2008-20098 57 ALM 2nd TermExaminatron Markins Scheme
l. ( a)
,,,r 2000- N )
dl{
- = Alyl
dt
2000 )
\
2000dN .'
f^
|
Jr o o oN( 2 0 0 0 _ ( t
,u
|
I l. r r ooo\ N
2000_N)
Jo
N) \
IM
tt . =l)"dr .t
VtN=lAdt Jo
IA
[ln] w l -ln | 2ooo- N lflo,,= t"t N t000 , 2000- 1/
-
rrr-
-
2000- 1000 --
l-
l tt
IA
= etl
'o*;uL= 2ooo -.N 2000
1V = ---------=
IA
l+e "'
1.(b)
Forr>0 e-^'>o l+ e-1'>1
1M
-1 ^'-.r 1+ e 2ooo < 2ooo
1+ e-"'
< 2000 ..'1V .'. Thenumberof daisiesplantedin thegardenwill neverexceed2000for r > 0. 2"
IA
x- e' d \, dt dy
d v (d r\
dx
d t\&)
,a v dt
t 4= ! (, 4\ q= " , (,,+ -,,4 \= ,,,(1 -4 \ dY'
d t\
dt ) d\
dt'
\
d,)
l dt'
dr )
dv . ,d ' y ) x --.;-i r-.^ * 4_1= 1dxdx
( n 'rY' ' l ' ' ! - u ' l - r r 'u -!'1* q ,= G' Y dr' /
,t
,
\
dt .)
\
dt
!l]--o4Y+ 4 y - s 2 ' dt'
ctt
IM IA
Characteristicequation: IM
m 2 -4 m + 4 :0 m:2 ."yr :
(repeated)
cl€ 2 t + c2 te 2 t
IA
Letyo: Af e2'. 4,, =2trrrrr, +2Ate2l dt t2
a v. ;
= 4 A !' e ' ' + 8 A Ie ' ' + 2 A e 2'
IM
2008-20098 57 ALM 2nd TermExaminationMarkins Scheme
.'.4At2e2'+ 8Ate2'+ 2Ae2'- 4Q.Afe'' 2A =l
IA
.t ,-
n--
z
| , ., IA
z 1. . v = c , e' ' + c , t e"' + . t ' e' '
'2
I = e '.,( ' l c .+ c .t+ -t' I ,) '2) \ ( | = x 2 lc , + c , l n x + -(l n x )' z" \ I ' 2 \' ) 3. ( a)
IA
Let X V be the breakdownvoltageof a randomly chosendiode. x - N (4 0 , 1 .5 2 ) P (3 9 < X< 4 2 )
= p,39-+o .2.42-40\ ' 1.5 1.5 = P(-0.6667
IM
IA
Let the value be c V. P (X> c ): 0 .1 5 { r ' - 4 O\ " PIZ>l=0.15 1.5 \ )
r - 4O
IM
1.5 c=40+1.5(1.0365) = 41.5548 .'. only l5% of all diodeshavevoltages 41.5548V. exceeding 3.(c)
IA
P(X> 42) = P (Z > '
4 -) -4 0-)
1 .5 = P(Z > 1 .3 3 3 3 ) IA
= 0 .0 9 1 2 P(at leastone hasa voltageexceeding42)
:r-[ -P (x>44]4 :l-(1 -0.09n)4 :0.3179 4.(a)
IA IA
P(Ru)
5f4) 3f3)
8[t.1.8ltj
IM
29
IA
n 4 (b)
P (G) :1 -2 :9 72
IA
72
-2-
2008-20098 57 ALM 2nd TermExaminationMarkins Scheme
P(G,iG.r-
P(G'aGr) p(G,)
IM
3r6)
r(r, 43 72 l8 43 5. ( a)
IA
360= o.z5 480
P ,:
IA
The95V:oconfidenceinterval forp
_{ , - lr . I
0.75(l- 0.75) ,0.75+1.96 480
=lo75
\ = (0.7l 13,0.7887) 5 (b)
1M IA
H s :p : 0 .7 H ;p * 0 .7 Under ffe and using normal approximation,
U' - ,r,tro.z.0'7(0'3)l
IM
480
o.z s -o'5-o.z
480 =23407>1.96 0.7(0.3)
IA IM
6.(a)
f (x) = xlnx /'(x) :l + ln x
f" (*)=|
-+ .ft"(*)= ... p ,(x ) = f 6 \+ /' (l )(* lt
1 1 * ,f" (l ),r-1i , 2l
IM
= (x - t)*f,*-t)' -l t x - t )' 2' 6' =-!e, -6x2+3x+2 ) 6'
6 (b) [' o ' (* )= ]
w h i c h i s d e c re asi ng on [0.5. I .5].
