentur akibat beban mati pada baja

𝑓𝑠𝑏1 = 𝑓𝑠𝑎1 = b.

MDL ∅ x Wx x 1,1

=

7,506 x 105

0,9 x 2980 x 1,1

= 254,423 kg/cm2

Tegangan lentur akibat beban hidup 1) Baja

𝑓𝑠𝑏2 =

MLL x yb ∅ x Ixcomp x 1,1

=

15,750 x 105 x 59,492

0,9 x 90400x 1,1

= 1046,973 kg/cm2

62

𝑓𝑠𝑎2 =

MLL x ya ∅ x Ixcomp x 1,1

=

15,750 x 105 x 20,508 0,9 x 90400 x 1,1

= 360,911 kg/cm2

2) Beton MLL x y3

𝑓𝑐𝑏 = 𝑓𝑐𝑎 = 

∅ x Ixcomp x n MLL x ya ∅ x Ixcomp x n

15,750 x 105 x 0,508

=

0,9 x 90400 x 7 15,750 x 105 x 20,508

=

0,9 x 90400 x 7

= 1,405 kg/cm2

= - 56,715 kg/cm2

Lendutan

δ

=

=

S x qDL x L4 384 x E x Ixcomp

+

PLL x L3 48 x E x Ixcomp

5 x 13,9 x 6004 384 x 2100000 x 284566,792

+



1

600

xL=

300

300

= 2 cm

19688 x 6003

48 x 2100000 x 284566,792

= 0,188 cm ≤ 2 cm

hc = 20 cm

be/n = 21,4 cm

56,715 kg/cm 2

Ac

2 2 254,423 kg/cm -

hs = 60 cm

56,715 kg/cm 2

-

As

-

1,405 kg/cm 2

1,405 kg/cm2

360,911 kg/cm2

615,334 kg/cm 2

Ix komposit

Ix baja

=

+

+

+

+

b = 20 cm

254,423 kg/cm2

1046,973 kg/cm2

Tegangan Akibat Beban Mati

Tegangan Akibat Beban Hidup

1301,396 kg/cm 2 < Fy = 2400 kg/cm 2 Tegangan Total Ok !!!

Sumber : Data Olahan (2018)

Gambar 4.18 Diagram Tegangan

63

4.5.2 Perencanaan Gelagar Melintang

L = 600 cm

Gelagar memanjang

P1

76 cm

P2

200 cm

P2

200 cm

Gelagar melintang

P2

200 cm

P1

200 cm

76 cm

10 m P2

P2

P2

P1

P1

q bs = 250 kg/m

Sumber : Data Olahan (2018)

Gambar 4.19 Pola pembebanan pada gelagar melintang

a.

Perhitungan beban mati Perhitungan beban P2



Berat sendiri lantai

= 0,2 x 2 x 2,4 x 6

= 5,76 ton



Berat sendiri aspal

= 0,05 x 0,5 x 2,2 x 6

= 0,330 ton



Berat sendiri air hujan

= 0,03 x 2 x 6 x1

= 0,360 ton



Berat sendiri gelagar dll

= 0,08 x 6 x 1,1

= 0,528 ton P2

= 6,978 ton

Perhitungan Beban P1 

Berat sendiri lantai

= 0,2 x 1,76 x 2,4 x 6

= 5,069 ton



Berat sendiri aspal

= 0,05 x 0,5 x 2,2 x 6

= 0,330 ton



Berat sendiri air hujan

= 0,03 x 0,6 x 1,0 x 6

= 0,108 ton



Berat sendiri tiang sandaran

= 0,0768 x 3 bh

= 0,230 ton



Berat sendiri pipa

= 5,08 kg/m x 6 x 2 bh

= 0,610 ton

64



Berat sendiri trotoar

= 0,25 x 1,0 x 6 x 2,2

= 3,30 ton



Berat sendiri gelagar dll

= 0,08 x 6 x 1,1

= 0,528 ton P1

= 10,175 ton

Sumber : Data Olahan (2018)

