2007 Ce A Math Solution

  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 2007 Ce A Math Solution as PDF for free.

More details

  • Words: 2,770
  • Pages: 9
CE Additional Mathematics 2007 Suggested Solution Section A 1. [3 marks]



x4 + 1 dx = x2 =

2.



x 2 + x −2 dx =

x3 x −1 + +C 3 −1

x3 1 − + C , where C is a constant 3 x

[3 marks] 0 −2 1 −3 1 1 Area of the quad. = 2 0 = (2k − 2k + 2 + 6) = 4 sq. units 2 2 k k 0 −2

3.

[4 marks] cos x − 2 cos 2 x + cos 3 x = 0 cos x + cos 3 x = 2 cos 2 x

2 cos 2 x cos(− x) = 2 cos 2 x 2 cos 2 x cos x = 2 cos 2 x

(

)

cos 2 x 2 cos x − 2 = 0 2 2 D D 2 x = 360 n ± 90 or x = 360D n ± 45D x = 180D n ± 45D or x = 360D n ± 45D ∴ x = 180D n ± 45D cos 2 x = 0 or cos x =

4.

where n is any integer

[4 marks] ⎡⎣( x + Δx) 2 + 1⎤⎦ − ⎡⎣ x 2 + 1⎤⎦ d 2 ( x + 1) = lim Δx → 0 dx Δx x 2 + 2 xΔx + Δx 2 + 1 − x 2 − 1 = lim Δx → 0 Δx

= lim (2 x + Δx) Δx → 0

= 2x

1

5.

[5 marks] Let P (n) :

1 1 1 1 1 − − 2 − ⋅⋅⋅ − n = n a −1 a a a a (a − 1)

When n = 1 L.S. of P (1) =

1 1 a − a +1 1 − = = a − 1 a a(a − 1) a (a − 1)

R.S. of P (1) =

1 a(a − 1)

∴ P(1) is true. Assume P (k ) is true, where k is any positive integer

i.e.

1 1 1 1 1 − − 2 − ⋅⋅⋅ − k = k a −1 a a a a (a − 1)

1 1 1 1 1 1 1 − − 2 − ⋅⋅⋅ − k − k +1 = k − k +1 a −1 a a a a a (a − 1) a =

1 1 − k +1 a (a − 1) a

=

a − a +1 1 = k +1 k +1 a (a − 1) a (a − 1)

k

∴ P(k + 1) is true. By the principle of M.I., P (n) is true for all positive integer n . 6.

[5 marks] Equate cos x = sin 2 x cos x = 2sin x cos x cos x(1 − 2sin x) = 0

∴x =

π 6

or

π 2

(Rejected)

Area of the shaded region π

π

cos 2 x ⎤ 6 ⎡ = 6 cos x − sin 2 xdx = ⎢sin x + 0 2 ⎥⎦ 0 ⎣



π ⎞ ⎛ 1⎞ 1 1 1 1 ⎛ π 1 = ⎜ sin + cos ⎟ − ⎜ 0 + ⎟ = + − = 6 2 3⎠ ⎝ 2⎠ 2 4 2 4 ⎝ 7.

[5 marks] (a)

⎛ 1 ⋅ (−3) + 2 ⋅ (2) 1 ⋅ 4 + 2 ⋅1 ⎞ ⎛ 2 ⎞ C =⎜ , ⎟ = ⎜ ,2⎟ 2 +1 2 +1 ⎠ ⎝ 3 ⎠ ⎝ 2

40 2 5 ⎛2⎞ , AC = (2 − ) 2 + (2 − 1) 2 = (b) OA = 2 + 1 = 5 , OC = ⎜ ⎟ + 22 = 9 3 3 ⎝3⎠ 2

2

2

40 25 − 9 9 = 1 cos ∠AOC = 40 2 2 5 9 5+

OC =

40 2 10 , OB = 22 + 42 = 20 , BC = (−2 − ) 2 + (4 − 2) 2 = 9 3 3

40 100 + 20 − 9 = 1 cos ∠BOC = 9 40 2 2 20 9

∴∠AOC = ∠BOC 8.

