19673885-slides-pech3-july05

  • Uploaded by: Dhondiram Maruthi Kakre
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 19673885-slides-pech3-july05 as PDF for free.

More details

  • Words: 3,429
  • Pages: 45
3- 1

Chapter 3

Switch-Mode DC-DC Converters: Switching Analysis, Topology Selection and Design

3-1

DC-DC Converters

3-2

Switching Power-Pole in DC Steady State

3-3

Simplifying Assumptions

3-4

Common Operating Principles

3-5

Buck Converter Switching Analysis in DC Steady State

3-6

Boost Converter Switching Analysis in DC Steady State

3-7

Buck-Boost Converter Switching Analysis in DC Steady State

3-8

Topology Selection

3-9

Worst-Case Design

3-10

Synchronous-Rectified Buck Converter for Very Low Output Voltages

3-11

Interleaving of Converters

3-12

Regulation of DC-DC Converters by PWM

3-13

Dynamic Average Representation of Converters in CCM

3-14

Bi-Directional Switching Power-Pole

3-15

Discontinuous-Conduction Mode (DCM) References Problems

© Ned Mohan, 2005

3- 2

Regulated switch-mode dc power supplies

Vin

dc-dc converter topology

Vo

Vin , Vo

I in , I o controller

(a)

Vo , ref (b)

Figure 3-1 Regulated switch-mode dc power supplies.

© Ned Mohan, 2005

3- 3

Switching power-pole as the building block of dc-dc converters A

vL iL

Vin

t

0 DTs Ts

vL

B

iL t

0 q

(a)

(b)

Figure 3-2 Switching power-pole as the building block of dc-dc converters.

iL (t ) = iL (t − Ts )   DT Ts  1 s VL =  ∫ vL ⋅ dτ + ∫ vL ⋅ dτ  = 0 Ts  0  DTs 



  area A B area   vC (t ) = vC (t − Ts ) © Ned Mohan, 2005

3- 4

Example 3-1

If the current waveform in steady state in an inductor of 50µ H is as shown in Fig. 3-3a, calculate the inductor voltage waveform vL (t ) .

Solution

During the current rise-time, vL = L

di 1 = 50µ × = 16.67V . dt 3µ

During the current fall-time, vL = L

di (4 − 3)  1  A = =   . Therefore, dt 3µ  3µ  s

di (3 − 4)  1  A = = −  . Therefore, dt 2µ  2µ  s

di 1 = 50µ × ( − ) = −25V . dt 2µ

Therefore, the inductor voltage waveform is as shown in Fig. 3-3b. iL

4A

3A (a )

0

3µ s

t

5µ s

vL ( b)

16.67V

0

t

−25V

Figure 3-3 Example 3-1.

© Ned Mohan, 2005

3- 5 Example 3-2

The capacitor current iC , shown in Fig. 3-4a, is flowing through a capacitor of 100 µ F . Calculate the peak-peak ripple in the capacitor voltage waveform due to this ripple current.

Solution For the given capacitor current waveform, the capacitor voltage waveform, as shown in Fig. 3-4b, is at its minimum at time t1 , prior to which the capacitor current has been negative. This voltage waveform reaches its peak at time t2 , beyond which the current becomes negative. The hatched area in Fig. 3-4a equals the charge Q t2

Q = ∫ iC ⋅ dt = t1

1 × 0.5 × 2.5µ = 0.625µC 2

Using Eq. 3-6, the peak-peak ripple in the capacitor voltage is ∆V p − p =

Q = 6.25 mV . C

 iC 0.5A (a )

Q

0 −0.5A

t 3µ s

2µ s 2.5µ s

vC ,ripple

( b)

0

∆V p − p t

t1

t2

Figure 3-4 Example 3-2.

© Ned Mohan, 2005

3- 6

• Simplifying Assumptions • Two-Step Process • Common Operating Principles

© Ned Mohan, 2005

3- 7

BUCK CONVERTER SWITCHING ANALYSIS IN DC STEADY STATE iin

1

q iL

Vin

vL

vA

iC

Io

Vo

(a)

q

vA

q =1

vL

VA = Vo

Vin

vA

t

0

vL

0

t

(−Vo )

B

Vo

∆iL

iL ,ripple

t

0

vL = Vin − Vo (b)

iL

vL = −Vo

Vin vA

iL

I L = Io

0

Vo

t

vA = 0

(d)

(c) Figure 3-5 Buck dc-dc converter.