Gambar 4.20 Distribusi beban pada geligar melintang → Ditaksir q = 250 kg/m RA

= =

1 2 1 2

x q 0 x L + P1 + 1,5 x P2 x 0,25 x 10 + 10,175 + 1,5 x 6,978

= 21,982 ton MD

= RA x 1 −

1 q D x 12 2

= 21,982 x1 -

1 2

x 0,25 x 12

= 21,857 ton.m ME

= RA x 3 −

1 x q D x 32 − P1 x 2 2

= 21,982 x 3 −

1 2

x 0,25 x 32 – 10,175 x 2

= 44,471 ton.m MC

= RA x 5 −

1 x q D x 52 − P1 x 4 − P2 x 2 2

= 21,982 x 5 −

1 2

x 0,25 x 52 − 10,175 x 4 − 6,978 x 2

65

= 52,129 ton.m DA

= 21,982 ton

DD

= R A − q D x 1 − P1 = 21,982 − 0,25 x 1 − 10,175 = 11,557 ton

DE

= R A − q D x 3 − P1 − P2 = 21,982 − 0,25 x 3 − 10,175 − 6,978 = 4,079 ton

DC

= R A − q D x 5 − P1 − P2 = 21,982 − 0,25 x 5 − 10,175 − 6,978 = 3,579 ton

Perhitungan momen akibat beban hidup

Sumber : Data Olahan (2018)

Gambar 4.21 Momen Akibat Beban Hidup RA

= 2 x 11,25 = 22,5 ton

MD

= RA x 2,75 = 22,5 x 2,75 = 61,875 ton.m

ME

= RA x 4,5 – (11,25 x 1,75) = 22,5 x 4,5 – (11,25 x 1,75)

66

= 81,563 ton.m = RA x 5 – (11,25 x 2,25) – (11,25 x 0,5)

MC

= 22,5 x 5 – (11,25 x 2,25) – (11,25 x 0,5) = 81,563 ton.m DA

= RA = 22,5 ton

DD

= RA – 11,25 = 22,5 – 11,25 = 11,25 ton

DE

= RA – 11,25 – 11,25 = 22,5 – 11,25 – 11,25 = 0

DC

= RA – 11,25 – 11,25 = 22,5 – 11,25 – 11,25 = 0

Dimensi Gelagar Melintang MDL

= 52,129 ton.m x 1,2 = 62,555 ton.m

MLL

= 81,563 ton.m x 1,6 = 130,501 ton.m

Tinggi Profil berkisar: H =

1 15 1

xL =

1000 15

= 66,67 cm

1000

H = 20x L = = 50 cm 20

 Dicoba profil IWF 800 x 300 x 16 x 30, dengan data: G

= 241 kg/m’

Wx = 8400 cm3 As = 307,6 cm2 Ix

= 339,000 cm4

b

= 300 mm

h

= 800 mm

; t1 = 16 mm ; t2 = 30 mm

67

Plat beton K 350 kg/cm2 ≈ 29,05 MPa EC = 4700 √Fc′ = 4700 √29,05 = 25332 MPa ES = 200.000 MPa n= be = bo = 200 cm n=7

ES EC

=

200000 25332

= 7,19 ≈ 7

be 200 = = 28,6 cm n 7

Sumber : Data Olahan (2018)

Gambar 4.22 Profil Baja Ac

= 20 x28,6 = 572 cm2

As

= 307,6 cm2

Atot

= ( ne x hc ) + As = (28,6 x 20) + 307,6 = 879,6 cm2

Sxo

= (AC x yC ) + (AS x yS )

b

= (572 x 90) + (307,6 x 40) = 63784 cm3

68

Sxo 63784 = = 72,515cm Atot 879,6

yb

=

ya

= (hs + hc ) − yb = (80 + 20) − 72,515 = 27,485 cm

1

Ixcomp = (Ix + (As x y22 )) + ((12 x

be n

x hc 3 ) + (Ac x y12 )) 1

= [339000 + (307,6 x 32,522)] + [(12 x 28,6 x 203 ) + (572 x 17,492 )] Ixcomp

= 858344 cm4

Perhitungan tegangan lentur sistem terlayang 

Beban mati dipikul profil baja dan beban hidup di plat komposit a. Tegangan lentur akibat beban mati pada baja