[5 marks] JJJG JJJG JJJG (a) BC = OC − OB JJJG = kOA − (2i + 6 j) = k (6i + 3 j) − (2i + 6 j)

(b)

= (6k − 2)i + (3k − 6) j JJJG JJJG BC ⋅ OA = 0

[(6k − 2)i + (3k − 6) j] ⋅ [6i + 3j] = 0 36k − 12 + 9k − 18 = 0

k=

9.

2 3

[5 marks] 2

(a)

⎛ x⎞ y + ⎜ ⎟ = 25 ⎝2⎠ 2

x 2 + 4 y 2 = 100 (b) Differentiate above equation w.r.t. t , we have 2 x dy dx 16 y 8 y . = −2 , ∴ = = dt dt 2x x When y = 3 , x = 8

We have



dx 8 ⋅ 3 = = 3 m/s dt 8

3

dx dy + 8y = 0. dt dt

10. [5 marks] (a) By similar triangle, (b)

f '(1) 2 3 = , ∴ f '(1) = 2 3 4

x -coordinate of turning point = 4

1 ∴ f "(4) = − ve 2 ∴ f ( x) attains its maximum when x = 4 .

As f "( x) = −

11. [5 marks] (a) When 0 ≤ x ≤ 1 , we have x − 1 ≤ 0 and x ≥ 0 ∴− ( x − 1) = x − 1 ∴− x + 1 = x − 1 ∴x =1 (b) When x < 0 , we have x − 1 < 0 ∴− ( x − 1) = − x − 1 ∴− x + 1 = − x − 1 Rejected When x > 1 , x − 1 , x > 0 ∴ x −1 = x −1 ∴ x > 1 is the solution Hence, the overall solution is x ≥ 1 . 12. [6 marks] (1 − 2 x + x 2 ) n = ⎡⎣1 − (2 x − x 2 ) ⎤⎦

n

= 1 − C1n (2 x − x 2 ) + C2n (2 x − x 2 ) 2 − C3n (2 x − x 2 )3 + ⋅⋅⋅ = 1 − n(2 x − x 2 ) +

n(n − 1) n(n − 1)(n − 2) (4 x 2 − 4 x3 + ⋅⋅⋅) − (8 x3 + ⋅⋅⋅) + ⋅⋅⋅ 2 6

Coefficient of x 2 = n + 2n(n − 1) = 66

2n 2 − n − 66 = 0 (2n + 11)(n − 6) = 0 ∴ n = 6 or n = −

11 (Rejected) 2

∴ coefficient of x3 =

6⋅5 6⋅5⋅ 4 (−4) − ⋅ 8 = −60 − 160 = −220 2 6

13. [7 marks] (a)

⎧ y = x2 ⎨ ⎩ y = mx − 2m

x 2 − mx + 2m = 0 ...........(*) 4

Δ = m 2 − 4 ⋅ 2m = m 2 − 8m Δ>0 m 2 − 8m > 0 m(m − 8) > 0 ∴ m > 8 or m < 0 (b) (i) Let the mid-point of AB be M (a, b) From (*) ⎛ m⎞ m a = −⎜− ⎟ = ⎝ 2⎠ 2 b = m⋅

m m 2 − 4m − 2m = 2 2

⎛ m m 2 − 4m ⎞ (ii) As x + y = 5 bisect AB , ∴ ⎜ , ⎟ lies on x + y = 5 2 ⎝2 ⎠

m m 2 − 4m + =5 2 2

m 2 − 3m − 10 = 0 m = −2 or m = 5 by (a) m = 5 is rejected, ∴ m = −2 . Section B 14. (a) [3 marks] Let BC = h , BX = b and AB = a ∴ XC = b 2 + h 2 and AC = a 2 + h 2 also AX = a 2 − b AX 2 + XC 2 = (a 2 − b 2 ) + (b 2 + h 2 ) = a 2 + h 2 ∴ AX 2 + XC 2 = AC 2 ∴ AX ⊥ XC (b) [9 marks] (i) Let FB = A , AX = h 1 + (3 2) 2 − A 2 cos135 = 2 ⋅1 ⋅ 3 2 1 1 + 18 − A 2 − = 2 6 2 2 A = 25 , ∴ A = 5 D

