2008-2009 F7 Alm Mock Exam Marking Scheme

  • Uploaded by: rae
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 2008-2009 F7 Alm Mock Exam Marking Scheme as PDF for free.

More details

  • Words: 2,456
  • Pages: 11
2008-20098 57 ALM 2nd TermExaminatron Markins Scheme

l. ( a)

,,,r 2000- N )

dl{

- = Alyl

dt

2000 )

\

2000dN .'

f^

|

Jr o o oN( 2 0 0 0 _ ( t

,u

|

I l. r r ooo\ N

2000_N)

Jo

N) \

IM

tt . =l)"dr .t

VtN=lAdt Jo

IA

[ln] w l -ln | 2ooo- N lflo,,= t"t N t000 , 2000- 1/

-

rrr-

-

2000- 1000 --

l-

l tt

IA

= etl

'o*;uL= 2ooo -.N 2000

1V = ---------=

IA

l+e "'

1.(b)

Forr>0 e-^'>o l+ e-1'>1

1M

-1 ^'-.r 1+ e 2ooo < 2ooo

1+ e-"'

< 2000 ..'1V .'. Thenumberof daisiesplantedin thegardenwill neverexceed2000for r > 0. 2"

IA

x- e' d \, dt dy

d v (d r\

dx

d t\&)

,a v dt

t 4= ! (, 4\ q= " , (,,+ -,,4 \= ,,,(1 -4 \ dY'

d t\

dt ) d\

dt'

\

d,)

l dt'

dr )

dv . ,d ' y ) x --.;-i r-.^ * 4_1= 1dxdx

( n 'rY' ' l ' ' ! - u ' l - r r 'u -!'1* q ,= G' Y dr' /

,t

,

\

dt .)

\

dt

!l]--o4Y+ 4 y - s 2 ' dt'

ctt

IM IA

Characteristicequation: IM

m 2 -4 m + 4 :0 m:2 ."yr :

(repeated)

cl€ 2 t + c2 te 2 t

IA

Letyo: Af e2'. 4,, =2trrrrr, +2Ate2l dt t2

a v. ;

= 4 A !' e ' ' + 8 A Ie ' ' + 2 A e 2'

IM

2008-20098 57 ALM 2nd TermExaminationMarkins Scheme

.'.4At2e2'+ 8Ate2'+ 2Ae2'- 4Q.Afe'' 2A =l

IA

.t ,-

n--

z

| , ., IA

z 1. . v = c , e' ' + c , t e"' + . t ' e' '

'2

I = e '.,( ' l c .+ c .t+ -t' I ,) '2) \ ( | = x 2 lc , + c , l n x + -(l n x )' z" \ I ' 2 \' ) 3. ( a)

IA

Let X V be the breakdownvoltageof a randomly chosendiode. x - N (4 0 , 1 .5 2 ) P (3 9 < X< 4 2 )

= p,39-+o .2.42-40\ ' 1.5 1.5 = P(-0.6667
IM

IA

Let the value be c V. P (X> c ): 0 .1 5 { r ' - 4 O\ " PIZ>l=0.15 1.5 \ )

r - 4O

IM

1.5 c=40+1.5(1.0365) = 41.5548 .'. only l5% of all diodeshavevoltages 41.5548V. exceeding 3.(c)

IA

P(X> 42) = P (Z > '

4 -) -4 0-)

1 .5 = P(Z > 1 .3 3 3 3 ) IA

= 0 .0 9 1 2 P(at leastone hasa voltageexceeding42)

:r-[ -P (x>44]4 :l-(1 -0.09n)4 :0.3179 4.(a)

IA IA

P(Ru)

5f4) 3f3)

8[t.1.8ltj

IM

29

IA

n 4 (b)

P (G) :1 -2 :9 72

IA

72

-2-

2008-20098 57 ALM 2nd TermExaminationMarkins Scheme

P(G,iG.r-

P(G'aGr) p(G,)

IM

3r6)

r(r, 43 72 l8 43 5. ( a)

IA

360= o.z5 480

P ,:

IA

The95V:oconfidenceinterval forp

_{ , - lr . I

0.75(l- 0.75) ,0.75+1.96 480

=lo75

\ = (0.7l 13,0.7887) 5 (b)

1M IA

H s :p : 0 .7 H ;p * 0 .7 Under ffe and using normal approximation,

U' - ,r,tro.z.0'7(0'3)l

IM

480

o.z s -o'5-o.z

480 =23407>1.96 0.7(0.3)

IA IM

6.(a)

f (x) = xlnx /'(x) :l + ln x

f" (*)=|

-+ .ft"(*)= ... p ,(x ) = f 6 \+ /' (l )(* lt

1 1 * ,f" (l ),r-1i , 2l

IM

= (x - t)*f,*-t)' -l t x - t )' 2' 6' =-!e, -6x2+3x+2 ) 6'

6 (b) [' o ' (* )= ]

w h i c h i s d e c re asi ng on [0.5. I .5].