𝑓𝑠𝑏1 = 𝑓𝑠𝑎1 =

MDL ∅ x W x 1,1

62,555 x 105

=

0,9 x 8400 x 1,1

= 752,225 kg/cm2

b. Tegangan lentur akibat beban hidup 1) Baja

𝑓𝑠𝑏2 = 𝑓𝑠𝑎2 =

MLL x yb ∅ x Ixcomp x 1,1 MLL x y3 ∅ x Ixcomp x 1,1

=

=

130,5 x 105 x 72,515 0,9 x 858344 x 1,1 130,5 x 105 x 7,49 0,9 x 858344 x 1,1

= 1113,632 kg/cm2

= - 115,026 kg/cm2

2) Beton

𝑓𝑐𝑏 = 𝑓𝑐𝑎 =

MLL x y3 ∅ x Ixcomp x n MLL x ya ∅ x Ixcomp x n

=

=

130,5 x 105 x 7,49 0,9 x 858344 x 7

= - 18,076 kg/cm2

130,5 x 105 x 27,485 0,9 x 858344 x 7

= - 66,329 kg/cm2

69



Cek lendutan = MDL + MLL = 62,555 + 81,563 = 114,118 t/m = 114118 kg/m

Mtot

1

114118 = 8 x q x 102

qek = δ=

114118 x 8

102

= 9129,440 kg/m

5 x 91,294 x 10004 384 x 2100000 x 858344

= 0,659 cm < 3,33 cm

hc = 20 cm

be/n = 28,6 cm

66,329 kg/cm 2

66,329 kg/cm 2

Ac 752,225 kg/cm 2

18,076 kg/cm 2

18,076 kg/cm 2

115,026 kg/cm2

867,251 kg/cm 2

Ix komposit

hs = 80 cm

-

As

Ix baja

=

+

+ 752,225 kg/cm

+ 2

Tegangan Akibat Beban Mati

1113,632 kg/cm 2

Tegangan Akibat Beban Hidup

+ 1865,857 kg/cm 2 < Fy = 2400 kg/cm 2 Tegangan Total Ok !!!

Sumber : Data Olahan (2018)

Gambar 4.18 Diagram Tegangan

4.6 Perencanaan Gelagar Rangka Perhitungan momen dan gaya lintang akibat beban mati

Sumber : Data Olahan (2018)

Gambar 4.19 Gaya Lintang Akibat Beban Mati

70

RA

= =

1 2 1 2

x q 0 x L + P1 + 1,5 x P2 x 0,25 x 10 + 12,412 + 1,5 x 8,218

= 27,842 ton

Sumber : Data Olahan (2018)

Gambar 4.20 Menentukan Panjang Setiap Segmen Panjang Batang (L) : A1 & A8 = 6,325 M

D1 & D2 = 8,846 M

V1 & V9 = 6,5 M

A2 & A7 = 6,083 M

D3 & D8 = 10,404 M

V2 & V8 = 8,5 M

A3 & A6 = 6,021 M

D4 & D7 = 11,236 M

V3 & V7 = 9,5 M

A4 & A5 = 6,021 M

D5 & D6 = 11,662 M

V4 & V6 = 10 M

B1 – B10 = 6 M

D9 & D10 = 8,846 M

V5

Beban 1 segmen, asumsi 500 kg/m ≈ 0,5 t/m Segmen 1:

P

= (Ltot x 0,5) + RA = (18,009 x 0,5) + 27,842 = 36,847ton Ikatan angin, sambungan, dan lain – lain. = 20% x P = 20% x 36,847 = 7,369 ton PD = 44,216 ton

= 10,5 M

71

Segmen 2:

P

= (30,332 x 0,5) + 27,842 = 43,008 ton Ikatan angin, sambungan, dan lain – lain. = 20% x P = 20% x 43,008 = 8,602 ton PD = 47,472 ton

Segmen 3:

P

= (32,373 x 0,5) + 27,842 = 44,029 ton Ikatan angin, sambungan, dan lain – lain. = 20% x P = 20% x 44,029 = 8,806 ton PD = 52,835 ton

Segmen 4:

P

= (33,470 x 0,5) + 27,842 = 44,577 ton Ikatan angin, sambungan, dan lain – lain. = 20% x P = 20% x 44,577 = 8,915 ton PD = 53,492 ton

Segmen 5:

P

= (34,183 x 0,5) + 27,842 = 44,934 ton Ikatan angin, sambungan, dan lain – lain. = 20% x P = 20% x 44,934 = 8,987 ton PD = 53,921 ton

Beban hidup (beban D) Panjang bentang (L) = 60 meter q = 9 x (0,5 +

15

15

L

60

) = 9 x (0,5 +

) = 6,750 kPa ≈ 688,5 kg/m2

P = 49 KN/m ≈ 4998 kg/m’ (SNI 1725-2016) 1 kPa

= 102 kg/m2

72

= 102 kg/m’