h⋅A 1 = 1⋅ 3 2 sin135D 2 2 1 5h = 3 2 ⋅ 2 5

h=

3 5 2

9 441 ⎛3⎞ XB = (3 2) − ⎜ ⎟ = 18 − = 25 25 ⎝5⎠ 2

2

XB =

21 5

(ii) ∠CXB = tan −1 ∠EXF = tan −1

7 1 = tan −1 21 3 7 4

1 7 tan θ = tan(180D − tan −1 − tan −1 ) = − 3 4

1 7 + 3 4 = −5 ⎛ 1 ⎞⎛ 7 ⎞ 1− ⎜ ⎟ ⎜ ⎟ ⎝ 3 ⎠⎝ 4 ⎠

15. (a) [3 marks] Let the distance from P to L be d | 2a − b | | 2a − b | d= = 5 22 + 12 2

⎛8 5 ⎞ 2 d + ⎜⎜ ⎟⎟ = r ⎝ 2 ⎠ 2

(By Pythagoras Theorem)

(2a − b) 2 + 80 = r 2 5 4a 2 − 4ab + b 2 + 400 5 (b) [9 marks] (i) As L2 : 2 x + y = 0 is tangent to the circle r2 =

r=

| 2a + b | 22 + 12

=

| 2a + b | 5

(2a + b) 2 4a 2 − 4ab + b 2 + 400 = 5 5 2 2 2 ∴ 4a + 4ab + b = 4a − 4ab + b 2 + 400 ab = 50 ∴ Locus of P : xy = 50 By (a)

(ii) Let A = Area of C = π r 2 =π

4a 2 − 4ab + b 2 + 400 5

π⎡

2 ⎤ ⎛ 50 ⎞ = ⎢ 4a − 4 ⋅ 50 + ⎜ ⎟ + 400 ⎥ 5 ⎢⎣ ⎝ a ⎠ ⎦⎥ 2

6

2π 5

1250 ⎤ ⎡ 2 ⎢⎣ 2a + 100 + a 2 ⎥⎦ dA π ⎛ 2 ⋅ 2500 ⎞ = ⎜ 8a − ⎟=0 da 5 ⎝ a3 ⎠ =

5000 = 625 8 ∴ a = ±5 a4 =

b=±

50 = ±10 5

1⎛ 2500 ⎞ r 2 = ⎜ 4 ⋅ 25 + 200 + ⎟ = 80 5⎝ 25 ⎠ Hence the equations of C : ( x ± 5) 2 + ( y ± 10) 2 = 80 16. (a) [5 marks] (i) Radius of the inner circle = 1 ⋅ cos θ = cos θ A=

1 2 ⎡ cos θ tan θ 1 ⎤ − (cos 2 θ ) ⋅ θ ⎥ (1 − cos 2 θ )(2π − 2θ ) + 2 ⎢ 2 2 2 ⎣ ⎦ = (sin 2 θ )(π − θ ) + cos θ sin θ − θ cos 2 θ = cos θ ⋅

sin θ + π sin 2 θ − θ (sin 2 θ + cos 2 θ ) cos θ

= π sin 2 θ − θ + cos θ sin θ 1 = π sin 2 θ − θ + sin 2θ sq. units 2 (ii)

dA 1 = 2π sin θ cos θ − 1 + ⋅ 2 ⋅ cos 2θ dθ 2 = 2π sin θ cos θ − 1 + cos 2θ

= π sin 2θ + 1 − 2sin 2 θ − 1 sin θ = π sin 2θ − 2sin θ cos θ = sin 2θ (π − tan θ ) cos θ (b) [3 marks] When

dA =0 dθ

sin 2θ = 0 (rejected, as 0 < θ <

π 2

) or tan θ = π

(c) [4 marks] PR = 2sin θ Let P be the perimeter of the shaded region P = 1⋅ (2π − 2θ ) + 2sin θ + (2 cos θ )π = 2π − 2θ + 2sin θ + 2π cos θ



dP = −2 + 2 cos θ − 2π sin θ dθ 7

But

dP dθ

= −7.38 ≠ 0 θ = tan −1 π

Hence the student's guess is incorrect. 17. (a) [1 mark] JJJJG 1 G G OM = (a + b) 2 (b) [4 marks] JJJG G JJJG 2 G (i) OP = a and OQ = kb 3 G G JJJG JJJG 3 ⎛⎜ 2 a + 4kb ⎞⎟ JJJG 3OP + 4OQ 3 ⎠ = 2 aG + 4k bG = ⎝ OG = 7 7 7 7