iC (t )  iL ,ripple (t ) © Ned Mohan, 2005

t

I in

iin 0

q=0

Vo = VA = DVin

A (V − V ) in o

iL

Vin

t

0

∆iL =

Vin − Vo V DTs = o (1 − D )Ts L L

I L = Io =

Vo R

Vin I in = Vo I o I in = DI L = DI o

3- 8 Example 3-3

In the Buck dc-dc converter of Fig. 3-5a, L = 24 µ H . It is operating in dc

steady state under the following conditions: Vin = 20V , D = 0.6 , Po = 12 W , and f s = 200 kHz . Assuming ideal components, calculate and draw the waveforms shown

earlier in Fig. 3-5d. Solution

With f s = 200 kHz , Ts = 5µ s and Ton = DTs = 3µ s . Vo = DVin = 12V .

The inductor voltage vL fluctuates between (Vin − Vo ) = 8V and ( −Vo ) = −12 V , as shown in Fig. 3-6. Therefore, from Eq. 3-13, the ripple in the inductor current is ∆iL = 1 A . The average inductor current is I L = I o = Po / Vo = 1 A . Therefore, iL = I L + iL ,ripple , as shown in Fig. 3-6. When the transistor is on, iin = iL , otherwise zero. I in = DI o = 0.6 A .

q

1

0

3µ s

The average input currents is

t 5µ s V A = Vo = 12V

Vin = 20

vA

t

0 (Vin − Vo ) = 8V

vL

t

0 −Vo = −12V

0.5 A

iL , ripple

0.5

∆∆iLL = 1 A

t

0

−−0.5 0.5 A

iL

0

1.5 1.5 A I L = I o = 1A

0.5

t

1.5 1.5 A

iin 0

0.5

I in = 0.6 A

t Figure 3-6 Example 3-3.

© Ned Mohan, 2005

PSpice Modeling: C:\FirstCourse_PE_Book03\Buckconv.sch

© Ned Mohan, 2005

3- 9

3- 10

Simulation Results 16

12

8

4

0

-4

-8 450us I(C1)

455us 460us I(L1) V(L1:1,L1:2)

465us

470us

475us Time

© Ned Mohan, 2005

480us

485us

490us

495us

500us

3- 11

BOOST CONVERTER SWITCHING ANALYSIS IN DC STEADY STATE

iL

iL

Vo

C

vL

p

q

vL

Vin Vin

p

q

(a)

(b)

Figure 3-7 Boost dc-dc converter.

© Ned Mohan, 2005

C

Vo

3- 12

Boost converter: operation and waveforms q t

0

vL = Vin Vin

vA = 0

iL

Vo

vA

v A = Vin

Vo

t

0

vL

A

q =1

t −(Vo − Vin )

B

t

0

iL

Vo Vin

vL = Vin − Vo

v A = Vo

IL

0

idiode

∆ iL =

∆iL

iL ,ripple

iL

t

I diode (= I o )

t

0

iC t

0

q=0

(− I0 ) (b)

(c)

Figure 3-8 Boost converter: operation and waveforms.

© Ned Mohan, 2005

(Vo > Vin )

Vin

0

(a)

Vo 1 = Vin 1 − D

Vin V − Vin (1 − D )Ts DTs = o L L

Vin I in = Vo I o I L = I in =

Vo I 1 Vo Io = o = Vin 1− D 1− D R

iC (t )  idiode ,ripple (t ) = idiode − I o

3- 13

Example 3-4 In a Boost converter of Fig. 3-8a, the inductor current has ∆iL = 2 A . It is operating in dc steady state under the following conditions: Vin = 5V , Vo = 12V , Po = 10W , and f s = 200 kHz . (a) Assuming ideal components, calculate L and draw the

waveforms as shown in Fig. 3-8c. Solution From Eq. 3-19, the duty-ratio D = 0.583 . With f s = 200 kHz , Ts = 5µ s and Ton = DTs = 2.917 µ s .

vL fluctuates between Vin = 5V and −(Vo − Vin ) = −7V .

Using the

conditions during the transistor on-time, from Eq. 3-21, L=

Vin DTs = 7.29 µ H . ∆i L

The average inductor current is I L = I in = Pin ( = Po ) / Vin = 2 A , and iL = I L + iL ,ripple . When the transistor is on, the diode current is zero; otherwise idiode = iL . The average diode current is equal to the average output current: I diode = I o = (1 − D ) I in = 0.833 A .

The capacitor current is iC = idiode − I o . When the transistor is on, the diode current is zero and iC = − I o = −0.833 A . The capacitor current jumps to a value of 2.167 A and drops to 1 − 0.833 = 0.167 A .