IA IM

= Z =tU f,o,(0.5) 0.5' "f(4)(1.5):',=tu 1.5' 27 .'.1.f'o)(r)l< l6 if lx- ll<0.5

IA

2008-2009857 ALM 2nd Term ExaminationMarkine Scheme

6.(c)

Errorsljjit,', - p,(iltu]

=li)ln*>o,r,>1*

IM

=I-ff<.-tl*

wheref e (0.5,1.5)

'3Ji;o

-t)odx

IM IA

=1Io-r)'l;: :0.0083 7.(a)

IA

[' 3kt'dt* J['r Lft + s\dt= t

Jo

IM

2'

=1 +sr1l fu')',.f;t|,2 . k (e

r _)l=l

/r+.:l -+15---5 2\22)

8ft=l

*=!

IA

8

7.(b)

E(r)=Jol'"lr +stpt at* Jtl,'+Q' 8 16.

IM

=fl,,l'*ai1,, *1,,.l' L32 lo r6L3 2 ), =L* L(g* 45-l -I)

32 16\232) _ 181 ,96

IA

+st'pt E(r\=Jf)lr a,*t:+t' rr 1 6 o8

1M

tft,_ t' + _ t'5 . -Il'

Ir.l ' | + -t -t-t-

140 lo 1614

3 L

r t r(et =-+-l -+4)---40 16\4 4

s )| 3)

_ r2 l 30

IA

var(r)=o(r\-In(D]'

IM

= r2r-[(rer)' 3 0 %.J IA

=0.4785

-4-

2008-20098 57 ALM 2nd TermExaminatron MarkrnsScheme

7.(c)

F o r0 < t< 1 , nr i

F (tl = | -r' d- l r0 8

Ir ,lI '

= | - /'

L 8 -J N l.

IA

- - t-

8 F o rl < l < 3 , nr 1

I

F(/)=l_0*5),#+:(tr) r t l6 8

IM

tll , -l' I = _l_t r _) 1 t + _ t6L2 l, 8

r [ r , + )-I ___)| - l r l+ _

: - l- t -

16L2 l" 5 32 16

2 '7

)

IA

32 r<0

0 l,

0
-a

.'. F(t) = 8

1, 32

5 t6

IA

7 l
I 7 (d)

8

t>3

The requiredprobability

= c; .c: cl [,c1ry]'[r - Fe)]'zlF@- F(l)l

2M

= 3 o f l l ' z f r - r 7 ) ' z f r 7- r ) 32)\32

\8i \ = 0.0418

8)

IA

8.(aXi) .f (x) -- In(l + cosx) -s i n x J tx 1 = . l + c o s -r - (l + c o sx ) c o sx + s i nx(- si nx) .f"(x) = (1+ cosx)2 -c o s x * c o s ' x -s i n t (l + cosx)2 -c o s x -l (l + cosx)' _

-l I + cosx

-11, .

J"\x)=

- sin x

(-l + cosr)-

IA

2008-20098 57 ALM 2nd TermExaminationMarkineScheme fto'(*) =

- (1+ cosx)'?cosx + sinx[2(1+ cosxX- sinx)] (1+ cosx)a -c o s r-c o s ' x

-2 s i n 2 x

(1+ cosx)l c o s ' x -c o s x -2 (l + cosx)3 (c o s x + l )(c o s x -2 ) (l + cosx)3

IA

c o s x -2

(1.."*t' 8.(a)(ii) /(5 ), _ (1+ c o s x )2 (-s i n x )- (cosx-2)(2)(l + cosx)(-si n:r) t \^-.\ l

_ - s i nx (l + c o s x - 2 c osx + 4) (l + c o s x )3

- -sinx(5-cosx).0 (l+cosx)'

v * .-l-' [ o . za)l

IA

T-1

.'..f'o'(t) is strictlydecreasing - or I o.i l.

L 2)

,

- t 4, . ^. l v t- - - - -

, , 0, ( r \ -

c os 0- 2

1M

|

(l + cos0)' 4 (-\ cosla l-2 \ 2/

"tt-t----L \2) \-/

-

|

/-\l'

L

\2rl

l

l t*.o tl 1 l l

.' . ma x l fto )(x ' tl :2

IA

r€ 0.| 2)

r

r5

IE _"l nl l'r Error: -" ! f'or(E\ 180n"

l^rl where4elo.-| L 2)

IM

5 lt

l.rar,

,l - -______ _( maxl/,-,(x)l 180(2')n " ,.[6rlr'

2

5

:

" < - 106 -2880na

IM

5

1T'

n-^ 2---------------2880(10') n'2t06256.835... n > 18.05...

