WUC 112 University Mathematics (January 2007) TMA1 – Answer Guide Question 1 (a) Domain: x 4 0 x 4 Range: x 4 0 , 3 x 4 0 D f = [ 4, ) , R f = [0 , ) (b) g ( x) ( x 2 3 x 1) 2 3 9 x 1 2 4
2
3 5 x 2 4 5 D g = ( , ) R , R g = ( , ] 4 (c) (i) x 2 x3 (ii) 0 x2 ( x 3) 0 and ( x 2) 0 , thus x 3 and x 2 (2 , ) ( x 3) 0 and ( x 2) 0 , thus x 3 and x 2 ( , 3] D h = ( , 3] (2, ) , R h = [0, 1) (1, ) Question 2 a. Graph of y = 2x x x
8 6 4 2 y
0 -10
Df = ( , 0) (0, ) Rf = ( , 2) (2, )
-5
-2
0
-4 -6 -8 x
5
10
b.
Graph of y =
x [ x]
Df = ( , 0) [1, ) Rf = (0, 2)
2 1.5 y
1 0.5 0 -4
-3
-2
-1
0 x
Question 3 ( 2 a Graph of y = 2 x )
( b )
( c )
Graph of y = 2x x 2
Graph of y =
x2 x2
1
2
3
4
Question 4 (a)
Graph of y 2 sin ( x ) 4 Df = ( , ) , Rf = [ 2 , 2]
−π
x
π sin x − 4
0.71
3 − π 4 0
π 2 sin x − 4
1.41
0
(b)
π
0 π π π π − − − 2 3 4 6 -0.71 -0.97 -1 -0.97 -0.71
π 6 -0.26
π 4 0
π 3 0.26
π 2 0.71
3 π 4 1
0.71
-1.41 -1.93 -2
-0.52
0
0.52
1.41
2
1.41
−
-1.93 -1.41
π Graph of y = 2 sin[2 ( x − )] 4 Dg = (− ∞ , ∞) , Rg = [− 2 , 2]
x
−π
π sin 2 x − 4
-1
3 − π 4 0
π 2 sin 2 x − 4
-2
0
1
π 3 0.5
2
1
−
π 2
−
0
π 6 -0.5
0
-1
−
π 4
π
-1
π 6 -0.5
π 4 0
π 3 0.5
π 2 1
3 π 4 0
-1
-2
1
0
1
2
0
-2
0
−
(c)
Graph of y = sin x + cos x Dh = (− ∞ , ∞) , R h = [− 2 , 2]
x
−π
sin x
0
3 − π 4 -0.71
cos x sin x + cos x
-1 -1
-0.71 -1.41
π 2 -1
π π − 3 4 -0.87 -0.71
π 6 -0.5
0 -1
0.5 0.71 -0.37 0
0.87 0.37
−
−
Question 5 x x+4 x f g(x) = f x+4 x = 2− x+4 2( x + 4) − x = x+4
(a) f (x) = 2 – x , g (x) =
−
π
0
π 6 0.5
π 4 0.71
π 3 0.87
π 2 1
3 π 4 0.71
0
1 1
0.87 1.37
0.71 1.41
0.5 1.37
0 1
-0.71 0
-1 -1
0
2x + 8 − x = x+4 x+8 = x+4 g f (x) = g (2 – x) 2− x = 2− x+4 2− x = 6− x (b) f (x) = x2 , g (x) = f g(x) = f =
9− x 9 x
9 x
2
=9–x g f (x) = g (x2) = 9 x2 Question 6 D f = [ 2, ) and R f = [ 3, ) ; D g = [ 1, ) and R g = [ 0, ) For f g to exist, the range of g must be a subset of the domain of f , But, [ 0, ) [ 2, ). Thus, f g does not exist. f g will only exist if g is in [ 2, ) , that is ,
x 1 2 x – 1 4 , x 5.
Therefore, f g will exist if its domain is [ 5, ). Question 7 (a)
x = r cos θ, y = r sin θ xy=4 (r cos θ) (r sin θ) = 4 r 2 cos θ sin θ = 4
(b)
x = r cos θ, y = r sin θ x2 + y2 = 4 (r cos θ)2 + (r sin θ)2 = 4
r2 (cos2 θ + sin2 θ) = 4 r2 = 4 r = 2 (c)
x = r cos θ, y = r sin θ y2 = 4 x r2 sin2 θ = 4 r cos θ r sin2 θ = 4 cos θ
Question 8 (a)
r = cot θ csc θ cos 1 r sin sin 1 sin cos r sin 1 tan r sin Substitution tan θ = (y/x), y = r sin θ y 1 x y y2 = x (b)
x = r cos θ, y = r sin θ r cos θ + r sin θ = 1 x+y=1
(c) r2 = – 4 r cos θ Substitution r2 = x2 + y2 and x = r cos θ, x2 + y2 = – 4 x x2 + 4 x + y2 = 0 ( x + 2 )2 – 4 + y2 = 0 ( x + 2 )2 + y2 = 4