© Ned Mohan, 2005

3- 14 q 0

t

3µ s 5µ s

vA

Vo = 12V

v A = Vin = 5V

t

0

vL

Vin = 5V

t

0

−(Vo − Vin ) = −7V 1A

∆iL = 2 A

iL ,ripple

t

0

−1 A

3.0 A

iin 0

IL = 2A

1.0 A

idiode

3.0 A 1.0 A

t I diode ( = I o ) = 0.833 A

0

2.167 A

iC

0.167 A

0

−0.833 A

Figure 3-9 Example 3-4.

© Ned Mohan, 2005

t

t

PSpice Modeling: C:\FirstCourse_PE_Book03\Boost.sch

© Ned Mohan, 2005

3- 15

3- 16

Simulation Results 15

10

5

0

-5

-10

-15 1.950ms I(L1)

1.955ms V(L1:1,L1:2)

1.960ms

1.965ms

1.970ms

1.975ms Time

© Ned Mohan, 2005

1.980ms

1.985ms

1.990ms

1.995ms

2.000ms

3- 17

Boost converter: voltage transfer ratio

Vo Vin

1 1− D 1

IL

0

DCM

I L ,crit

CCM

Figure 3-10 Boost converter: voltage transfer ratio.

© Ned Mohan, 2005

3- 18

BUCK-BOOST CONVERTER ANALYSIS IN DC STEADY STATE

A

vL vA q

idiode

Vin

iL

Io Vo

vA

Vin

vL

(a)

Figure 3-11 Buck-Boost dc-dc converter.

© Ned Mohan, 2005

Io iL

(b)

Vo

3- 19

Buck-Boost converter: operation and waveforms q

v A = Vin + Vo

0

Ts

vA

Vin

iin

vL = Vin

iL

t

DTs

(Vin + Vo ) VA = Vo

Io

Vo

t

0

vL

A

Vin

t

0

(a)

iL , ripple

vA = 0

B

∆iL

t

0

iin Vin

−Vo

iL

vL = −Vo

iL

(b)

Io

Vo

0

IL

idiode

I diode (= I o )

t t

0

iC t

( − I 0 0) (c) Figure 3-12 Buck-Boost converter: operation and waveforms.

iC (t )  idiode ,ripple (t ) © Ned Mohan, 2005

Vo D = Vin 1 − D ∆ iL =

Vin V DTs = o (1 − D )Ts L L

I L = I in + I o Vin I in = Vo I o V D I in = o I o = Io 1− D Vin I L = I in + I o =

1 1 Vo Io = 1− D 1− D R

3- 20

Example 3-5 A Buck-Boost converter of 3-11b is operating in dc steady state under the following conditions: Vin = 14V , Vo = 42V , Po = 21W , ∆iL = 2 A and f s = 200 kHz . Assuming ideal components, calculate L and draw the waveforms as shown in Fig. 312c. From Eq. 3-26, D = 0.75 . Ts = 1/ f s = 5µ s and Ton = DTs = 3.75µ s as shown in

Solution

Fig. 3-13. The inductor voltage vL fluctuates between Vin = 14V and −Vo = −42V . Using Eq. 3-28 L=

Vin DTs = 26.25 µ H . ∆iL

The average input current is I in = Pin ( = Po ) / Vin = 1.5 A .

I o = Po / Vo = 0.5 A .

Therefore,

I L = I in + I o = 2 A . When the transistor is on, the diode current is zero; otherwise idiode = iL .

The average diode current is equal to the average output current: I diode = I o = 0.5 A . The capacitor current is iC = idiode − I o . When the transistor is on, the diode current is zero and iC = − I o = −0.5 A . 1 − 0.5 = 0.5A .

© Ned Mohan, 2005

The capacitor current jumps to a value of 2.5 A and drops to

3- 21

q 0

vA

t

3.75µ s

5µ s

(Vin + Vo ) = 56V VA = Vo = 42V

t

0

vL

Vin = 14V

t

0

iL ,ripple

−Vo = −42 A

∆iL = 2 A

1A

t

0

−1 A 3A

iL

1A

0

idiode

IL = 2 A

3A

t

I diode ( = I o ) = 0.5 A 1A

t

0

iC 0

2.5A 0.5A −0.5A

t

Figure 3-13 Example 3-5.

