20090912 - Iceaa2009 Themos Kallos

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 20090912 - Iceaa2009 Themos Kallos as PDF for free.

More details

  • Words: 1,323
  • Pages: 20
School of Electronic Engineering and Computer Science

Simplified Directional Ground-Plane Cloaks by Christos Argyropoulos

Themos Kallos, Christos Argyropoulos, Yang Hao

Outline  

 

Introduction to Cloaking Phenomena Simplified Directional Ground-Plane Cloaks Scattering Performance (FDTD) Bandwidth Performance (FDTD) 2

Cloaking Devices   

Cloaking device: anisotropic and dispersive. Radially-dependent permittivity ε and permeability µ. The cloak is able to guide the electromagnetic waves around an object without any disturbances and reflections. The object placed inside the cloak becomes practically “invisible” to an exterior viewer.

Schurig et al., Opt. Expr., 2006.

3

[1]

Ground-Plane Cloaking • Cylindrical Cloak: Extreme bending  Extreme materials • Leading to dispersive & narrowband response

[2]

• Ground-plane cloak has moderate material parameters, can be made all-dielectric [1] Argyropoulos et al., TAP 2009 [2] Li et al., PRL 2008

4

Experimental Results

[1]

[2]

• Microwave (2 cm) • Infrared (1.5 μm) [1] Liu et al., Science 2009 • Broadband [2] Valentine et al., Nat. Mat. 2009

5

Ground-Plane Cloak Challenges 

Simpler design?



Free-Space operation?



Good Bandwidth Performance? 6

Ground-Plane Cloak # of cells [%]

Mirage Effect 30 (a) 20 10 0 60

80 100 Angle [Degrees]

y [µm]

(c)

120

Permitivity Map 4

0.5 0 ­1.5

2 ­1

­0.5

0 x [ µm]

0.5

1

7

y [ µ

0 60

Cloak Design 80 100 Angle [Degrees]

4

0.5 0 ­1.5

2 ­1

y [ µm]

(b)

0.5

µm] y [ # of cells [%]

­0.5

0 µ x [ m]

0.5

0 ­1.5

1

­1

(b)t  ij

(c)

4 ­1

1

1

1



­0.5

4

g yy 

0 0.5 x [µm]

1

2 1.5

1

1

20 (d) Approximate Permittivity Map

80 100 Angle [Degrees] ­0.5 0 0.5 µ x [ m]

0.5

 ij 1  1  ref det gij

30 (a)

10 0.5 0 60 0 ­1.5

0 µ x [ m]

 g yx

0.5

Anisotropy Map

­1

­0.5

g ij  

1.2

0 ­1.5

2

0 µ x [ m]

0.5

120

4

­0.5

­1

(d) Approximate Permittivity Map  g xx g xy 

Permitivity Map y [ µm]

y [ µm]

(c)

1.2

0 ­1.5

120

120 1.5

2

Li and Pendry, PRL 2008 Permitivity Map Kallos et al., PRA 2009

y [ µm]

# of cel

10

0.5

0.5 0 ­1.5

­1

g

ij Anisotropy Map cos ij 

det( gij ) ­0.5

0 µ x [ m]

0.5

1

(d) Approximate Permittivity Map

g xy g yx g xx g yy

1.2 1

8

All Dielectric Cloak Design  gii 1 µ =  det( g)  g ji

[ ] ij



gij  g jj 

The simplification is to make the meshes orthogonal, then gij and gji are going to be zero; if the meshes have equal sides, then gii=gjj, then g=gii*gjj=gii*gii;

[µ ] = [µ ]

ij −1

ij

  g ii 1  =  det( g )  g ji  

 1 ij −1 µij = µ =  det( g ) 

[ ] [ ]

 1  g ii =  ( g ) 2  0 ii  1 0  =  0 1  

0   g jj   

 g ii g  ji

g ij     g jj  

g ij     g jj  

−1

−1

−1

9

NFDTD Run • 64x15 Nonorthogonal cells (cloak only) • Gaussian Pulse: f0 = 600 THz σt = 2.4 fs σx = 1.2 μm

• Ground Plane

• w/ object

• w/ cloak

10

Simplified Cloak Design µm] µµm] y [ y [ m] y [

λ=750 μm (Embedded in SiO2/εr =2.25) Original Grid Original Grid Original Grid

µm] µµm] y [ y [ m] y [

0.5 0.5 0.5 00 ­1.5 0 ­1.5 ­1.5

­1 ­1 ­1

µm] µµm] y [y [ y [ m]

0.5 0.5 0.5 00 ­1.5 0 ­1.5 ­1.5

­1 ­1 ­1

0.5 0.5 0.5 00 ­1.5 0 ­1.5 ­1.5

1.5 1.5 1.5

­0.5 00 0.5 11 ­0.5 0.5 µ ­0.5 x [ 0m] 1 x [µµ m] 0.5 x [ m] Low­Res Sampled Grid Low­Res Sampled Grid Low­Res Sampled Grid