IA IM
= Z =tU f,o,(0.5) 0.5' "f(4)(1.5):',=tu 1.5' 27 .'.1.f'o)(r)l< l6 if lx- ll<0.5
IA
2008-2009857 ALM 2nd Term ExaminationMarkine Scheme
6.(c)
Errorsljjit,', - p,(iltu]
=li)ln*>o,r,>1*
IM
=I-ff<.-tl*
wheref e (0.5,1.5)
'3Ji;o
-t)odx
IM IA
=1Io-r)'l;: :0.0083 7.(a)
IA
[' 3kt'dt* J['r Lft + s\dt= t
Jo
IM
2'
=1 +sr1l fu')',.f;t|,2 . k (e
r _)l=l
/r+.:l -+15---5 2\22)
8ft=l
*=!
IA
8
7.(b)
E(r)=Jol'"lr +stpt at* Jtl,'+Q' 8 16.
IM
=fl,,l'*ai1,, *1,,.l' L32 lo r6L3 2 ), =L* L(g* 45-l -I)
32 16\232) _ 181 ,96
IA
+st'pt E(r\=Jf)lr a,*t:+t' rr 1 6 o8
1M
tft,_ t' + _ t'5 . -Il'
Ir.l ' | + -t -t-t-
140 lo 1614
3 L
r t r(et =-+-l -+4)---40 16\4 4
s )| 3)
_ r2 l 30
IA
var(r)=o(r\-In(D]'
IM
= r2r-[(rer)' 3 0 %.J IA
=0.4785
-4-
2008-20098 57 ALM 2nd TermExaminatron MarkrnsScheme
7.(c)
F o r0 < t< 1 , nr i
F (tl = | -r' d- l r0 8
Ir ,lI '
= | - /'
L 8 -J N l.
IA
- - t-
8 F o rl < l < 3 , nr 1
I
F(/)=l_0*5),#+:(tr) r t l6 8
IM
tll , -l' I = _l_t r _) 1 t + _ t6L2 l, 8
r [ r , + )-I ___)| - l r l+ _
: - l- t -
16L2 l" 5 32 16
2 '7
)
IA
32 r<0
0 l,
0
-a
.'. F(t) = 8
1, 32
5 t6
IA
7 l
I 7 (d)
8
t>3
The requiredprobability
= c; .c: cl [,c1ry]'[r - Fe)]'zlF@- F(l)l
2M
= 3 o f l l ' z f r - r 7 ) ' z f r 7- r ) 32)\32
\8i \ = 0.0418
8)
IA
8.(aXi) .f (x) -- In(l + cosx) -s i n x J tx 1 = . l + c o s -r - (l + c o sx ) c o sx + s i nx(- si nx) .f"(x) = (1+ cosx)2 -c o s x * c o s ' x -s i n t (l + cosx)2 -c o s x -l (l + cosx)' _
-l I + cosx
-11, .
J"\x)=
- sin x
(-l + cosr)-
IA
2008-20098 57 ALM 2nd TermExaminationMarkineScheme fto'(*) =
- (1+ cosx)'?cosx + sinx[2(1+ cosxX- sinx)] (1+ cosx)a -c o s r-c o s ' x
-2 s i n 2 x
(1+ cosx)l c o s ' x -c o s x -2 (l + cosx)3 (c o s x + l )(c o s x -2 ) (l + cosx)3
IA
c o s x -2
(1.."*t' 8.(a)(ii) /(5 ), _ (1+ c o s x )2 (-s i n x )- (cosx-2)(2)(l + cosx)(-si n:r) t \^-.\ l
_ - s i nx (l + c o s x - 2 c osx + 4) (l + c o s x )3
- -sinx(5-cosx).0 (l+cosx)'
v * .-l-' [ o . za)l
IA
T-1
.'..f'o'(t) is strictlydecreasing - or I o.i l.
L 2)
,
- t 4, . ^. l v t- - - - -
, , 0, ( r \ -
c os 0- 2
1M
|
(l + cos0)' 4 (-\ cosla l-2 \ 2/
"tt-t----L \2) \-/
-
|
/-\l'
L
\2rl
l
l t*.o tl 1 l l
.' . ma x l fto )(x ' tl :2
IA
r€ 0.| 2)
r
r5
IE _"l nl l'r Error: -" ! f'or(E\ 180n"
l^rl where4elo.-| L 2)
IM
5 lt
l.rar,
,l - -______ _( maxl/,-,(x)l 180(2')n " ,.[6rlr'
2
5
:
" < - 106 -2880na
IM
5
1T'
n-^ 2---------------2880(10') n'2t06256.835... n > 18.05...