© Ned Mohan, 2005

PSpice Modeling: C:\FirstCourse_PE_Book03\Buck-Boost_Switching.sch

© Ned Mohan, 2005

3- 22

3- 23

Simulation Results 20

10

0

-10

-20

-30 2.950ms I(L1)

2.955ms V(L1:1,L1:2)

2.960ms

2.965ms

2.970ms

2.975ms Time

© Ned Mohan, 2005

2.980ms

2.985ms

2.990ms

2.995ms

3.000ms

3- 24

Buck-Boost converter: voltage transfer ratio

Vo Vin

D 1− D 1

IL

0

DCM

I L ,crit

CCM

Figure 3-14 Buck-Boost converter: voltage transfer ratio.

© Ned Mohan, 2005

3- 25

Other Buck-Boost Topologies • SEPIC Converters (Single-Ended Primary Inductor Converters) • Cuk Converters

© Ned Mohan, 2005

3- 26

SEPIC Converters (Single-Ended Primary Inductor Converters) iL

(a)

vC vL 2

Vin

idiode Vo

iL 2

q

vC (b) Vin

vL 2 q =1

Vo

vL 2 = vC

vC vL 2

(c) Vin q=0

Figure 3-15 SEPIC converter.

DVin = (1 − D )Vo © Ned Mohan, 2005

Vo D = Vin 1 − D

Vo vL 2 = −Vo

3- 27

Cuk Converter

(a)

vC

io

L1

C

L2

Vin

Vo Io

q

vC (b) Vin

iL

vC

io

iin

Vo

(c)

Vin

q =1

iin

io

q=0 Figure 3-16 Cuk converter.

DI o = (1 − D ) I in

© Ned Mohan, 2005

I in D = Io 1 − D

Vo D = Vin 1 − D

Vo

3- 28

TOPOLOGY SELECTION Criterion

Buck

Boost

Buck-Boost

Transistor Vˆ

Vin

Vo

(Vin + Vo )

Transistor Iˆ

Io

I in

I in + I o

DI o

DI in

D ( I in + I o )

DI o

DI in

D ( I in + I o )

(1 − D) I o

(1 − D) I in

(1 − D ) ( I in + I o )

Io

I in

I in + I o

Effect of L on C

significant

little

little

Pulsating Current

input

output

both

I rms

Transistor

I avg

Transistor Diode

IL

© Ned Mohan, 2005

3- 29

WORST-CASE DESIGN The worst-case design should consider the ranges in which the input voltage and the output load vary. As mentioned earlier, often converters above a few tens of watts are designed to operate in CCM. To ensure CCM even under very light load conditions would require prohibitively large inductance. Hence, the inductance value chosen is often no larger than three times the critical inductance ( L < 3Lc ) , where, as discussed in section 3-15, the critical inductance Lc is the value of the inductor that will make the converter operate at the border of CCM and DCM at full-load.

© Ned Mohan, 2005

3- 30

SYNCHRONOUS-RECTIFIED BUCK CONVERTER FOR VERY LOW OUTPUT VOLTAGES

q+

T+ iL

q+ Vin

T− q



0

DTs

vA

Vin

0 vA

Vo

q−

t

Ts Vo

0

t

iL

IL

0 (a)

t t =0

(b)

Figure 3-17 Buck converter: synchronous rectified.

© Ned Mohan, 2005

3- 31

INTERLEAVING OF CONVERTERS

q1 iL1

+

iL 2

Vin −

q1

q2

+ Vo −

q2 t

0

(a) Figure 3-18 Interleaving of converters.

© Ned Mohan, 2005

t

0

(b)

3- 32

REGULATION OF DC-DC CONVERTERS BY PWM Vˆr

Vin

dc-dc converter topology

controller

Vo

vr

0

Vo , ref

vc (t )

d Ts

q (t )

t

Ts

1

0

(a)

(b) Figure 3-19 Regulation of output by PWM.

d (t ) =

© Ned Mohan, 2005

vc ( t ) Vˆr

t

3- 33

DYNAMIC AVERAGE REPRESENTATION OF CONVERTERS IN CCM I vp

ivp

I cp

icp

vvp

icp Vvp

vr (t )

vvp

Vcp

vcp

vc (t )

ivp

vcp 1: d (t )

1: D

q (t )

(a)

(b)

vc (t )

1 ^

Vr

(c)

Figure 3-20 Average dynamic model of a switching power-pole.

