ENGI 1313 Mechanics I
Lecture 31:
Mid-Term Review
Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of Newfoundland
[email protected]
Overall Mid-Term Results
Class Statistics (259)
Average
• 67%
Standard deviation
• 17%
Standard deviation between sections
• 3%
2
Solution Posted
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 31
Term A/B Exam (Mon. Oct 22)
Results are not Back
Student Numbers
• 200600816 • 200641421 • 200641728 • 200643385 • 200714459 • 200737914 • 200749075 3
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 31
No Record of Mid-Term Exam
Contact Me Immediately to Resolve
Student Numbers
• 200643849 • 200626752 • 200402782 • 200565687 • 200672285
4
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 31
Problem 1
Determine the components of the F force acting along the u and v axes.
Given:
• 1 = 70 • 2 = 45 • 3 = 60 • F = 250N 5
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 31
Problem 1 (cont.)
Problem Characteristics
Force vectors • No right rectangular
•
Solution Method
6
coordinate system Forces on specified axes
Parallelogram or triangle construction • Law of sines
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 31
Problem 1 (cont.)
Force Triangle 180 70 45 65 Fu 250 N Fv sin 45 sin 65 sin70
Fu 320N
Fv 332N
7
© 2007 S. Kenny, Ph.D., P.Eng.
Fv
F = 250 N
1 = 70 2 = 45
Fu
ENGI 1313 Statics I – Lecture 31
Problem 2
The three cables are used to support the lamp of weight W. Determine the force developed in each cable for equilibrium.
8
Given: • a=4m • b=4m • c=2m • W = 600 N © 2007 S. Kenny, Ph.D., P.Eng.
4m 2m 4m
W = 600 N ENGI 1313 Statics I – Lecture 31
Problem 2 (cont.)
Problem Characteristics
Particle Equilibrium
• Scalar or vector
4m
approach
Solution Method
2m 4m
Summation of Forces W = 600 N
9
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 31
Problem 2 (cont.)
FBD and Unit Vectors
2 ˆi 4 ˆj 4 kˆ m 1 2 2 u AD ˆi ˆj kˆ 3 3 3 22 42 42 4m uAC ˆi u AB ˆj uW kˆ
FAD
2m 4m FAC
FAB
W = 600 N 10
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 31
Problem 2 (cont.)
Equilibrium Equation F Fx ˆi Fy ˆj Fzkˆ 0
FAB uˆ AB FAC uˆ AC FAD uˆ AD W uˆ w 0 4 m
Three Equations 3 FAD W 900 N 2 1 FAC FAD 300 N 3 2 FAB FAD 600N 3
11
FAD
© 2007 S. Kenny, Ph.D., P.Eng.
2m 4m FAC
FAB
W = 600 N ENGI 1313 Statics I – Lecture 31
Problem 3
Force F is applied to the handle of the wrench. Determine the angle between the tail of the force F and the handle AB.
12
Given: • a = 0.30 m • b = 0.50 m • F = 80 N • 1 = 30 • 2 = 45 © 2007 S. Kenny, Ph.D., P.Eng.
F = 80N
1 2
0.3 m 0.5 m
ENGI 1313 Statics I – Lecture 31
Problem 3 (cont.)
Problem Characteristics
F = 80N
Vector projection
Solution Method
2
Dot product 0.3 m 0.5 m
13
© 2007 S. Kenny, Ph.D., P.Eng.
1
ENGI 1313 Statics I – Lecture 31
Problem 3 (cont.)
Unit Vectors
uF cos 30 sin 45 ˆi cos 30 cos 45 ˆj sin 30 kˆ u AB ˆj
F = 80N
30 45
Dot Product u 1 F u AB cos uF u AB
0.3 m 0.5 m
0.6124 0 0.6124 1 0.5 0 cos 1 . 0 1 . 0 1
14
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 31
Problem 4
The hood of the automobile is supported by the strut AB, which exerts a force F on the hood. Determine the moment of this force about the hinged axis y.
15
Given: • a = 0.60 m • b = 1.50 m • c = 0.25 m • d = 1.00 m • F = 100 N © 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 31
Problem 4 (cont.)
Problem Characteristics
Solution Method
16
Moment about a specified axis Triple scalar product
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 31
Problem 4 (cont.)
Unit Vector
1.25 ˆi 0.6 ˆj 1kˆ uF 1.25 2 0.6 2 12 uF 0.731 ˆi 0.3509 ˆj 1kˆ
Moment about Y-axis 0 1 0 uˆ y uF 1.50 0 0 rOA 87.7 N m 73.1 35.09 58.48 F
17
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 31