IM
n=20 .'.20subintervals shouldbe used. 8 (b)
Lete(x)=l;r'+x -21=[*'+x-2 I I l-1x'+x-2) Jrt"'
+ x -21 dt =
I'
IA
if 1<x<4 ifo<x
- Q' + x - 2)clx* + x -2)dx J,o{r'
- b-
tA
2008-20098 57 ALM 2nd TermExamrnation MarkrnsScheme
In orderto find theexactvalueof
J,t
*' * x - 2l dxby Simpson's rule,thenumbers
of subintervals for thetwo intervalsmustbe even. So 8 subintervals shouldbe used. 4- U . h = - = u .5
^ _
IM
IA
8
Jnlr'+x-21rk =
h.
+ g(1.s)+ g(2.s)+g(3.5)]+2[g(l)+ g(2)+ g(3)]+s(4)] ;3 {s(ol+ a[g(O.s)
_11 3
IA
g(O.s):1.2s c (l): 0 g(l.s): l.7s c Q ): 4 g(2.5)-6.7s s (3 ): 1 0 g(3.s):13.7s { ,-\ _ 6)-r :2x +t_ :.ltor' Let f(x): (:r* t -Jtox' -s "
c(0):2 c(4): l8
e.(a)
Vx e
IM
IA
[.3 ,4 ],
(x)= 2 - :(tox' - o) I lzox) -f' 2', l0x
_a
-.)
-a
IA
ffi troor'
1 /1 o " =
l 0 (1 O -r' ? -6 + 6 ) l U x - -6
fi.-4l}x" -6
V
<2 ^ lto <0 .'./(x)is strictlydecreasing on [.3, 4].
IM
+ r - JOir it' - 6 = 0 . 2 e 8>50 f(t.3)=2(1.3) .f(4\=2(4)+t-Jl0(4f-6 =_ 3 . 4 0 e<70 .'. Ehas exactly one real root lying in the interval t r .3,41.
e.(b)
g ' (x ) =
IA
z-)00; -elIpo*1 ln.t r- - - - - - - -' -"^ -. lllx ' - 6
IA
\, I ' ox2o) ' tzoxl] 2
a )1 ,( r g " (x ) = _ ro [(1 0 ,,_ ]_ L'
-r o(rox' - ofi[ro'' - 6- I ox,]
oo(r o"'- ofi
IA
2008-20098 57 ALM 2nd TermExanrination Markins Scheme
>0
V x e [.3,4] .'.9'(x)is strictlyincreasingon [.3, 4].
c'(r.3)=3-+
IM
-_-0.s376
Jl0(1.3)'- 6
IA
s'(4)=3--#gL =-0.2233 {lo(4)' - 6
' ls'(x)l<0.9376<1 e.(c)(i)
IA
f (r.6 )= 2 (1 .6 )+ 1 -J l 0 (1 .6 )' z-6 = -0:272< 0 IM
.' .T h ero o t i s i n [1 .3 , 1 .6 ]. Vx e [.3 , 1 .6 ],
^ trooa
P ( xl= J- .1 - -
Vl0x'-6 f60 -=?" llO- r X'"' lox2-6
< 3-.,/ib <0 .' .g (t) i s s tri c tl yd e c re a s i nogn [1.3, 1.6].
I N,{
,' .c (1 .6 )< g (x ) < g (1 .3 ) 1 .3 7 2 8< g (x )< 1 .5 9 8 5 1 .3< g (x ) < 1 .6
1M
." .g (x ) e [1 .3 , 1 .6 ] .'.x6: 1.6can be used.
n 1.6000 1.3728
9 l0
1.4564 1.4691
1.5343
11
1.4147 1.5006
l2
1.4598 t.4666
IJ
|.461',7
t.4316
I4 t5
t.46s2 1.4626
16
|.4645
1.4831 t.4498
IM
1.4739 IA
.the root is l 46.(cor.to 2 d.p.)
e.(cXii)
10. ( a)
c (3 .5 )= 3 (3 .s )+ 1- J l 0 (3 .s )' ?* 6 = 0.7065
IM
.' g(3.5) e [1.3, 4] and this doesnot guaranteethe convergenceof the iterative formula.