IM

n=20 .'.20subintervals shouldbe used. 8 (b)

Lete(x)=l;r'+x -21=[*'+x-2 I I l-1x'+x-2) Jrt"'

+ x -21 dt =

I'

IA

if 1<x<4 ifo<x
- Q' + x - 2)clx* + x -2)dx J,o{r'

- b-

tA

2008-20098 57 ALM 2nd TermExamrnation MarkrnsScheme

In orderto find theexactvalueof

J,t

*' * x - 2l dxby Simpson's rule,thenumbers

of subintervals for thetwo intervalsmustbe even. So 8 subintervals shouldbe used. 4- U . h = - = u .5

^ _

IM

IA

8

Jnlr'+x-21rk =

h.

+ g(1.s)+ g(2.s)+g(3.5)]+2[g(l)+ g(2)+ g(3)]+s(4)] ;3 {s(ol+ a[g(O.s)

_11 3

IA

g(O.s):1.2s c (l): 0 g(l.s): l.7s c Q ): 4 g(2.5)-6.7s s (3 ): 1 0 g(3.s):13.7s { ,-\ _ 6)-r :2x +t_ :.ltor' Let f(x): (:r* t -Jtox' -s "

c(0):2 c(4): l8

e.(a)

Vx e

IM

IA

[.3 ,4 ],

(x)= 2 - :(tox' - o) I lzox) -f' 2', l0x

_a

-.)

-a

IA

ffi troor'

1 /1 o " =

l 0 (1 O -r' ? -6 + 6 ) l U x - -6

fi.-4l}x" -6

V

<2 ^ lto <0 .'./(x)is strictlydecreasing on [.3, 4].

IM

+ r - JOir it' - 6 = 0 . 2 e 8>50 f(t.3)=2(1.3) .f(4\=2(4)+t-Jl0(4f-6 =_ 3 . 4 0 e<70 .'. Ehas exactly one real root lying in the interval t r .3,41.

e.(b)

g ' (x ) =

IA

z-)00; -elIpo*1 ln.t r- - - - - - - -' -"^ -. lllx ' - 6

IA

\, I ' ox2o) ' tzoxl] 2

a )1 ,( r g " (x ) = _ ro [(1 0 ,,_ ]_ L'

-r o(rox' - ofi[ro'' - 6- I ox,]

oo(r o"'- ofi

IA

2008-20098 57 ALM 2nd TermExanrination Markins Scheme

>0

V x e [.3,4] .'.9'(x)is strictlyincreasingon [.3, 4].

c'(r.3)=3-+

IM

-_-0.s376

Jl0(1.3)'- 6

IA

s'(4)=3--#gL =-0.2233 {lo(4)' - 6

' ls'(x)l<0.9376<1 e.(c)(i)

IA

f (r.6 )= 2 (1 .6 )+ 1 -J l 0 (1 .6 )' z-6 = -0:272< 0 IM

.' .T h ero o t i s i n [1 .3 , 1 .6 ]. Vx e [.3 , 1 .6 ],

^ trooa

P ( xl= J- .1 - -

Vl0x'-6 f60 -=?" llO- r X'"' lox2-6

< 3-.,/ib <0 .' .g (t) i s s tri c tl yd e c re a s i nogn [1.3, 1.6].

I N,{

,' .c (1 .6 )< g (x ) < g (1 .3 ) 1 .3 7 2 8< g (x )< 1 .5 9 8 5 1 .3< g (x ) < 1 .6

1M

." .g (x ) e [1 .3 , 1 .6 ] .'.x6: 1.6can be used.

n 1.6000 1.3728

9 l0

1.4564 1.4691

1.5343

11

1.4147 1.5006

l2

1.4598 t.4666

IJ

|.461',7

t.4316

I4 t5

t.46s2 1.4626

16

|.4645

1.4831 t.4498

IM

1.4739 IA

.the root is l 46.(cor.to 2 d.p.)

e.(cXii)

10. ( a)

c (3 .5 )= 3 (3 .s )+ 1- J l 0 (3 .s )' ?* 6 = 0.7065

IM

.' g(3.5) e [1.3, 4] and this doesnot guaranteethe convergenceof the iterative formula.

