200701 Umaths Tma2 Ansguide

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 200701 Umaths Tma2 Ansguide as PDF for free.

More details

  • Words: 1,624
  • Pages: 6
WUC 112 University Mathematics (January 2007) TMA2 – Answer Guide Question 1 x 2 + 2x − 3 (a) lim x →1 x −1 ( x + 3)( x − 1) = lim x →1 x −1 ( x + 3) = lim x →1 =1+3=4 1 1 1 −   (b) lim x →0 x 2 + x 2  1 −x    = lim x →0 x  2( 2 + x )    −1 = lim x →0 2( 2 + x ) 1 =− 4 x−4 (c) lim x→ 4 x −2

 x  2  x  2  x  2 ( x  4)  x  2  = lim = lim x4

( x  4)

( x  4)

x4

 lim x  2  4 x4

x  1, x  1  0, x  1  ( x  1), x  1  0, x  1 x 1 x 1 , lim−  lim+ x →1 x →1 x 1 x 1 x −1 therefore lim does not exist. x→1 x − 1 

(d) x  1  

Question 2 3 f ( x) (a) lim x→c g ( x ) f ( x) = 3 lim x→c g ( x )  7  =3    −3  = −7

9 − 2 x 2 ≤ g ( x) ≤ 9 − x 2 ,

(b) Given

lim 9 − 2 x 2 = 3 and lim 9 − x 2 = 3 x →0 x →0 g ( x) = 3 Thus, lim x →0 1 1 = g ( x) 3 2 x x2 (c) Given 1 ≤ f ( x) ≤ 1 + 4 2 2  x2 x 1 + lim (1 − ) = 1 and lim x →0  x →0 2 4  Thus, lim f ( x) = 1 and lim x →0

  = 1 

x→0

2 f ( x) + 1] = 2(1) + 1 = 3 and lim[ x →0 f ( x) = 0 (d) Given lim x→c Since - f ( x) ≤ f ( x ) ≤

f ( x)

lim − f ( x) = lim f ( x ) = 0 x →c x →c f ( x) = 0 Therefore, lim x →c Question 3

2 x −1 + 2 x x −1 2( x 2 − 1) + x( x − 1) = x( x 2 − 1) x( x 2 − 1) ≠ 0 , thus, x ≠ 0 and x 2 ≠ 1 f (x) is not continuous at x = 0, −1 and 1.

(a) f (x ) =

(b) f (x) =

x 4x + x 2

.

4 x 2 + x ≠ 0 , thus, x ≠ 0 and 4 x + 1 ≠ 0 1 f (x) is not continuous at x = − and 0 4 x−2 (c) f (x) = . x −2 x − 2 ≠ 0 , x ≠ 2 thus, x ≠ 2 f (x) is not continuous at x = ± 2

(d) f (x) =

x+8 x 2 + 8x

,

x( x + 8) ≠ 0 thus, ( x + 8) ≠ 0 and x ≠ 0 f (x) is not continuous at x = −8 and 0 Question 4 (a) Let f(x) = x3 + x2 – 2x – 1 f (–1) = (–1) 3 + (–1) 2 – 2 (–1) –1 = 1 > 0 and f (1) = (1)3 + (1)2 – 2(1) – 1 = –1 < 0 Thus, there is at least one solution in [ -1, 1 ] (b) Given f (x) = f(2)=

1 1 + x −1 x − 4

1 1 > 0 and f ( 3 ) = − < 0 , 2 2

therefore, there is a number c ∈ ( 1, 4 ) such that f (x) = 0. (c) Let F(x) = f(x) – 1 = x5 – 2x2 + 5x – 1, F (0) = –1, F (1) = 3. Thus, there is a number c in ( 0, 1 ) such that F (x) = 0 which implies that f (c) = 1 Question 5  x, x ≥ 0 (a) f ( x ) = x =  − x, x < 0 lim− f ( x) = lim+ f ( x) = f (0) = 0 x →0