1.5 1.5 1.5

55 5 33 3 11 1 55 5 33 3 11 1

­0.5 00 0.5 11 1.5 ­0.5 0.5 1.5 µ ­0.5 x [ 0 m] 0.5 1 1.5 µ x [ m] x [µm] High­Res Sampled Grid (Free Space) High­Res Sampled Grid (Free Space) Kallos et al., PRA 2009 22 High­Res Sampled Grid (Free Space) 2 0.5 0.5 1.5

µ ]m] [µm]

­1 ­1 ­1

­0.5 00 0.5 11 ­0.5 0.5 ­0.5 x [µµ 0m] 0.5 1 x [µm] x [ m] High­Res Sampled Grid High­Res Sampled Grid High­Res Sampled Grid

55 5 33 3 11 1

• 64x15 Non-Orthogonal Blocks

• 80x20 Orthogonal Blocks 37.5 nm x 37.5 nm

• 6x2 Orthogonal Blocks 482.5 nm x 375 nm

11

Simplified Cloak Design Embedded in Air y [ µm]

Low­Res Sampled Grid

2

0.5 0 ­1.5

­1

­0.5

0 0.5 µ x [ m]

1

1.5

y [ µm]

High­Res Sampled Grid (Free Space) 0.5 0 ­1.5

2

• Ignore dispersive regions

1.5 ­1

­0.5

0 0.5 µ x [ m]

1

1.5

Low­Res Sampled Grid (Free Space) y [ µm]

1

• Dispersive min(ε)=0.8

1.5

2

0.5 0 ­1.5

1

• 4x2 Orthogonal Blocks

1.5 ­1

­0.5

0 0.5 x [ µm]

1

1.5

1

Kallos et al., PRA 2009

12

Simplified Cloaks Comparisons Approximations: • Ignore anisotropy • Ignore dispersive values • Simplified blocks • Simplified cloaks (8x2, 4x2) work very well in free space without dispersive values Kallos et al., PRA 2009

13

1

0.5 0 0

Spectral Amplitude [a.u.] Energy [a.u.] Spectral Amplitude [a.u.]

Spectral Amplitude [a.u.]

Energy [a.u.]

1 Optical Bandwidth

Energy [a.u.]

Quantitative Performance 0.5

Ground Plane No Cloak 80x20 Cloak 0 0 30 80x20 Cloak (dispersive) 60 90 1 1 (a)Angle [deg] (c) 4x2 Cloak

30 60 1 90 Angle [deg] 0.5

187 nm   ~ x / 12

Ground Plane No Cloak 80x20 Cloak 80x20 Cloak (dispersive) 4x2 Cloak

0.5 0 0 0

1

1 0.5

0.5

0 30 60 90 0 30 60 0.5 0.5 0 Angle [deg] Angle [deg] • High-res cloaks are slightly 1400 1600 1800 400 600 800 1 Frequency [THz] 1Frequency [THz] better (b) (d) 0 0 1400 1600 1800 400 600 800 Frequency [THz]0.5 • Visible spectrum is Frequency [THz] 0.5

restored

• Dispersive sections do not significantly affect spectrum

0

• Differences appear after Kallos et al., PRA 2009 1600 THz

400 600 800 Frequency [THz]

0

90

1400 1600 1800 Frequency [THz]

14

Quantitative Performance Optical Bandwidth

Ground Plane No Cloak 80x20 Cloak 80x20 Cloak (dispersive) 4x2 Cloak

• Tradeoff between bandwidth and design complexity • Bandwidth deteriorates slightly with increased frequency (electrically larger objects) • Critical at nano-scale optical devices

15

Free-Space Directional Cloak Single angle of operation

(a)

(b)

Rotationally symmetric device - Top view

Kallos et al., PRA 2009

16

Free-Space Directional Cloak Energy Distribution

Spectral Distribution

(b)

17

Free-Space Directional Cloak Practical Application: reduce coupling between GPS antenna and VHF whip antenna No Cloak

A C C A

B D

B D

PE D C D B B

A C C A

4x4 Directional Cloak

Relative Permittivity values A = 1.20 B = 1.32 C = 1.07 D = 1.47 18

Conclusions 









Ground-plane cloaks have less demanding nondispersive material parameters. Simplified designs work for electrically small elements (dx~λ). Bandwidth vs. Complexity trade-off. The energy transmitted behind the directional free-space cloak is improved by one order of magnitude compared to a non-cloaked object. The proposed device has broadband performance and preserves the frequency spectrum over the most of the visible range.

19

Thank you! [email protected]

[email protected]

20

Related Documents