1 ⎛ 4k ⎞ ⎜ ⎟ JJJJG JJJG 1 7 (ii) As OM // OG , ∴ 2 = ⎝ ⎠ , ∴ k = 1 2 ⎛2⎞ 2 ⎜⎝ 7 ⎟⎠ JJJG G JJJG 2 G From the givens, we have OP = a and OQ = kb 3 JJJG JJJG JJJG G 2G ∴ PQ = OQ − OP = kb − a 3 1G 2G = b− a 2 3 (c) [7 marks] G G G G 1 1 (i) a ⋅ b =| a || b | cos 60D = 1⋅1 ⋅ = 2 2 JJJG JJJG JJJG 1 G 2 G 1 G 2 G 1 2 1 4 13 | PQ |2 = PQ ⋅ PQ = ( b − a ) ⋅ ( b − a) = − ( ) + = 2 3 2 3 4 3 2 9 36 JJJG 13 | PQ | = 6 JJJJG JJJJG JJJJG 1 G G 1 G G 1 3 (ii) | OM |2 = OM ⋅ OM = (a + b) ⋅ (a + b) = (1 + 1 + 1) = 2 2 4 4 JJJJG 3 | OM | = 2 JJJG JJJJG JJJG JJJJG PQ ⋅ OM = | PQ || OM | cos ∠QGM 13 3 ⎛1 G 2 G⎞ 1 G G cos ∠QGM ⎜ b − a⎟⋅ a + b = 3 ⎠ 2 6 2 ⎝2

(

)

1 1 1 1 13 3 cos ∠QGM + − − = 8 4 3 6 6 2 ∴∠QGM = 104D 8

18. (a) [2 marks] dy 1 −1 1 = 2 ⋅ x 2 −1 = −1 dx 2 x dy =0 dx x = r

1 −1 = 0 r ∴r = 1 ∴

(b) [10 marks] (i)

⎡ S = 2⎢ ⎣



1

2 x − xdx + 1 ⋅1 +

0

By Symmetry ∴ S =4



1



1



⎤ 2 3 − x − (3 − x)dx ⎥ 2 ⎦ 3

2 x − xdx =

0



3

2 3 − x − (3 − x)dx

2

2 x − xdx + 2

0 1

⎡ 3 ⎤ ⎢ 2 x 2 x2 ⎥ 16 ⎛4 1⎞ ⎛8−3⎞ − ⎥ + 2 = 4⎜ − ⎟ + 2 = 4⎜ +2= = 4⎢ sq. units ⎟ 3 2 3 2 6 3 ⎝ ⎠ ⎝ ⎠ ⎢ ⎥ ⎣ 2 ⎦0

1 ⎡ (ii) Volume = 2 π ⎢ 2 ⎣ =π



1



⎤ π 1 ⋅1 (2 x − x) 2 dx ⎥ + 0 2 ⎦ 1

3

4 x + x 2 − 4 x 2 dx +

0

π 2

1

5 ⎤ ⎡ ⎢ 2 x3 x2 ⎥ π = π ⎢2 x + − 4 ⋅ ⎥ + 5 3 2 ⎢ ⎥ 2 ⎦0 ⎣

1 8 π = π (2 + − ) + 3 5 2 ⎛ 30 + 5 − 24 ⎞ π 22π + 15π 37π =π ⎜ = cubic units ⎟+ = 15 30 30 ⎝ ⎠ 2 (iii) Let OQ = 1 + k

1 ⎛ 37π Volume of the first portion = ⎜ 3 ⎝ 30 1 ⎛ 11π ⎞ 1 37π 2 ⎜ ⎟ + π ⋅1 ⋅ k = 2 ⎝ 15 ⎠ 2 90

⎞ 37π ⎟= ⎠ 90

11 k 37 + = 30 2 90 ∴k =

4 , 45

OQ : OP = 1 +

4 : 3 = 49 :135 45 9

Related Documents

2007 Ce Math Solution
October 2019 10
2007 Ce A Math Solution
October 2019 8
2005-ce-ms-a Math
October 2019 12
2004 Ce Math Paper1
November 2019 14
2003 Ce Math Paper1
November 2019 16
Math 2310 Solution 2
November 2019 14