© Ned Mohan, 2005

Vcp = DVvp

vcp (t ) = d (t ) vvp (t )

I vp = D I o

ivp (t ) = d (t ) icp (t )

3- 34

Average dynamic models of three converters

iL

(a) Vin

vL q

iL

vo

Vo

1: d (t )

Vin

vo

Vo

q

p iL

vo

Vin

A

A

q

⇓ iL

(b) Vin

iL



⇓ iL

Vin

Vin p 1: (1 − d (t ))

vo 1: d (t )

Figure 3-21 Average dynamic models: Buck (left), Boost (middle) and Buck-Boost (right).

© Ned Mohan, 2005

PSpice Modeling: C:\FirstCourse_PE_Book03\Buck-Boost_Avg_CCM.sch

© Ned Mohan, 2005

3- 35

3- 36

PSpice Modeling: C:\FirstCourse_PE_Book03\Buck-Boost_Switching_LoadTransient.sch

© Ned Mohan, 2005

3- 37

Simulation Results 40

20

0

-20

-40 0s I(L1)

0.5ms 1.0ms V(L1:1,L1:2)

1.5ms

2.0ms

2.5ms Time

© Ned Mohan, 2005

3.0ms

3.5ms

4.0ms

4.5ms

5.0ms

3- 38

BI-DIRECTIONAL SWITCHING POWER-POLE

Buck

Buck Boost

q =1

iL

Vin

Vin q

q − = (1 − q )

Boost

q=0

q = 1 or 0

(b) iL = positive

(a)

q− = 0 Vin

q− = 1

q − = 1 or 0

(c) iL = negative

Figure 3-22 Bi-directional power flow through a switching power-pole.

© Ned Mohan, 2005

3- 39

Average dynamic model of the switching power-pole with bi-directional power flow

Buck Boost iL

Vin q

q − = (1 − q )

(a) Figure 3-23

iL

Vin

1: d

(b)

Average dynamic model of the switching power-pole with bi-directional power flow.

© Ned Mohan, 2005

3- 40

DISCONTINUOUS-CONDUCTION MODE (DCM) iL1 iL ,cri

iL

0

iL 2

I L1 IL2 I L ,crit t

Figure 3-24 Inductor current at various loads; duty-ratio is kept constant.

© Ned Mohan, 2005

3- 41

Critical Inductor Currents and Load Resistances I L ,crit ,Buck =

Vin D (1 − D ) 2 Lf s

I L ,crit ,Boost = I L ,crit ,Buck -Boost =

2 Lf s (1 − D ) 2 Lf s = D (1 − D ) 2 2 Lf s = (1 − D ) 2

Rcrit , Buck = Rcrit , Boost Rcrit , Buck − Boost

© Ned Mohan, 2005

Vin D 2 Lf s

3- 42

Buck converter in DCM

vA

Vin

Vo Vin

Vo

0

t Ts

IˆL

iL 0

Doff ,1

D 1

(a)

Doff ,2

t Ts

1 D

IL

0

DCM

I L,crit

(b)

Figure 3-25 Buck converter in DCM.

© Ned Mohan, 2005

CCM

3- 43

Boost Converters in DCM

vA

Vo

t Ts

0

IˆL

iL

Vo Vin

Vin

1 1− D 1

0

Doff ,1

D

Doff ,2

1

(a)

t Ts

0

DCM

I L ,crit

(b)

Figure 3-26 Boost converter in DCM.

© Ned Mohan, 2005

CCM

IL

3- 44

Buck-Boost converter in DCM

vA

Vin + Vo

Vo Vin

Vo

0

t Ts

IˆL

iL

D 1− D 1

0

Doff ,1

D 1

Doff ,2

(a)

t Ts

0

DCM

CCM

I L,crit

(b)

Figure 3-27 Buck-Boost converter in DCM.

© Ned Mohan, 2005

IL

3- 45

Table 3-2 Vk and I k Converter

Vk

Ik

Buck

 2 Lf s I L  1 −  V0  (Vin − Vo ) D 

D2 (Vin − V0 ) − DI L 2 Lf s

Boost

 2 Lf s I L  1 −  (Vin − V0 ) Vin D  

d2 Vin − dI L 2 Lf s

Buck-Boost

 2 Lf s I L  1 −  Vo Vin D  

D2 Vin − DI L 2 Lf s

vk

ivp vvp

icp vcp

ik 1: d (t ) (a) Buck and Buck-Boost

icp

ivp

vk

vcp

ik

vvp

(1 − d ) :1 (b) Boost

Figure 3-28 Average representation of a switching power-pole valid in CCM and DCM.

© Ned Mohan, 2005

More Documents from "Dhondiram Maruthi Kakre"