IA
4 =r . s r r orr..5 f l - l - / : L ) dt \20,/ &x3y +-:+ l) dt l0 40
\30,
(l)
-8-
IA
2008-20098 57 ALM 2nd TermExaminationMarkins Scheme
From (2),
Subs.(3).(a) into(1) /i
.,\
/1
rc({4 * !!z) =-(9* 1 -:o) +1L+t5 sdr)
[dr' 12
t
dt"
dt
s
\dt
) 40
rc2 *zL = -ctY* 1 + 3 o+fI+15 dt
5
40
rc!2+3dY +t v=45 dt'
dt
8'
80" ! +242+v=360 dt' dt
r0.(b) C h a ra c te ri s tiEcq u a ti o n :
IM
8 0 m 2" 2 4 m-l :0 l1 204
o r --
cr e 2 a + cr e 4
IA
Let yo: A d.1,v.
d ' v.|,-A .
dt
dt"
""A:360 '.yn: 360 i. Y= c P
20+ c r e a + 360
IA
dv c , : c , :
d t2 0 4 W h e nl : 0 , y :c t+ c z + 3 6 0 :2 0 0 c r * c z : -1 6 0 dy
0
(i )
2 0 0 ,.^
ct
L = _ _ _ r _ itr = _ _ _ _
IM
cz
d t1 0 5 2 0 4 c r + 5 c z :2 0 0
(i i )
1M
:.c 1 : -2 5 0 a n dc 2 :9 0 r!
:.!=-250e 20+90e { +360 dv25:45:tv
L=-e
Lv
_ =_ _ o
dr'
8-
4
--e
dt22 d'y 5 -;
+_ o
IA
45 -+ q
8"
-9-
2008-20098 57 ALM 2nd TermExaminarion MarkineScheme
)-,
uy
^ S e t - -u . dt
IM
* 1 =- e4 5 -:I
25
22 ;9 e'" =I
+ fe), e' " = t - |
IA
\5/
lfltlS,
d'v
s /s \.
d !'
8 \s ,
--=-
i- l
...W h e n e ro :i
+s -i/ s ti >U .
+-i
IM
815/
| .y i s a m i n i mum. \)/-
The minimum amountof salt
rq l I
:-2501-l \5i
/q \ :
+e0l-l l5i
+360
rs t j .
=l; | (-450+e0)+360 \)/ | .r I | /5 \r l =3601 1-l: I I
| \ei I
LI
=t87.3320g
IA /q \
a n dth e ti m e :5 In l - l mi n . \ 5 ,/ IL(a)(i)
IA
Let therandomvariableX mg denotetheactualtar yield of a cigarette. X- N(p,0.82) i.e.X-N(17.5,0.8'z) P(X> 18.5) ^( = f lZ>
18.5- 17.5\
\0.8) = P(Z >r.2s) =0.5-03944 : 0.1056
IM
IA
- l0 -
2008-20098 57 ALM 2nd TermExamrnatron MarkinsScheme I L(a)(ri)
Let I denotethe number of cigarettescontainingtar yields higher than 18.5mg in a pack of50 cigarettes. )' - Bi n (5 0 ,0 . 1 0 5 6 ) Using normal approximation,
v- N(50(0. l0s6).50(0.l0s6xt - 0.l0s6)) r- N(5.28,4.122432) P(v> l0)
^ (-
=
rt
t
>
_
IM IM
ro .s- 5 .2 8 ) |
14.722432 \ ) == P(Z >2.4021) = 0.5- 0.4918 = 0.0082 -l
IA
rr.(bxi) Hs:p: 17.5 IA
H; 1t> 17.5 I I (b)(ii)
r=I1=rs.r
IA
l0
Under He, o R2 x - Nfl7.5."'" )' l0
1M
18.1- 17.5
o -t
'=
IM
ffi = 2 .3 7 1 7> 2 .3 2 6 7
IA
So t1ois rejectedat lo/olevel and there is evidencethat the actualtar yields were higherthan that claimed. r l.(b xiii) Supposethat Ho is rejectedat 1%olevel when X > c.
P \x > cl x -Nt I 2.s.9{1 -' 10' = o . o , ?_11
<
P(Z ='='-) = 0.01 ' >' u.6
IM
ffi r-17
5
0.8
m
c = 18.0886
IA
P(TypeII error) : P(accept Ho j il is true) = Pd < | 8.0886x .- Nt r a.o,0,9'D ' t0"
IM
l8.o) = P(Z < l8'08q6_0.8
IM
ffi = P(Z < 0.3503) = 0.5+ 0.1369 =0.6369
IA