2007 Engi.pps

  • Uploaded by: Alvaro Luis
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 2007 Engi.pps as PDF for free.

More details

  • Words: 1,013
  • Pages: 17
ENGI 1313 Mechanics I

Lecture 31:

Mid-Term Review

Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of Newfoundland [email protected]

Overall Mid-Term Results 

Class Statistics (259) 

Average

• 67% 

Standard deviation

• 17% 

Standard deviation between sections

• 3% 

2

Solution Posted

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 31

Term A/B Exam (Mon. Oct 22) 

Results are not Back 

Student Numbers

• 200600816 • 200641421 • 200641728 • 200643385 • 200714459 • 200737914 • 200749075 3

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 31

No Record of Mid-Term Exam 

Contact Me Immediately to Resolve 

Student Numbers

• 200643849 • 200626752 • 200402782 • 200565687 • 200672285

4

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 31

Problem 1 

Determine the components of the F force acting along the u and v axes. 

Given:

• 1 = 70 • 2 = 45 • 3 = 60 • F = 250N 5

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 31

Problem 1 (cont.) 

Problem Characteristics 

Force vectors • No right rectangular

• 

Solution Method 

6

coordinate system Forces on specified axes

Parallelogram or triangle construction • Law of sines

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 31

Problem 1 (cont.) 

Force Triangle   180   70   45   65  Fu 250 N Fv   sin 45  sin 65  sin70 

Fu  320N

Fv  332N

7

© 2007 S. Kenny, Ph.D., P.Eng.



Fv

F = 250 N

1 = 70 2 = 45

Fu

ENGI 1313 Statics I – Lecture 31

Problem 2 

The three cables are used to support the lamp of weight W. Determine the force developed in each cable for equilibrium. 

8

Given: • a=4m • b=4m • c=2m • W = 600 N © 2007 S. Kenny, Ph.D., P.Eng.

4m 2m 4m

W = 600 N ENGI 1313 Statics I – Lecture 31

Problem 2 (cont.) 

Problem Characteristics 

Particle Equilibrium

• Scalar or vector

4m

approach 

Solution Method 

2m 4m

Summation of Forces W = 600 N

9

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 31

Problem 2 (cont.) 

FBD and Unit Vectors





  2 ˆi  4 ˆj  4 kˆ m 1 2 2 u AD    ˆi  ˆj  kˆ 3 3 3 22  42  42 4m  uAC  ˆi  u AB  ˆj  uW  kˆ

FAD

2m 4m FAC

FAB

W = 600 N 10

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 31

Problem 2 (cont.) 

Equilibrium Equation      F   Fx ˆi   Fy ˆj   Fzkˆ  0

   FAB uˆ AB  FAC uˆ AC  FAD uˆ AD  W uˆ w  0 4 m



Three Equations  3 FAD  W  900 N 2  1  FAC  FAD  300 N 3  2  FAB  FAD  600N 3

11

FAD

© 2007 S. Kenny, Ph.D., P.Eng.

2m 4m FAC

FAB

W = 600 N ENGI 1313 Statics I – Lecture 31

Problem 3 

Force F is applied to the handle of the wrench. Determine the angle  between the tail of the force F and the handle AB. 

12

Given: • a = 0.30 m • b = 0.50 m • F = 80 N • 1 = 30 • 2 = 45 © 2007 S. Kenny, Ph.D., P.Eng.

F = 80N 

1 2

0.3 m 0.5 m

ENGI 1313 Statics I – Lecture 31

Problem 3 (cont.) 

Problem Characteristics 



F = 80N

Vector projection



Solution Method 

2

Dot product 0.3 m 0.5 m

13

© 2007 S. Kenny, Ph.D., P.Eng.

1

ENGI 1313 Statics I – Lecture 31

Problem 3 (cont.) 

Unit Vectors

 

 



 uF   cos 30  sin 45  ˆi  cos 30  cos 45  ˆj  sin 30  kˆ  u AB   ˆj





F = 80N

30 45



Dot Product    u 1 F  u AB    cos     uF u AB

   

0.3 m 0.5 m

 0.6124  0   0.6124  1  0.5  0      cos   1 . 0 1 . 0   1

14

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 31

Problem 4 

The hood of the automobile is supported by the strut AB, which exerts a force F on the hood. Determine the moment of this force about the hinged axis y. 

15

Given: • a = 0.60 m • b = 1.50 m • c = 0.25 m • d = 1.00 m • F = 100 N © 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 31

Problem 4 (cont.) 

Problem Characteristics 



Solution Method 

16

Moment about a specified axis Triple scalar product

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 31

Problem 4 (cont.) 

Unit Vector





  1.25 ˆi  0.6 ˆj  1kˆ uF  1.25 2  0.6 2  12  uF   0.731 ˆi  0.3509 ˆj  1kˆ







Moment about Y-axis 0 1 0 uˆ y   uF  1.50 0 0 rOA  87.7 N  m   73.1 35.09 58.48 F

17

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 31

Related Documents

2007
November 2019 81
2007
November 2019 100
2007
December 2019 81
2007
December 2019 56
2007
November 2019 60
2007
November 2019 56

More Documents from ""

2007 Engi.pps
April 2020 2
Anexo3 Base Teorica.pptx
November 2019 36
June 2020 16
Sus Ojos.pdf
December 2019 34