1 KN/m

Faktor Lajur = 1,2

q = 688,5 kg/m2 x 2,75 m = 1893,375 kg/m’ P = 4998 kg/m x 2,75 m = 13744 kg/m’ q 0 = [1893,375 + (

0,75 1893,375 x )] = 2151,563 kg/m′ 2,75 2

q T = 500 kg/m q L = 2651,563 kg/m’ ≈ 2,7 ton/m’ 0,75 13744 PL = [13744 + ( x )] x 1,2 = 15993 kg 2,75 2 ≈ 15,99 ton QL = q L x L = 2511,563 x 6 = 15069,378 kg ≈ 150,7 ton - Garis Pengaruh A1 y1 =

9 x 51 60 x 7,5

= 1,020

- Garis Pengaruh A2 y2 =

15 x 45 60 x 9

= 1,250

y2 = 7,5/8,5 x 1,020 = 0,900

y1 = 1,5/2,5 x 1,250 = 0,750

y3 = 6,5/8,5 x 1,020 = 0,780

y3 = 6,5/7,5 x 1,250 = 1,083

y4 = 5,5/8,5 x 1,020 = 0,660

y4 = 5,5/7,5 x 1,250 = 0,917

73

y5 = 4,5/8,5 x 1,020 = 0,540

y5 = 4,5/7,5 x 1,250 = 0,750

y6 = 3,5/8,5 x 1,020 = 0,420

y6 = 3,5/7,5 x 1,250 = 0,583

y7 = 2,5/8,5 x 1,020 = 0,300

y7 = 2,5/7,5 x 1,250= 0,417

y8 = 1,5/8,5 x 1,020 = 0,180

y8 = 1,5/7,5 x 1,250= 0,250

y9 = 0,5/8,5 x 1,020 = 0,060

y9 = 0,5/7,5 x 1,250= 0,083

- Garis Pengaruh A3

- Garis Pengaruh A4

y3 =

21 x 39 60 x 9,750

= 1,400

y4 =

27 x 33 60 x 10,250

= 1,449

y1 = 1,5/3,5 x 1,400 = 0,600

y1 = 1,5/4,5 x 1,449 = 0,483

y2 = 2,5/3,5 x 1,400 = 1,000

y2 = 2,5/4,5 x 1,449 = 0,805

y4 = 5,5/6,5 x 1,400 = 1,185

y3 = 3,5/4,5 x 1,449 = 1,127

y5 = 4,5/6,5 x 1,400 = 0,969

y5 = 4,5/5,5 x 1,449 = 1,186

y6 = 3,5/6,5 x 1,400 = 0,754

y6 = 3,5/5,5 x 1,449 = 0,922

y7 = 2,5/6,5 x 1,400 = 0,538

y7 = 2,5/5,5 x 1,499 = 0,659

y8 = 1,5/6,5 x 1,400 = 0,323

y8 = 1,5/5,5 x 1,499 = 0,395

y9 = 0,5/6,5 x 1,400 = 0,108

y9 = 0,5/5,5 x 1,499= 0,136

- Garis Pengaruh B1

- Garis Pengaruh B2

y1 =

6 x 54 60 x 6,5

= 0,831

y2 =

12 x 48 60 x 8,5

= 1,129

y2 = 8/9 x 0,831 = 0,739

y1 = 1/2 x 1,129 = 0,565

y3 = 7/9 x 0,831 = 0,646

y3 = 7/8 x 1,129 = 0,988

y4 = 6/9 x 0,831 = 0,554

y4 = 6/8 x 1,129 = 0,847

y5 = 5/9 x 0,831 = 0,462

y5 = 5/8 x 1,129 = 0,706

y6 = 4/9 x 0,831 = 0,369

y6 = 4/8 x 1,129 = 0,565

y7 = 3/9 x 0,831 = 0,277

y7 = 3/8 x 1,129 = 0,423

y8 = 2/9 x 0,831 = 0,185

y8 = 2/8 x 1,129 = 0,282

y9 = 1/9 x 0,831= 0,092

y9 = 1/8 x1,129 = 0,141

- Garis Pengaruh B3

- Garis Pengaruh B4

y3 =

18 x 42 60 x 9,5

= 1,326

y4 =

24 x 36 60 x 10

= 1,440

74

y1 = 1/3 x 1,326 = 0,442

y1 = 1/4 x 1,440 = 0,360

y2 = 2/3 x 1,326 = 0,884

y2 = 2/4 x 1,440 = 0,720