IA

4 =r . s r r orr..5 f l - l - / : L ) dt \20,/ &x3y +-:+ l) dt l0 40

\30,

(l)

-8-

IA

2008-20098 57 ALM 2nd TermExaminationMarkins Scheme

From (2),

Subs.(3).(a) into(1) /i

.,\

/1

rc({4 * !!z) =-(9* 1 -:o) +1L+t5 sdr)

[dr' 12

t

dt"

dt

s

\dt

) 40

rc2 *zL = -ctY* 1 + 3 o+fI+15 dt

5

40

rc!2+3dY +t v=45 dt'

dt

8'

80" ! +242+v=360 dt' dt

r0.(b) C h a ra c te ri s tiEcq u a ti o n :

IM

8 0 m 2" 2 4 m-l :0 l1 204

o r --

cr e 2 a + cr e 4

IA

Let yo: A d.1,v.

d ' v.|,-A .

dt

dt"

""A:360 '.yn: 360 i. Y= c P

20+ c r e a + 360

IA

dv c , : c , :

d t2 0 4 W h e nl : 0 , y :c t+ c z + 3 6 0 :2 0 0 c r * c z : -1 6 0 dy

0

(i )

2 0 0 ,.^

ct

L = _ _ _ r _ itr = _ _ _ _

IM

cz

d t1 0 5 2 0 4 c r + 5 c z :2 0 0

(i i )

1M

:.c 1 : -2 5 0 a n dc 2 :9 0 r!

:.!=-250e 20+90e { +360 dv25:45:tv

L=-e

Lv

_ =_ _ o

dr'

8-

4

--e

dt22 d'y 5 -;

+_ o

IA

45 -+ q

8"

-9-

2008-20098 57 ALM 2nd TermExaminarion MarkineScheme

)-,

uy

^ S e t - -u . dt

IM

* 1 =- e4 5 -:I

25

22 ;9 e'" =I

+ fe), e' " = t - |

IA

\5/

lfltlS,

d'v

s /s \.

d !'

8 \s ,

--=-

i- l

...W h e n e ro :i

+s -i/ s ti >U .

+-i

IM

815/

| .y i s a m i n i mum. \)/-

The minimum amountof salt

rq l I

:-2501-l \5i

/q \ :

+e0l-l l5i

+360

rs t j .

=l; | (-450+e0)+360 \)/ | .r I | /5 \r l =3601 1-l: I I

| \ei I

LI

=t87.3320g

IA /q \

a n dth e ti m e :5 In l - l mi n . \ 5 ,/ IL(a)(i)

IA

Let therandomvariableX mg denotetheactualtar yield of a cigarette. X- N(p,0.82) i.e.X-N(17.5,0.8'z) P(X> 18.5) ^( = f lZ>

18.5- 17.5\

\0.8) = P(Z >r.2s) =0.5-03944 : 0.1056

IM

IA

- l0 -

2008-20098 57 ALM 2nd TermExamrnatron MarkinsScheme I L(a)(ri)

Let I denotethe number of cigarettescontainingtar yields higher than 18.5mg in a pack of50 cigarettes. )' - Bi n (5 0 ,0 . 1 0 5 6 ) Using normal approximation,

v- N(50(0. l0s6).50(0.l0s6xt - 0.l0s6)) r- N(5.28,4.122432) P(v> l0)

^ (-

=

rt

t

>

_

IM IM

ro .s- 5 .2 8 ) |

14.722432 \ ) == P(Z >2.4021) = 0.5- 0.4918 = 0.0082 -l

IA

rr.(bxi) Hs:p: 17.5 IA

H; 1t> 17.5 I I (b)(ii)

r=I1=rs.r

IA

l0

Under He, o R2 x - Nfl7.5."'" )' l0

1M

18.1- 17.5

o -t

'=

IM

ffi = 2 .3 7 1 7> 2 .3 2 6 7

IA

So t1ois rejectedat lo/olevel and there is evidencethat the actualtar yields were higherthan that claimed. r l.(b xiii) Supposethat Ho is rejectedat 1%olevel when X > c.

P \x > cl x -Nt I 2.s.9{1 -' 10' = o . o , ?_11

<

P(Z ='='-) = 0.01 ' >' u.6

IM

ffi r-17

5

0.8

m

c = 18.0886

IA

P(TypeII error) : P(accept Ho j il is true) = Pd < | 8.0886x .- Nt r a.o,0,9'D ' t0"

IM

l8.o) = P(Z < l8'08q6_0.8

IM

ffi = P(Z < 0.3503) = 0.5+ 0.1369 =0.6369

IA

Related Documents

Marking Scheme
May 2020 25
Marking Scheme
May 2020 28
Marking Scheme
May 2020 16
1994 Econ Marking Scheme
November 2019 26

More Documents from ""