200701 Umaths Unit2-drling

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 200701 Umaths Unit2-drling as PDF for free.

More details

  • Words: 1,432
  • Pages: 39
WUC112 University Mathematics

Unit 2: Limits and Continuity Tutor: Dr. Ling L. P.

Ground Rules Learn!  Participate - ask questions.  Take notes!  Willing to share!  Help each other learn - if you get it and your neighbor does not, help them.  Help us to help you - let us know if we are going too fast or too slow.  Be on time.  100% course work completion. 

Dr. Ling L. P. ­ 2007

Contact Information 1) Contact number: 04-530 8611

2) Email address: [email protected] / [email protected] This will be the best way to contact me!

3) Time available for telephone tutoring: Tuesday: 5.00 pm – 7.00 pm Thursday: 5.00 pm – 7.00 pm Please contact me at least once every 3 weeks.

Dr. Ling L. P. ­ 2007

Unit 2 Objectives • • • • • • • •

Understand the idea of the limit of a function. Determine the existence of a limit of a point by looking at the right-hand limit and the left-hand limit of the point. Apply the limit theorems on the sum, product and quotient of functions. Understand the concept of continuity at a point of a particular function. Apply the theorems on continuity. Understand the idea of continuity from the left and continuity from the right. Apply the pinching theorem on some simple trigonometric limits. Understand and apply the intermediate value theorem and the extreme value theorem.

Dr. Ling L. P. ­ 2007

Unit 2 Outline  Unit 2.1: The idea of limits  Unit 2.2: The definition of limits  Unit 2.3: Some limit theorems  Unit 2.4: Continuity

Dr. Ling L. P. ­ 2007

Unit 2.1: The idea of limits

Concept of a Limit

Michael

??? 1 2

3 4

7 8



If Michael walks half way of the remaining distance each time, can he ever walk out of the room? If the concept of limit doesn’t exist, Michael can never walk out of the room! Dr. Ling L. P. ­ 2007

Unit 2.2: The definition of limits

Function and Limit Function y = f ( x ) Examples of functions defined on all real numbers R. f(x) = x²; g(x) = 2x - 1; h(x) = x³

Definition: The limit of a function describes the behavior of the function as the input approaches a particular value.

f(x) = L lim x c Dr. Ling L. P. ­ 2007

Think of the bus jumping the gap in “Speed” If the two pieces of the freeway are the same height...

…so, the jump works in either direction! Therefore, the limit exists.

Dr. Ling L. P. ­ 2007

Think of the bus jumping the gap in “Speed” The left piece is higher…

…so, the jump works! Dr. Ling L. P. ­ 2007

Think of the bus jumping the gap in “Speed” The right piece is lower…

…so, the jump fails!

Dr. Ling L. P. ­ 2007

LIMIT does not exist (abbreviated D.N.E.)

Because the bus cannot jump both directions, then the limit of the freeway does not exist (abbreviated D.N.E.)

Dr. Ling L. P. ­ 2007

One-sided limits You may find the limit from each side of the c-value. 12 11

x=c

Limit from the left (x
10 9

Limit from the right (x>c)

8 7 6 5 4 3 2 1 0 -6

-5

-4

-3

-2

-1

-1 0

1

2

3

4

5

6

-2 -3 -4

The hole at x = c divides the graph into two pieces! Dr. Ling L. P. ­ 2007

One-sided limits

You need one-sided limits when you encounter a piecewise function (a function where each part of the domain has its own function to evaluate) as seen below… Limit from the left (x
Dr. Ling L. P. ­ 2007

Limit from the right (x>c)

Example: Different right-hand and left-hand limits at the origin.