y4 = 6/7 x 1,326 = 1,137

y3= 3/4 x 1,440 = 1,080

y5 = 5/7 x 1,326 = 0,947

y5 = 5/6 x 1,440 = 1,200

y6 = 4/7 x 1,326 = 0,758

y6 = 4/6 x 1,440 = 0,960

y7 = 3/7 x 1,326 = 0,568

y7= 3/6 x 1,440 = 0,720

y8 = 2/7 x 1,326 = 0,379

y8 = 2/6 x 1,440 = 0,480

y9 = 1/7 x1,326 = 0,189

y9 = 1/6 x 1,440 = 0,240

- Garis Pengaruh B5 30 x 60

y5 =

60 x 10,5

= 2,857

y1 = 1/5 x 2,857 = 0,571

y6 = 4/5 x 2, 857 = 2,286

y2 = 2/5 x 2, 857 = 1,143

y7 = 3/5 x 2, 857 = 1,714

y3 = 3/5 x 2, 857 = 1,714

y8 = 2/5 x 2, 857 = 1,143

y4 = 4/5 x 2, 857 = 2,286

y9= 1/5 x 2, 857 = 0,571

- Garis Pengaruh D1

Garis Pengaruh D2

13,5 10,882

= 1,241

13,5 38,826

= 0,348

y1 = 1/10 x 6,731 = 0,673

y1 = 1/10 x 1,893 = 0,234

y2 = 8/10 x 1, 241 = - 0,993

y2 = 2/10 x 1,893 = 0,468

y3 = 7/10 x 1, 241= - 0,869

y3 = 7/10 x 0,348= - 0,244

y4 = 6/10 x 1, 241= - 0,745

y4 = 6/10 x 0,348= - 0,209

y5 = 5/10 x 1, 241= - 0,621

y5 = 5/10 x 0,348= - 0,174

y6 = 4/10 x 1, 241= - 0,496

y6 = 4/10 x 0,348= - 0,139

y7 = 3/10 x 1, 241= - 0,372

y7 = 3/10 x 0,348= - 0,104

y8 = 2/10 x 1, 241= - 0,248

y8 = 2/10 x 0,348= - 0,070

y9 = 1/10 x1, 241= - 0,124

y9 =1/10 x 0,348= - 0,035

73,5 10,92

= 6,731

- Garis Pengaruh D3

73,5 38,826

= 1,893

- Garis Pengaruh D4

75

39 65,491

= 0,596

96 127,106

= 0,755

y1 = 1/10 x 1,512 = 0,151

y1 = 1/10 x 1,227= 0,123

y2 = 2/10 x 1,512 = 0,302

y2 = 2/10 x 1,227= 0,245

y3 = 3/10 x 1,512= 0,454

y3 = 3/10 x 1,227= 0,368

y4 = 6/10 x 0,596 = - 0,358

y4 = 4/10 x 1,227= 0,491

y5 = 5/10 x 0,596 = - 0,298

y5 = 5/10 x 0,755= - 0,378

y6 = 4/10 x 0,596 = - 0,238

y6 = 4/10 x 0,755= - 0,302

y7 = 3/10 x 0,596 = - 0,179

y7 = 3/10 x 0,755= - 0,227

y8 = 2/10 x 0,596 = - 0,119

y8 = 2/10 x 0,755= - 0,151

y9 = 1/10 x 0,596 = - 0,060

y9 = 1/10 x 0,755= - 0,076

99

= 1,512 65,491

156 127,106

= 1,227

- Garis Pengaruh D5 96 133,091

= 0,721

y1 = 1/10 x 1,172 = 0,117

y6 = 4/10 x 0,721= - 0,288

y2 = 2/10 x 1,172 = 0,234

y7 = 3/10 x 0,721= - 0,216

y3 = 3/10 x 1,172 = 0,352

y8 = 2/10 x 0,721= - 0,144

y4 = 4/10 x 1,172 = 0,469

y9 =1/10 x 0,721= - 0,072

y5 = 5/10 x 1,172 = 0,586

- Garis Pengaruh V1 13,5 19,5

= 0,692

156 133,091

= 1,172

Garis Pengaruh V2 39 51

= 0,765

y1 = 1/10 x 3,769 = 0,377

y1 = 1/10 x 1,941 = 0,194

