200701 Umaths Tma1 Ansguide

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 200701 Umaths Tma1 Ansguide as PDF for free.

More details

  • Words: 1,141
  • Pages: 6
WUC 112 University Mathematics (January 2007) TMA1 – Answer Guide Question 1 (a) Domain: x  4  0 x  4 Range: x  4  0 , 3 x  4  0 D f = [ 4, ) , R f = [0 , ) (b) g ( x)  ( x 2  3 x  1) 2   3 9      x     1 2 4   



2

3 5   x    2 4  5 D g = (  , ) R , R g = (  , ] 4 (c) (i) x  2  x3 (ii)   0  x2  ( x  3)  0 and ( x  2)  0 , thus x  3 and x  2  (2 , )  ( x  3)  0 and ( x  2)  0 , thus x  3 and x  2  (  ,  3] D h = ( ,  3]  (2, ) , R h = [0, 1)  (1, ) Question 2 a. Graph of y = 2x x x

8 6 4 2 y

0 -10

Df = ( , 0)  (0, ) Rf = ( ,  2)  (2, )

-5

-2

0

-4 -6 -8 x

5

10

b.

Graph of y =

x [ x]

Df = ( , 0)  [1, ) Rf = (0, 2)

2 1.5 y

1 0.5 0 -4

-3

-2

-1

0 x

Question 3 ( 2 a Graph of y = 2  x )

( b )

( c )

Graph of y = 2x  x 2

Graph of y =

x2 x2

1

2

3

4

Question 4 (a)

 Graph of y  2 sin ( x  ) 4 Df = (  , ) , Rf = [ 2 , 2]

−π

x

π  sin  x −  4 

0.71

3 − π 4 0

π  2 sin  x −  4 

1.41

0

(b)

π

0 π π π π − − − 2 3 4 6 -0.71 -0.97 -1 -0.97 -0.71

π 6 -0.26

π 4 0

π 3 0.26

π 2 0.71

3 π 4 1

0.71

-1.41 -1.93 -2

-0.52

0

0.52

1.41

2

1.41



-1.93 -1.41

π Graph of y = 2 sin[2 ( x − )] 4 Dg = (− ∞ , ∞) , Rg = [− 2 , 2]

x

−π

  π  sin  2  x −   4   

-1

3 − π 4 0

  π  2 sin  2  x −   4   

-2

0

1

π 3 0.5

2

1



π 2



0

π 6 -0.5

0

-1



π 4

π

-1

π 6 -0.5

π 4 0

π 3 0.5

π 2 1

3 π 4 0

-1

-2

1

0

1

2

0

-2

0



(c)

Graph of y = sin x + cos x Dh = (− ∞ , ∞) , R h = [− 2 , 2]

x

−π

sin x

0

3 − π 4 -0.71

cos x sin x + cos x

-1 -1

-0.71 -1.41

π 2 -1

π π − 3 4 -0.87 -0.71

π 6 -0.5

0 -1

0.5 0.71 -0.37 0

0.87 0.37





Question 5 x x+4  x  f  g(x) = f    x+4  x  = 2−   x+4  2( x + 4) − x  =  x+4  

(a) f (x) = 2 – x , g (x) =



π

0

π 6 0.5

π 4 0.71

π 3 0.87

π 2 1

3 π 4 0.71

0

1 1

0.87 1.37

0.71 1.41

0.5 1.37

0 1

-0.71 0

-1 -1

0

 2x + 8 − x  =   x+4   x+8  =   x+4 g  f (x) = g (2 – x)  2− x  =   2− x+4  2− x  =   6− x  (b) f (x) = x2 , g (x) = f  g(x) = f =





9− x 9 x

9 x





2

=9–x g  f (x) = g (x2) = 9  x2 Question 6 D f = [ 2,  ) and R f = [ 3,  ) ; D g = [ 1,  ) and R g = [ 0,  ) For f  g to exist, the range of g must be a subset of the domain of f , But, [ 0,  )  [ 2,  ). Thus, f  g does not exist. f  g will only exist if g is in [ 2,  ) , that is ,

x  1  2  x – 1  4 , x  5.

Therefore, f  g will exist if its domain is [ 5,  ). Question 7 (a)

x = r cos θ, y = r sin θ xy=4 (r cos θ) (r sin θ) = 4 r 2 cos θ sin θ = 4

(b)

x = r cos θ, y = r sin θ x2 + y2 = 4 (r cos θ)2 + (r sin θ)2 = 4

r2 (cos2 θ + sin2 θ) = 4 r2 = 4 r =  2 (c)

x = r cos θ, y = r sin θ y2 = 4 x r2 sin2 θ = 4 r cos θ r sin2 θ = 4 cos θ

Question 8 (a)

r = cot θ csc θ  cos    1  r     sin    sin   1   sin         cos    r sin   1   tan      r sin   Substitution tan θ = (y/x), y = r sin θ y 1  x y y2 = x (b)

x = r cos θ, y = r sin θ r cos θ + r sin θ = 1 x+y=1

(c) r2 = – 4 r cos θ Substitution r2 = x2 + y2 and x = r cos θ, x2 + y2 = – 4 x x2 + 4 x + y2 = 0 ( x + 2 )2 – 4 + y2 = 0 ( x + 2 )2 + y2 = 4

Related Documents