Dr. Ling L. P. ­ 2007

Unit 2.3: Some limit theorems

Limit theorems

Dr. Ling L. P. ­ 2007

Unit 2.4: Continuity

Definition of Continuity Definition: A function f is said to be continuous at a point a if and only if the limit of f as x approaches a is the value f (a) of f at a. That is:

lim f ( x) = f (a ) x →a

Dr. Ling L. P. ­ 2007

Definition of Left Continuity Definition: A function f is said to be left continuous at a point a if and only if the limit of f as x approaches a from the left is the value f (a) of f at a.

lim f ( x) = f (a )

x →a −

Dr. Ling L. P. ­ 2007

Definition of Right Continuity

Definition: A function f is said to be right continuous at a point a if and only if the limit of f as x approaches a from the right is the value f (a) of f at a.

lim f ( x) = f (a )

x →a +

Dr. Ling L. P. ­ 2007

Continuity theorems

Dr. Ling L. P. ­ 2007

Examples

Example 1

Solution

Dr. Ling L. P. ­ 2007

( x + 2) lim 2 x →−2 x − 4

Problem 2

Solution

x 2  3x  2 lim x 2 x 2 x 2  3 x  2  x  1  x  2  Rewrite   x  1. x 2 x 2 x 2  3x  2 Hence lim  lim  x  1  1. x 2 x 2 x 2

Dr. Ling L. P. ­ 2007

Problem 3

Solution

x − 3x − 18 lim x→−3 x+3 2

( x + 3)( x − 6) lim x→−3 x+3 lim ( x − 6) x→−3

−3 − 6 −9 Dr. Ling L. P. ­ 2007

Example 4

x

lim

4

x– 2 = ? x–4

Direct substitution won’t do it. Why?

Dr. Ling L. P. ­ 2007

Solution

x– 2 •

x–4

Dr. Ling L. P. ­ 2007

x+ 2

=

x– 4

x + 2 (x – 4)( x + 2)

Thus,

x

Dr. Ling L. P. ­ 2007

lim

4

1 x+2

=?

Problem 5

Solution

Rewrite

x 0

6x

Use the fact that lim

 0

sin  3 x 

Since lim

x 0

Dr. Ling L. P. ­ 2007

lim

sin  3 x 

6x

1 sin  3 x   2 3x

sin  3 x  3x

sin   



 1.

 1, we conclude that lim

x 0

sin  3 x  6x

1  . 2

Practice: 1)

x

5)

x

lim

1

lim

Dr. Ling L. P. ­ 2007



x –4 =? 2

x+2 x –4 =? 2

2

By direct substitution

x+2

By factoring and substituting

Example 6

Determine if the limit exists as the function approaches 3?

f (x) =

x+1

if x ≤ 3

8 – 2x

if x > 3

Solution

For the “left” or negative approach, try to evaluate the first piece

4

lim (x + 1) = This is NOT – 3

Dr. Ling L. P. ­ 2007

x3–

“approaching 3 negatively”

For the “right” or positive approach, try to evaluate the second piece

2

lim (8 – 2x) = This is STILL 3

x3+

What is the limit as this piecewise function approaches 3? 4 from the left and 2 from the right Thus,

x

lim f(x)

Dr. Ling L. P. ­ 2007

3

does not exist (D.N.E.)

Limit of function when approaches infinity Example 7

Find the limit as the function approaches 2.

f (x) =

1 2− x

Tips

Solution

Plot it!! In the graph, as x  2– , the curve  + ∞ In the graph, as x  2+ , the curve  – ∞ The two one-sided limits do not agree; Thus, limit D.N.E.

Dr. Ling L. P. ­ 2007

More Examples Limits-Problems&Sol ution

Supporting data/information

Dr. Ling L. P. ­ 2007

sin x f ( x) = x The function is undefined at 0. Table of Values

sin x lim =1 x→0 x Dr. Ling L. P. ­ 2007

x

sin(x)/x

±0.5

0.95885

±0.1

0.99833

±0.001

0.99999

Graph for example 7

x -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Dr. Ling L. P. ­ 2007

f(x) 0.083333 0.090909 0.1 0.111111 0.125 0.142857 0.166667 0.2 0.25 0.333333 0.5 1 -1 -0.5 -0.333333 -0.25 -0.2 -0.166667 -0.142857 -0.125

Related Documents