y2 = 8/10 x 0,692 = - 0,554

y2 = 2/10 x 1,941 = 0,388

y3 = 7/10 x 0, 692 = - 0,484

y3 = 7/10 x 0,765 = - 0,536

y4 = 6/10 x 0, 692 = - 0,415

y4 = 6/10 x 0,765 = - 0,459

y5 = 5/10 x 0, 692 = - 0,346

y5 = 5/10 x 0,765 = - 0,383

y6 = 4/10 x 0, 692 = - 0,277

y6 = 4/10 x 0,765 = - 0,306

y7 = 3/10 x 0, 692 = - 0,208

y7 = 3/10 x 0,765 = - 0,230

y8 = 2/10 x 0, 692 = - 0,138

y8 = 2/10 x 0,765 = - 0,153

76

y9 = 1/10 x 0,692 = - 0,069 73,5 19,5

= 3,769

y9 = 1/10 x 0,765 = - 0,077 99 51

= 1,941

- Garis Pengaruh V3

- Garis Pengaruh V4

96

96

= 0,842 114

120

y1 = 1/10 x 1, 368= 0,137

y1 = 1/10 x 1,300= 0,130

y2 = 2/10 x 1, 368= 0,274

y2 = 2/10 x 1,300= 0,260

y3 = 3/10 x 1, 368= 0,410

y3 = 3/10 x 1,300= 0,390

y4 = 6/10 x 0,842 = - 0,505

y4 = 4/10 x 1,300= 0,520

y5 = 5/10 x 0,842 = - 0,421

y5 = 5/10 x 0,800= - 0,400

y6 = 4/10 x 0,842 = - 0,337

y6 = 4/10 x 0,800= - 0,320

y7 = 3/10 x 0,842 = - 0,253

y7 = 3/10 x 0,800= - 0,240

y8 = 2/10 x 0,842 = - 0,168

y8 = 2/10 x 0,800= - 0,160

y9 = 1/10 x 0,842 = - 0,084

y9 = 1/10 x 0,800= - 0,080

156/114 = 1,368

= 0,800

156 120

= 1,300

- Garis Pengaruh V5 96 126

= 0,762

y1 = 1/10 x 1,238 = 0,124

y 7 = 3/10 x 0,762 = - 0,229

y2 = 2/10 x 1,238 = 0,248

y8 = 2/10 x 0,762 = - 0,152

y3 = 3/10 x 1,238 = 0,371

y9 = 1/10 x 0,762 = - 0,076

y4 = 4/10 x 1,238 = 0,495

156 126

= 1,238

y5 = 5/10 x 1,238 = 0,619 y6 = 4/10 x 0,762 = - 0,305 4.6.1

Gaya Batang Akibat Beban Mati

(-) SA1 = - (y1 x PD) + (y2 x PD) + (y3 x PD) + (y4 x PD) + (y5 x PD) + (y6 x PD) + (y7 x PD) + (y8 x PD ) + (y9 x PD )

77

(-) SA2 = - (y2 x PD) + (y1 x PD) + (y3 x PD) + (y4 x PD) + (y5 x PD) + (y6 x PD) + (y7 x PD) + (y8 x PD ) + (y9 x PD ) (-) SA3 = - (y3 x PD) + (y1 x PD) + (y2 x PD) +(y4 x PD) + (y5 x PD) + (y6 x PD) + (y7 x PD) + (y8 x PD ) + (y9 x PD ) (-) SA4 = - (y4 x PD) + (y1 x PD) + (y2 x PD) + (y3 x PD) + (y5 x PD) + (y6 x PD) + (y7 x PD) + (y8 x PD ) + (y9 x PD )

Related Documents

Bab 3
June 2020 37
Bab 3
November 2019 52
Bab 3
October 2019 51
Bab 3
August 2019 65
Bab 3
June 2020 26
Bab 3
May 2020 35

More Documents from ""

5) Daftar Pustaka.docx
October 2019 17
3) Bab Iv.docx
October 2019 5
Out Bond
May 2020 35
Ccnewsletter Manual
May 2020 36
Menteri Pariwisata
May 2020 36