x →0

Thus x is continuous for all x. x ≤1 3 x − 2, (b) (i) f ( x ) =  2 x >1  kx ,

f ( x) = lim+ f ( x) The function is continuous at x = 1, if and only if xlim →1− x →1 lim f ( x) = 3(1) − 2 = 1 ,

x →1−

lim f ( x) = k (1) 2 = k ,

x →1+

Thus, k = 1.  kx 2 , g ( x ) = (b) (ii)  2 x + k ,

x≤2 x>2

g ( x) = lim+ g ( x ) The function is continuous at x = 2, if and only if xlim → 2− x →2 lim g ( x) = 4k ,

x →2 −

lim g ( x) = 4 + k ,

x →2 +

4k = 4 + k, thus k =

4 3

Question 6 tan x sin x = lim x →0 x →0 x cos x x  sin x  1  = lim    x →0  x  cos x   sin x   1  = lim  lim    x →0  x  x →0  cos x  = (1) (1) =1

(a) lim

sin 2 x 2sin x cos x = lim x →0 x →0 3x 3x 2 sin x    lim  lim cos x 3  x 0 x  x 0 2 = 3

(b) lim





1  cos x 1  1  sin 2 x = lim x 0 x 0 x x

(c) lim

= lim x 0 = lim x 0 = lim x 0

1  1  sin 2 x  1  1  sin 2 x     1  1  sin 2 x  x   1  (1  sin 2 x )



x 1  1  sin 2 x



sin 2 x

x 1  1  sin 2 x

 

sin x sin x lim = x 0 x x 0 1  1  sin 2 x lim





= (1)(0) = 0 tan 2 x tan 2 x = lim x 0 sin 3 x x 0 sin 3 x sin 2 x = lim x 0 (cos 2 x ) sin 3 x 2 sin x cos x = lim x 0 (cos 2 x )(2sin x cos 2 x  cos 2 x sin x )

(d) lim

= lim x 0 =

2 cos x (cos 2 x)(2 cos 2 x  cos 2 x) 2 lim cos x x 0

(lim cos 2 x)(2 lim cos 2 x  lim cos 2 x ) x 0

x 0

x 0

2(1) 2  = (1)(2(1)  (1)) 3 Question 7 (a) Let ε >0 and there exist δ >0 such that 0< x − 4 < δ , ⇒

x 2 − 16 −8 < ε . x−4

x 2 − 16 −8 < ε x−4 ⇒

x 2 − 16 − 8( x − 4) <ε x−4



x 2 − 16 − 8 x + 32 <ε x−4



x 2 − 8 x + 16 <ε x−4

( x − 4)( x − 4) <ε x−4 ⇒ x−4 < ε Hence, we can let δ = ε ⇒

(b) Let ε > 0 , we seek a number δ > 0 such that if 0 < x − 2 < δ , then, (2 x − 3) − 1 < ε . (2 x − 3) − 1 < ε ⇒ 2x − 4 < ε ⇒2 x −2 < ε , 1 ⇒ x−2 < ε 2 1 thus we have δ = ε 2 (c)

 x − 5, x ≥ 5 x −5 =  5 − x, x < 5 lim f ( x) =

x →5−

( x + 2)( x − 5) −( x + 2)(5 − x) = = −( x + 2) = −7 , (5 − x) (5 − x)

( x + 2)( x − 5) = ( x + 2) = 7 x→5 ( x − 5) lim f ( x ) ≠ lim+ f ( x ) , therefore lim f ( x) does not exist. x→ 5 x →5 − x →5 lim+ f ( x) =

Question 8  2 f ( x)   −2    = 2   = -1 (a) lim x →c  3 + 1  g ( x) + 1  (b) If f (x) is continuous at x = - 3 , -1 = p + q(-3) that is p – 3q = -1 ……………(1) If f (x) is continuous at x = 0, p + q(0) = 5 (0) that is p = 0 …………………(2) Solving, (1) and (2) 1 we obtain p = 0 and q = 3

(show working)

Related Documents